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Abstract

In this article a system of retarded differential equations is proposed as a predator–prey model. We investigate the model,
representing a resource (prey) and a two predator system with delay due to gestation. The response function is assumed here to
be concave in nature. Since global stability of positive equilibrium is of great interest, we provide sufficient conditions in terms
of parameters of the system to guarantee it. By the simulation process the bifurcation occurring are discussed in terms of two
bifurcation parameters. We have also shown that the time delay can cause a stable equilibrium to become unstable and even
switching of stabilities. Numerical simulations are given to illustrate the results. To cite this article: T.K. Kar, A. Batabyal, C. R.
Biologies 332 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The dynamic relationship between predators and
prey has long been, and will continue to be, one of
the dominant themes in both ecology and mathematical
ecology due to its universal existence and importance
(Berryman, [1]). In most of ecosystems, the population
of one species does not respond instantaneously to in-
teractions with other species. To incorporate this idea in
a modeling approach, time delay models have been de-
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veloped. In most cases, time delays have a destabilizing
effect towards dynamical behavior and often time delays
are responsible for oscillations of various species. The
question of global stability and uniform persistence of
individual species involved with the model under con-
sideration is important in a delay differential equation
model. There are several publications which explain
from mathematical and ecological points of view the
necessity of delay differential equation models (Gopal-
samy, [2]; Kuang, [3]).

Time delays of one type or another have been in-
corporated into biological models by many researchers.
Freedman and Rao [4] obtained criteria for local stabil-
ity of predator–prey model with delays. Freedman and
Waltman [5] consider a general model of two preda-
tors competing for a single prey. They derived criteria
for strong persistence in terms of conditions on system
y Elsevier Masson SAS. All rights reserved.
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parameters. Kuang [6] studied global stability results
obtained from comparison analysis, Bendixson–Dulac
criterion or limit cycle stability analysis for the general,
Gauss-type, predator–prey system without delay. The
obtained criteria involve restrictions on the functions
(such as prey species growth rate in the absence of pre-
dation and predator functional response). Delay models
have also been investigated by Hale and Waltman, [7];
Waltman, [8] and Wang and Ma, [9]; for Lotka–Volterra
systems. Lu and Takeuchi [10] have proved that a two
species Lotka–Volterra delayed competition system is
permanent under any delay effect provided that the cor-
responding undelayed system has a globally stable posi-
tive equilibrium. They have also obtained conditions for
global stability of positive equilibrium.

Modeling of population ecological interactions in-
volving time delay is being dealt by Kuang [3]. Aziz-
Alaoui and Daher Okiye [11], Cao and Freedman [12],
Upadhyay and Rai [13], and Upadhyay and Iyenger [14]
consider prey predator models and find some signifi-
cant results. Xiao and Chen [15] consider a system of
retarded functional differential equations as a predator
prey model with disease in the prey. Permanence and
global stability are analyzed. They show that positive
equilibrium is locally asymptotically stable when the
time delay is suitably small, while a loss of stability
by Hopf-bifurcation can occur as the delay increases.
Mukherjee and Roy [16] proposed a generalized prey–
predator system with time delay and find the conditions
for uniform persistence and global stability. Recently,
Kar [17] studied a Gaussian-type prey–predator model
with selective harvesting and introduced a time delay in
the harvesting term. In general, delay differential equa-
tions exhibit much more complicated dynamics than or-
dinary differential equations since the time delay could
cause a stable equilibrium to become unstable and cause
the population to fluctuate.

In this article, we have considered a two predator-
one prey system with time delay due to gestation. The
response function is of the Holling type II.

Before we introduce the model and its analysis we
would like to present a brief sketch of the construction
of the model which may indicate the biological rele-
vance of it:

(i) There are three populations namely, two predators
whose population densities are y and z, and one prey
whose population density is denoted by x;

(ii) In absence of predation, the prey population
grows according to a logistic law of growth with intrin-
sic growth rate r and carrying capacity K ;

(iii) One predator species consumes the prey with
the functional response α1xy/(a1 + x), known as the
Holling-type II functional response and contributes to
its growth rate α1β1xy/(a1 + x), another predator con-
sumes the prey with the functional response α2xy/(a2 +
x), and contributes to its growth rate α2β2xy/(a2 + x).
Here β1 and β2 are conversion of biomass constants, α1

is the maximum value of the per capita reduction rate of
x due to y and α2 is the maximum value of per capita
reduction rate of x due to z;

(iv) Mortality rates of predators are assumed to be
proportional to their populations. We have also consid-
ered density dependent mortality rate of both the con-
sumer species as γy2 and δz2. These terms describes
either a self limitation of consumers or the influence
of predation. Self limitation can occur if there is some
other factor (other than food) which becomes limiting at
high population densities. Predation on consumers can
increase as γy2 and δz2 if higher consumer densities
attract more attention from predators or if consumers
become more vulnerable at higher densities (see Ruan
et al. [18] and references there in).

Several researchers at the present time claimed that
the effect of time delay must be taken into account
to form a biologically meaningful mathematical model
(MacDonald, [19]). Form this view point we have intro-
duced the delay in our model and this delay is referred
to as the gestation period.

So our proposed model is as follows:

(1)
dx

dt
= rx

(
1 − x

K

)
− α1xy

a1 + x
− α2xz

a2 + x
,

(2)
dy

dt
= −d1y + β1α1x(t − τ)y

a1 + x(t − τ)
− γy2,

(3)
dz

dt
= −d2z + β2α2x(t − τ)z

a2 + x(t − τ)
− δz2,

with initial conditions x(0) � 0, y(0) � 0, z(0) � 0.
In our system, all the parameters are positive con-

stants. There is a time delay of time τ in the prey
species; γ and δ denote the intraspecific competition
coefficients of the predators; β1, β2 are the conversion
of biomass constant; d1, d2 are the death rate of first
and second predator species respectively; α1 is the max-
imum values of per capita reduction rate of x due to y

and α2 is the maximum values of per capita reduction
rate of x due to z; a1, a2 are half saturation constants.

2. Equilibria, stability and Hopf bifurcation

System (1)–(3) has five possible non-negative equi-
libria, namely F0(0,0,0); Fx(K,0,0); Fxy(x

∗, y∗,0);
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Fxz(x
∗
4 ,0, z∗

4) and Fxyz(x
∗
5 , y∗

5 , z∗
5), where

r

(
1 − x∗

3

K

)
− α1y

∗
3

a1 + x∗
3

= 0,

(4)−d1 + α1β1x
∗
3

a1 + x∗
3

− γy∗
3 = 0,

r

(
1 − x∗

4

K

)
− α2z

∗
4

a2 + x∗
4

= 0,

(5)−d2 + α2β2x
∗
4

a2 + x∗
4

− δz∗
4 = 0,

r

(
1 − x∗

5

K

)
− α1y

∗
5

a1 + x∗
5

− α2z
∗
5

a2 + x∗
5

= 0,

−d1 + α1β1x
∗
5

a1 + x∗
5

− γy∗
5 = 0,

(6)−d2 + α2β2x
∗
5

a2 + x∗
5

− δz∗
5 = 0.

Let (x∗, y∗, z∗) be any arbitrary equilibrium. Then the
characteristic equation about (x∗, y∗, z∗) is given by

(7)|G + He−δτ − λI | = 0.

Here G = (aij )3×3, where

a11 = r − 2rx∗

K
− α1y

∗

a1 + x∗ + α1x
∗y∗

(a1 + x∗)2

− αz∗

(a2 + x∗)
+ α2x

∗z∗

(a2 + x∗)2
,

a12 = − α1x
∗

a1 + x∗ , a13 = − α2x
∗

a2 + x∗ , a21 = 0,

a22 = −d1 + α1β1x
∗

a1 + x∗ − 2γy∗,

a23 = 0, a31 = 0, a32 = 0,

a33 = −d2 + α2β2x
∗

a2 + x∗ − 2δz∗.

H = (bij )3×3, where

b11 = b12 = b13 = 0, b21 = a1α1β1y
∗

(a1 + x∗)2
,

b22 = b23 = 0,

b31 = a2α2β2z
∗

(a2 + x∗)2
, b32 = b33 = 0.

Case I. τ = 0.

Lemma 1. All the solutions of the system (1)–(3) with
τ = 0, which start in R3+ are uniformly bounded.
Proof. We define the function w = x + y
β1

+ z
β2

. The
time derivative of w is

dw

dt
= rx

(
1 − x

K

)
− d1

β1
y − d2

β2
z − γ

β1
y2 − δ

β2
z2.

For each v > 0, upon computing the square separately
in x and y the following inequality holds:

dw

dt
+ vw � r

K

[
K

r

(
1 + v

r

)]2

+ 1

4β1γ
(d1 − v)2

+ 1

4β2δ
(d2 − v)2.

The right side of the above inequality is bounded for all
(x, y, z) ∈ R3+. Thus we choose a μ > 0 such that dw

dt
+

vw < μ. Applying the theory of differential inequality
(Birkhoff and Rota, [20]) we obtain

0 < w(x,y, z)

<
μ

v
(1 − e−vt ) + w

(
x(0), y(0), z(0)

)
e−vt ,

which, upon letting t → ∞, yields 0 < w <
μ
v

. Thus all
the solutions enter into the region B = {(x, y, z): 0 �
w � μ

v
+ ε, for any ε > 0. Hence the lemma is

proved. �
Now we shall discuss the stability of the equilibrium

points.
For F0(0,0,0), eigenvalues are r , −d1 and −d2. So,

F0 is a saddle point with stable manifold in y–z plane
and unstable manifold in x-direction.

For Fx(K,0,0), eigenvalues are −r , −d1 + α1β1K
a1+K

and −d2 + α2β2K
a2+K

.

So, Fx is asymptotically stable if α1β1K
a1+K

< d1 and
α2β2K
a2+K

< d2.
For, Fxy(x

∗
3 , y∗

3 ,0), one of the eigenvalue is −d2 +
α2β2x

∗
3

a2+x∗
3

and the other two are given by

λ2 + λ

(
γy∗

3 + rx∗
3

K
− α1x

∗
3y∗

3

(a1 + x∗
3 )2

)

+ γy∗
3

(
rx∗

3

K
− α1x

∗
3y∗

3

(a1 + x∗
3 )2

)
+ a1β1α

2
1x∗

3y∗
3

(a1 + x∗
3 )3

= 0.

Therefore, Fxy(x
∗
3 , y∗

3 ,0), is a saddle point, if

r/K <
α1{γy∗

3 (a1 + x∗
3 ) − α1a1β1}

γ (a1 + x∗
3 )3

and it is asymptotically stable if
α2β2x

∗
3

a2+x∗
3

< d2 and r/K >

α1y
∗
3∗ 2 .
(a1+x3 )
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For Fxz(x
∗
4 ,0, z∗

4), one of the eigenvalue is −d1 +
α1β1x

∗
4

a1+x∗
4

and the other two are given by

λ2 + λ

{
δz∗

4 + rx∗
4

K
− α2x

∗
4z∗

4

(a2 + x∗
4 )2

}

+ δz∗
4

(
rx∗

4

K
− α2x

∗
4z∗

4

(a2 + z∗
4)

2

)
+ a2α

2
2β2x

∗
4z∗

4

(a2 + x∗
4 )3

= 0.

So, Fxz is a saddle point if

r/K <
α2{δz∗

4(a2 + x∗
4 ) − α2a2β2}

δ(a2 + x∗
4 )3

and it is asymptotically stable if
α1β1x

∗
4

a1+x∗
4

< d1 and r/K >

α2z
∗
4

(a2+x∗
4 )2 .

For Fxyz(x
∗
5 , y∗

5 , z∗
5), characteristic equation be-

comes

λ3 + λ2(A + B + C)

(8)+ λ(AB + BC + CA + D) + E = 0,

where

A = γy∗
5 , B = δz∗

5,

C = rx∗
5

K
− α1x

∗
5y∗

5

(a1 + x∗
5 )2

− α2x
∗
5z∗

5

(a2 + x∗
5 )2

,

D = a1α
2
1β1x

∗
5y∗

5

(a1 + x∗
5 )3

+ a2α
2
2β2x

∗
5z∗

5

(a2 + x∗
5 )3

,

E = A
a2α

2
2β2x

∗
5z∗

5

(a2 + x∗
5 )3

+ B
a1α

2
1β1x

∗
5y∗

5

(a1 + x∗
5 )3

.

Obviously A, B , D and E are all positive. So, by
the Routh–Hurwitz criterion equation (8) has all nega-
tive roots if C > 0, so Fxyz(x

∗
5 , y∗

5 , z∗
5) is asymptotically

stable if C > 0 i.e.,

(9)
r

K
>

α1y
∗
5

(a1 + x∗
5 )2

+ α2z
∗
5

(a2 + x∗
5 )2

.

So, we can arrive at Theorem 2.1:

Theorem 2.1.

(i) F0 is a saddle point with stable manifold in y–z

plane and unstable manifold in x-direction,
(ii) Fx(K,0,0) is asymptotically stable if α1β1K

a1+K
< d1

and α2β2K
a2+K

< d2,
(iii) Fxy(x

∗
3 , y∗

3 ,0) is a saddle point if

r/K <
α1{γy∗

3 (a1 + x∗
3 ) − α1a1β1}

γ (a1 + x∗
3 )3

,

and it is asymptotically stable if
α2β2x

∗
3

a2+x∗
3

< d2 and

r/K >
α1y

∗
3

(a1+x∗
3 )2 .

(iv) Fxz(x
∗
4 ,0, z∗

4) is a saddle point, if

r/K <
α2{δz∗

4(a2 + x∗
4 ) − α2a2β2}

δ(a2 + x∗
4 )3

and it is asymptotically stable if
α1β1x

∗
4

a1+x∗
4

< d1 and

r/K >
α2z

∗
4

(a2+x∗
4 )2 .

(v) The interior equilibrium Fxyz(x
∗
5 , y∗

5 , z∗
5) is asymp-

totically stable if C > 0 i.e. if

r

K
>

α1y
∗
5

(a1 + x∗
5 )2

+ α2z
∗
5

(a2 + x∗
5 )2

.

Now in order to investigate the global stability of the
interior equilibrium point let us consider a positive def-
inite function about Fxyz(x

∗
5 , y∗

5 , z∗
5),

V (x, y, z) = u

(
x − x∗

5 − x∗
5 ln

(
x

x∗
5

))

+ v

(
y − y∗

5 − y∗
5 ln

(
y

y∗
5

))

(10)+ ω

(
z − z∗

5 − z∗
5 ln

(
z

z∗
5

))

where u, v and w are positive constants to be chosen
suitably.

Therefore,

V̇ = u
(
x − x∗

5

) ẋ

x
+ v

(
y − y∗

5

) ẏ

y
+ ω

(
z − z∗

5

) ż

z

= u
(
x − x∗

5

)[
r

(
1 − x

K

)
− α1y

a1 + x
− α2z

a2 + x

]

+ v
(
y − y∗

5

)[−d1 + α1β1x

a1 + x
− γy

]

+ ω
(
z − z∗

5

)[−d2 + α2β2x

a2 + x
− δz

]

= u
(
x − x∗

5

)[−r

K

(
x − x∗

5

)

− α1

(a1 + x)(a1 + x∗
5 )

{
a1

(
y − y∗

5

) − y∗
5

(
x − x∗

5

)

+ x∗
5

(
y − y∗

5

)} − α2

(a2 + x)(a2 + x∗
5 )

× {
a2

(
z − z∗

5

) − z∗
5

(
x − x∗

5

) + x∗
5

(
z − z∗

5

)}]

+ v
(
y − y∗

5

)[ α1β1a1(x − x∗
5 )

(a + x)(a + x∗)
− γ

(
y − y∗

5

)]

1 1 5
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+ ω
(
z − z∗

5

)[ α2β2a2(x − x∗
5 )

(a2 + x)(a2 + x∗
5 )

− δ
(
z − z∗

5

)]

= u

[−r

K
+ α1y

∗
5

(a1 + x)(a1 + x∗
5 )

+ α2z
∗
5

(a2 + x)(a2 + x∗
5 )

](
x − x∗

5

)2

+ 1

(a1 + x)

[
−α1u + v

α1β1a1

a1 + x∗
5

](
x − x∗

5

)

× (
y − y∗

5

) − vγ
(
y − y∗

5

)2

+ 1

(a2 + x)

[
−α2u + ω

α2β2a2

a2 + x∗
5

]

× (
x − x∗

5

)(
z − z∗

5

) − δω
(
z − z∗

5

)2
.

Now choosing

(11)u = 1, v = a1 + x∗
5

a1β1
and ω = a2 + x∗

5

a2β2
,

V̇ = −η1(x)
(
x − x∗

5

)2 − vγ
(
y − y∗

5

)2 − δω
(
z − z∗

5

)2
,

where

−η1(x) = − r

K
+ α1y

∗
5

(a1 + x)(a1 + x∗
5 )

+ α2z
∗
5

(a2 + x)(a2 + x∗
5 )

� − r

K
+ α1y

∗
5

a1(a1 + x∗
5 )

+ α2z
∗
5

a2(a2 + x∗
5 )

(12)� −η1(0).

So, we arrive at Theorem 2.2:

Theorem 2.2. Assume that the positive equilibrium
Fxyz(x

∗
5 , y∗

5 , z∗
5) of system (1)–(3) is locally stable. If

η1(0) > 0, then it is globally asymptotically stable (see
Fig. 1).

The plot of η1(x) indicates that η1(0) > 0 for some
parameter values. So the assumption η1(0) > 0 in The-
orem 2.2 makes sense.

Case II. τ �= 0.

For τ > 0, characteristic equation is given by

λ3 + λ2(A + B + C) + λ(AB + BC + CA + D)

(13)+ ABC + e−λτ (λD + E) = 0.

Now λ = iω (ω > 0) in (13) gives
Fig. 1. The plot of the function η1(x). Here r = 10, K = 150, α1 = 2,
α2 = 2, a1 = 50, a2 = 60, d1 = 1.3, d2 = 0.05, β1 = 2, β2 = 3, δ =
0.2 and γ = 0.007.

−iω3 − ω2(A + B + C) + iω(AB + BC + CA + D)

+ ABC + (cosωτ − i sinωτ)(iωD + E) = 0.

Comparing real and imaginary parts we get,

(14)
−ω3 + ω(AB + BC + CA) = E sinωτ − Dω cosωτ,

(15)
−ω2(A + B + C) + ABC = −Dω sinωτ − E cosωτ.

Squaring and adding (14) and (15) we get,

(16)ω6 + Q1ω
4 + Q2ω

2 + Q3 = 0,

where,

(17)
Q1 = A2 + B2 + C2 > 0,

Q2 = A2B2 + B2C2 + C2A2 − D2,

Q3 = A2B2C2 − E2.

⎫⎬
⎭

Hence Eq. (16) has unique positive solution ω2
0, if Q2 >

0 and Q3 < 0.
Now, from (14) and (15) we get,

cosωτ = [
Dω4 − Dω2(AB + BC + CA)

+ Eω2(A + B + C) − EABC
]

(18)× [
D2ω2 + E2]−1

.

So, corresponding to λ = iω0, there exists τ0n such that,

τ0n = 1

ω0
arc cos

[(
Dω4

0 − ω2
0n

{
D(AB + BC + CA)

− E(A + B + C)
} − EABC

)(
D2ω2

0 + E2)−1]
(19)+ 2nπ

ω0
, n = 0,1,2, . . . .
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Now differentiation of (13) with respect to τ gives,
(

dλ

dτ

)−1

= [
3λ2 + 2λ(A + B + C)

+ (AB + BC + CA)
]/[

λe−λτ (λD + E)
]

+ D

λ(λD + E)
− τ

λ

= [
3λ3 + 2λ2(A + B + C)

+ λ(AB + BC + CA)
]

/[
λ2[e−λτ (λD + E)

]]
+ D

λ(λD + E)
− τ

λ

= [
2λ3 + λ2(A + B + C) − ABC

− e−λτ (λD + E)
]/[

λ2e−λτ (λD + E)
]

+ D

λ(λD + E)
− τ

λ

= [
2λ3 + λ2(A + B + C) − ABC

]
/[−λ2[λ3 + λ2(A + B + C)

+ λ(AB + BC + CA) + ABC
]]

+ D

λ(λD + E)
− 1

λ2
− τ

λ

= [
2λ3 + λ2(A + B + C) − ABC

]
/[−λ2[λ3 + λ2(A + B + C)

+ λ(AB + BC + CA) + ABC
]]

− E

λ2(λD + E)
− τ

λ
,

∴
(

dλ

dτ

)−1∣∣∣∣
λ=iω0

= [−2iω3
0 − ω2

0(A + B + C) − ABC
]

/[
ω2

0

[−iω3
0 − ω2

0(A + B + C)

+ iω0(AB + BC + CA) + ABC
]]

+ E

ω2
0(Diω0 + E)

− τ

iω0

= 1

ω2
0

[({
ω2

0(A + B + C) + ABC
} + 2iω3

0

)
/({

ω2
0(A + B + C) − ABC

}
+ i

{
ω3

0 − ω0(AB + BC + CA)
})]

+ E(E − iDω0)

ω2
0(E

2 + D2ω2
0)

+ i
τ

ω0

= 1

ω2

[[{
ω2

0(A + B + C) + ABC
} + 2iω3

0

]

0

× [{
ω2

0(A + B + C) − ABC
}

− i
{
ω3

0 − ω0(AB + BC + CA)
}]

/({
ω2

0(A + B + c) − ABC
}2

+ {
ω3

0 − ω0(AB + BC + CA)
}2)]

+ E(E − iDω0)

ω2
0(E

2 + D2ω2
0)

+ i
τ

ω0
,

∴ Re

{∣∣∣∣
(

dλ

dτ

)−1∣∣∣∣
τ=iω0

}

= 1

ω2
0

[(
ω4

0(A + B + C)2 − A2B2C2 + 2ω6
0

− 2ω4
0(AB + BC + CA)

)/(
ω4

0(A + B + C)2

− 2ω2
0ABC(A + B + C) + A2B2C2 + ω6

0

− 2ω4
0(AB + BC + CA)

+ ω2
0(AB + BC + CA)2)] + E2

ω2
0

(
E2 + D2ω2

0

)
= 1

ω2
0

[(
ω4

0

(
A2 + B2 + C2) + 2ω6

0 − A2B2C2)
/(

ω6
0 + ω4

0

(
A2 + B2 + C2)

+ ω2
0

(
A2B2 + B2C2 + C2A2) + A2B2C2)]

+ E2

ω2
0

(
E2 + D2ω2

0

)

= 1

ω2
0

[
ω4

0(A
2 + B2 + C2) + 2ω6

0 − A2B2C2

E2 + D2ω2
0

+ E2

E2 + D2ω2
0

]
, using (16)

= 1

ω2
0

[
ω4

0(A
2 + B2 + C2) + 2ω6

0

E2 + D2ω2
0

+ E2 − A2B2C2

E2 + D2ω2
0

]
> 0

if A2B2C2 < E2 i.e. Q3 < 0.

So, we can state the above result as a theorem:

Theorem 2.3. If Fxyz exists, C > 0, Q2 > 0 and Q3 <

0, then as τ increases from zero, there is a value τ0
such that the interior equilibrium Fxyz(x

∗
5 , y∗

5 , z∗
5) is

locally asymptotically stable when τ ∈ [0, τ0) and un-
stable when τ > τ0. Further, system (1)–(3) undergoes
Hopf-bifurcation at Fxyz(x

∗
5 , y∗

5 , z∗
5), when τ = τ0.

Remark 2.1. If the interior equilibrium depends
smoothly on a parameter θ in an open interval I of R
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and if there exists a θ∗ ∈ I such that: (i) a simple pair
of complex eigenvalues of the variational matrix of the
interior equilibrium point exists, say α(θ) ± iβ(θ) such
that they become purely imaginary at θ = θ∗, whereas
the other eigenvalues remain real and negative; and
(ii) dα

dγ

∣∣
θ=θ∗ �= 0, then at θ∗ a simple Hopf bifurcation

occurs (Liu, [21]). The criterion given by Liu [21] is as
follows:

Liu’s criterion. If the characteristic equation of the in-
terior equilibrium point is given by

λ3 + T1(θ)λ2 + T2(θ)λ + T3(θ) = 0,

where T1(θ), (θ) = T1(θ)T2(θ) − T3(θ), T3(θ) are
smooth function of θ in an open interval about θ∗ ∈ R

such that

(I) T1(θ
∗) > 0, (θ∗) = 0, T3(θ

∗) > 0,
(II) d

dθ

∣∣
θ=θ∗ �= 0, then a simple Hopf bifurcation oc-

curs at θ = θ∗.

Now in order to investigate the global stability of
Fxyz(x

∗
5 , y∗

5 , z∗
5) we consider the Lyapunov function

v(x, y, z) =
x∫

x∗
5

[β1(
α1η

a1+η
− α1x

∗
5

a1+x∗
5
)

α1η
a1+η

+
β2(

α2η
a2+η

− α2x
∗
5

a2+x∗
5
)

α2η
a2+η

]
dη

+ y − y∗
5 − y∗

5 ln

(
y

y∗
5

)
+ z − z∗

5

− z∗
5 ln

(
z

z∗
5

)
+ p

t∫
t−τ

[
x(s) − x∗

5

]2 ds,

where p is some positive constant to be chosen suitably.
Now following Theorem 4 of Mukherjee and Roy [16],
we arrive at Theorem 2.4 as follows:

Theorem 2.4. Let K < a1, α1 = α2, a1 = a2 and

γ δ(β1 + β2)

(a1 + K)2

>
K

2
.
α2

1

ra3
1

{(β1 + β2)
2(γ + δ) + δβ2

1 + γβ2
2 }

a1 − K
,

then the interior equilibrium of system (1)–(3) is glob-
ally asymptotically stable.
3. Simulation and discussion

In this article we have studied the dynamical behav-
iors of a two predator one prey system. The interaction
between prey and predators are assumed to be gov-
erned by a Holling type II functional response. Here two
predators are competing for a single prey.

Often we come across several biological systems in
nature exhibiting cyclical behavior. Due to this cyclic
nature some populations exhibit periodic fluctuation in
abundance, with periodic crashes. One could avoid such
crashes and stabilize the population by controlling one
of the interacting species (Hudson et al. [22]). Thus it is
relevant to find conditions under which a multispecies
system exhibits cyclic behavior, and it is equally im-
portant to find conditions under which cycles can be
prevented in a multispecies system.

First we consider the case with τ = 0. To illustrate
the analytical results numerically, let us take r = 3.5,
K = 150, α1 = 2, α2 = 2, a1 = 35, a2 = 45, d1 = 1.3,
d2 = 0.05, β1 = 2, β2 = 3, δ = 0.2. For these values
of parameters a super critical Hopf-bifurcation occurs
when γ ∗ = 0.00608308. Now if we gradually increase
the value of γ , keeping other parameters fixed, then
Fxyz achieves stability from instability as γ crosses its
critical value γ ∗ = 0.00608308 (see Figs. 2, 3 and 4).

Next consider α1 (the maximum value of the per
capita reduction rate of x due to y) as the bifurcation
parameter. With parameter values r = 3.5, K = 150,
a1 = 35, α2 = 2, a2 = 45, d1 = 1.3, b1 = 2, γ = 0.006,
d2 = 0.05, b2 = 4, δ = 0.2, a Hopf-bifurcation occurs
when α∗

1 = 2.071026 (see Figs. 5, 6, and 7).

Fig. 2. Unstable solution of system (1)–(3). Here parameter values
are r = 3.5, K = 150, α1 = 2, α2 = 2, a1 = 35, a2 = 45, d1 = 1.3,
d2 = 0.05, β1 = 2, β2 = 3, δ = 0.2, γ (= 0.005) < γ ∗.
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Fig. 3. When γ = 0.007 > γ ∗ , clearly the populations approach to
their equilibrium values in finite time. Here parameter values are r =
3.5, K = 150, α1 = 2, α2 = 2, a1 = 35, a2 = 45, d1 = 1.3, d2 = 0.05,
β1 = 2, β2 = 3, δ = 0.2.

Fig. 4. For γ = γ ∗ , there is a limit cycle near Fxyz .

The numerical study presented here shows that, us-
ing parameter γ or α1 as control, it is possible to break
unstable behavior of the system (1)–(3) and drive it to
a stable state. Also it is possible to keep the population
levels at a required state using the above control.

Now we would like to mention that the stability crite-
ria of the system without delay do not necessarily guar-
antee the stability of the system with delay. It has been
shown that the positive equilibrium which is stable with-
out delay, remains stable under certain conditions when
the time delay is less than the threshold value, otherwise
the stable equilibrium become unstable. To illustrate the
results numerically, choose r = 2.5, K = 100, α1 = 2,
α2 = 2, a1 = 30, a2 = 35, d1 = 0.03, d2 = 0.02, b1 = 5,
b2 = 6, γ = 0.1, δ = 0.2 (Figs. 8 and 9).

For the above choices of parameters Fxyz(x
∗
5 , y∗

5 , z∗
5)

is locally asymptotically stable in the absence of de-
Fig. 5. When α1 = 1.9 < α∗
1 , clearly the populations approach to their

equilibrium values in finite time. Here parameter values are r = 3.5,
K = 150, a1 = 35, α2 = 2, a2 = 45, d1 = 1.3, b1 = 2, γ = 0.006,
d2 = 0.05, b2 = 4, δ = 0.2.

Fig. 6. Unstable solution of system (1)–(3). Here all the parameters
are same as in Fig. 5, except α1 = 2.5 > α∗

1 .

Fig. 7. For α1 = α∗
1 , there is a limit cycle near Fxyz .
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Fig. 8. When τ = 0.65 < τ0, clearly the populations approach to their
equilibrium values in finite time.

Fig. 9. Unstable solution of system (1)–(3). Here all the parameters
are same as in Fig. 8, except τ = 0.79 > τ0.

lay. Now for the same values of parameters, it is seen
from the Theorem 2.3, that there exists a critical value
of τ = τ0 = 0.711633041 and Fxyz losses its stability as
τ crosses the critical value τ0 (Fig. 10).

We have also given some graphical support in favor
of our numerical results.
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