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Abstract

Compartmentalization is one of the fundamental principles which underly nuclear function. Numerous studies describe complex
and sometimes conflicting relationships between nuclear gene positioning and transcription regulation. Therefore the question is
whether topological landmarks and/or organization principles exist to describe the nuclear architecture and, if existing, whether
these principles are identical in the animal and plant kingdoms. In the frame of an agroBI-INRA program on nuclear architecture,
we set up a multidisciplinary approach combining biological studies, spatial statistics and 3D modeling to investigate spatial
organization of a nuclear compartment in both plant and animal cells in their physiological contexts. In this article, we review the
questions addressed in this program and the methodology of our work. To cite this article: V. Gaudin et al., C. R. Biologies 332
(2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Modéliser l’architecture tri-dimensionnelle du noyau dans des cellules animales et végétales. L’organisation en comparti-
ments est un des principes fondamentaux qui gouverne le fonctionnement du noyau. De nombreuses études montrent des relations
complexes et parfois contradictoires entre la position d’un gène dans le noyau et son état transcriptionnel. Deux questions se
posent : existe-t-il des principes généraux gouvernant l’organisation nucléaire, et, si oui, ces principes sont-ils analogues dans les
règnes animal et végétal ? Dans le cadre d’un programme agroBI-INRA sur l’architecture nucléaire, nous avons développé une ap-
proche multidisciplinaire combinant expériences biologiques, statistiques spatiales et modélisation en 3 dimensions pour analyser
l’organisation spatiale d’un compartiment nucléaire dans des cellules animales et végétales, dans leur environnement physiolo-
gique. Dans cet article, nous faisons une revue autour des questions posées dans ce programme et présentons la méthodologie de
ce travail. Pour citer cet article : V. Gaudin et al., C. R. Biologies 332 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Increasing evidence suggests that besides DNA reg-
ulatory sequences and transcription factors, the spatial
and temporal organization of nuclear processes (tran-
scription, reparation, replication, . . . ) as well as chromo-
some and gene distribution within the nuclear space are
central determinants of genome functions. An impor-
tant goal of the post-genomic systems biology will be
therefore to better understand genome function within
the architectural framework of the nucleus and integrate
different levels of genome regulation [1,2]. However,
deciphering the three-dimensional (3D) nuclear organi-
zation in a relevant physiological context is a difficult
task due to technical constraints and requirements of
imaging and computational modeling.

To develop a systems biology view of the nucleus
and to give standardized and statistical representations
of the nuclear architecture in order to highlight pos-
sible organizational rules, we investigated the spatial
organization of a nuclear compartment in both plant
and animal cells. We set up a multidisciplinary ap-
proach combining biological studies, spatial statistics
and 3D modeling in the frame of an agroBI-INRA pro-
gram entitled “Nuclear Architecture: spatial modeling
and application to a better understanding of differentia-
tion/dedifferentiation mechanisms”. This article aims at
presenting the conceptual background, the main goals
and the methodology of our work.

2. Functional nuclear organization: background

2.1. Elements of the nuclear organization

Compartmentalization is one of the fundamental
principles regulating organization-function crosstalk in
the nucleus. As defined by Misteli, a “compartment”
is “a macroscopic region within the nucleus that is
morphologically and/or functionally distinct from its
surrounding” [3]. The compartments may be either
sites highly enriched in a definite set of nuclear pro-
teins (nucleoli, speckles, Cajal bodies, promyelocytic
leukemia protein (PLM) nuclear bodies, interchromatin
granules, . . . ) or chromatin domains, which we will fo-
cus on (Fig. 1). One of the most studied compartments
is “constitutive heterochromatin”, a major component
of eukaryotic genomes usually formed by large blocks
located near centromeres and telomeres and that has
a compact organization throughout cell cycle [4–6]. It
is opposed to “euchromatin”, which exhibits a more
“open” conformation and corresponds to actively tran-
scribed regions of the genome. Euchromatin can be
turned temporarily into heterochromatin upon silencing,
being thus termed “facultative heterochromatin”. Hete-
rochromatin can be distinguished from euchromatin by
cytological properties, compaction levels and epigenetic
marks (Fig. 1). However, several studies have shown
that transcription can occur in heterochromatin regions
in yeast, plants and animals [7–9].

Furthermore, large-scale mapping of the human
genome has shown a link between chromatin morphol-
ogy and gene density, with gene-rich regions being
present in open chromatin regions and gene-poor re-
gions in more condensed domains, regardless of their
activity status [10]. In some animal species such as
mouse and, to a lesser extent human, the pericentric
heterochromatin of several chromosomes assembles to
form large heterochromatic domains called “chromo-
centers” [11,12]. In Arabidopsis thaliana, discrete and
intensely stained heterochromatic compartments are re-
ferred to as chromocenters (Fig. 1). They correspond
to centromeric and pericentromeric regions and were
described as anchoring regions for 0.1–1.5 Mbp euchro-
matin loops allowing to propose a chromocenter-loop
nuclear organizational model [13,14]. Chromocenters
can be visualized using FISH [13], immunolocalization
[15] or GFP markers [16].

Since the first laser microbeam irradiation experi-
ments [17], it is now well demonstrated that each chro-
mosome of an animal or plant cell’s nucleus is con-
fined to a discrete region of the interphase nucleus,
referred to as a chromosome territory (CT) and corre-
sponding to a chromatin compartment at a larger scale
(Fig. 1) [18–20]. In mammalian cells, the distribution
of CT appears non-random, with most gene-rich CTs
preferentially localized in the nuclear interior, whereas
gene-poor CTs localized toward the nuclear periphery
[18,21,22]. Such arrangements are evolutionarily con-
served [23,24]. Furthermore, cell or nuclear shapes and
chromosome size have been observed to influence the
3D arrangement of CTs: for example, the ellipsoid hu-
man fibroblast nuclei present a chromosome size de-
pendent pattern even if the radial distribution of gene-
rich and gene-poor CTs was found to be recapitulated
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Fig. 1. Compartmentalization of the nucleus and elements of its architecture. A–C. Heterochromatin compartments. A. Mouse fibroblast nucleus
(Hoechst staining). B. Epithelial cell nucleus from a rabbit mammary gland in lactation (tissue section, DAPI staining). C. Nucleus isolated from
an A. thaliana plantlet (DAPI staining). D–F. Compartments defined as regions enriched in nuclear proteins. D. Nucleoli in an epithelial cell
nucleus from a rabbit mammary gland in lactation; immunolocalization of B23 protein (green), DNA counterstained with DAPI (blue) (tissue
section). E. Splicing speckles in the nucleus of a mouse mammary epithelial cell (cultured HC11 cell line); immunolocalization of SC35 protein
(green), DNA counterstained with propidium iodide (red). F. Nuclear localization of LHP1, the plant homolog of Heterochromatin Protein 1
(HP1) in a root cell nucleus from a transgenic line expressing the LHP1-GFP fusion protein. G–I. Chromocenters, centromeres and telomeres.
G. FISH with a pancentromeric probe (green) and a LNA telomeric probe (red) in an HC11 cell nucleus; DNA counterstained with DAPI (blue).
H. Immunolocalization of pericentromeres (HP1 protein, red) and centromeres (CENP proteins, green) in the nucleus of a rabbit embryo at 8-cell
stage. I. 5S (green) and 45S rDNA (red) repeats in an A. thaliana leaf nucleus revealed by FISH; DNA counterstained with DAPI (blue) (kindly
provided by F. Tessadori). J–L. Visualization of genomic regions of different sizes by FISH. J. Localization of genes encoding casein (green) and
whey acidic protein (white) in the nucleus of HC11 cells after hybridization with gene specific BAC probes and DNA staining with propidium iodide
(red). K. Localization of 3 genomic regions (about 100 kbp) with 3 BAC probes (2 in green and one in red) in an A. thaliana leaf nucleus (kindly
provided by F. Tessadori). L. Territory of chromosome 15 (green) in the nucleus of a cultured rabbit embryonic fibroblast; DNA counterstained
with propidium iodide (red). All images were acquired on confocal microscopes.
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at the sub-chromosomal level [25–27]. In A. thaliana,
CTs were described as predominantly randomly located
within the nucleus. Only chromosomes 2 and 4, which
bear nucleolus organizer regions (NOR), were associ-
ated more frequently than randomly [19,20]. The rela-
tionships between CTs distribution and nuclear organi-
zation require therefore further investigation. Parame-
ters such as DNA content, gene density, and transcrip-
tional activity of chromosomal sub-domains might all
come into account and raise the question of the mecha-
nism of chromosome positioning.

2.2. Relationship between gene positioning and
transcriptional activity

Numerous studies described complex and sometimes
conflicting relationships between gene positioning with
respect to several compartments, and transcription reg-
ulation.

2.2.1. Relative positioning of genes with respect to
nuclear compartments

Some studies address the question of comparative
positioning inside the nucleus by examining different
genes in a given cell, or the same gene in different cell
types.

As stated above, gene-rich chromosomes are usually
more centrally located than gene-poor chromosomes in
human [22], chicken [28], hydra [29], and this trend
is observed also for subchromosomal domains [25,30].
The nuclear periphery, which is lined in most higher eu-
karyotes by a peripheral ring of condensed chromatin,
represents generally a repressive zone: some genes are
preferentially associated with the nuclear periphery in
cells where they are inactive, and more centrally lo-
cated in cells where they are highly transcribed [31–34].
More generally, late replicating foci, assumed to corre-
spond to inactive chromatin are located at the nuclear
periphery. However, location of transcribed genes at the
nuclear envelope has also been observed in yeast [35],
possibly because of their association with proteins of the
nuclear-pore complexes [36]. It is not known whether
similar gene activation processes exist at the nuclear pe-
riphery in higher eukaryotes. The potential role of the
nuclear periphery in genome regulation has become of
particular importance in view of human diseases caused
by mutations in genes encoding the architectural pro-
teins of the lamina [37].

The relationship between location and transcrip-
tional status of genomic sequences with respect to their
CTs is the subject of conflicting reports: non-coding
sequences are randomly distributed or preferentially lo-
cated at the interior of the CT, whereas several genes
have been found preferentially located at the periph-
ery of the CT, irrespective of their transcriptional sta-
tus [38,39]. This peripheral location might facilitate
access to the transcriptional machinery located in the
inter-chromosomal space [40,41]. Chromatin loops con-
taining large gene clusters (major histocompatibility
complex locus, epidermal differentiation complex) can
even loop out of their CTs into these interchromosomal
compartments under conditions where they are highly
expressed [42,43]. On the other hand, some active genes
reside in the CT interior [44], suggesting that CTs can
be invaginated by infoldings of the interchromosomal
compartment [41,45] (reviewed in [46]).

Proximity to centromeric heterochromatin is gener-
ally associated with gene silencing, the most striking
examples being the association of T-cell specific and
developmentally regulated B-cell genes with the Ikaros
complex at the centromeric heterochromatin [47] and
the beta-globin gene in erythroid cells [48].

2.2.2. Dynamic gene repositioning upon
activation/inhibition

Studying the dynamics of genes during the differ-
entiation process has brought other strong arguments
for a relationship between nuclear positioning and tran-
scription status [3,49]. For instance, the Hoxb1 locus
loops out of its CT during transcriptional activation
[50]; movement towards the nuclear periphery was ob-
served upon inactivation [51], or towards the nuclear in-
terior upon neural induction [33]; or gene repositioning
was described away of the chromocenters upon activa-
tion [48] or towards the chromocenters upon silencing
[52]. Finally, active genes widely separated in cis or
located on different chromosomes can even colocalize
possibly as a result of migration upon activation towards
preassembled transcription sites [53,54]. Similarly, the
ribosomal RNA genes coalesce in the nucleolus where
RNA polymerase I accumulates [55]. More recently, in-
terchromatin granules were suggested to actively recruit
genomic loci, thus forming “enhancer hubs” for inter-
chromosomal interactions [56].

2.3. Nuclear organization depends on the
physiological status of the cell

Besides the above-described changes in gene loca-
tion, changes in nuclear architecture itself are amongst
the most dramatic hallmarks of cell differentiation, de-
velopment or malignant processes [26,31,49,57,58]. For
instance, condensation or morphology of CTs may vary
with differentiation in chicken, mouse, or human cells
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[59,60]. The spatial organization of centromeric hete-
rochromatin in haematopoeitic cells changes with cell
types and is ontogenically determined [12]. Clustering
of pericentric heterochromatin has been reported during
terminal differentiation, e.g. during myogenesis [61], in
human neutrophils [62], human and mouse neurons [63]
and rat myoblasts [64]. In naturally fertilized mouse em-
bryos, the specific radial (“cartwheel”) organization of
chromosomes at 1-cell is progressively modified into
a “somatic cell-type” organization during development
[65,66]. Interestingly, similar 1-cell type nuclear orga-
nization is adopted upon transfer of a somatic nucleus
in the oocyte cytoplasm [66,67].

In plants, heterochromatin content varies with dif-
ferentiation [68–70]. Peculiar heterochromatin organi-
zation with smaller chromocenters and additional het-
erochromatic foci interspersed in euchromatin was ob-
served in endosperm nuclei [71] suggesting a relaxed
chromocenter-loop organization of the nuclei. Nuclear
compaction of specific loci depends on their transcrip-
tional status in regards to cell differentiation [72] and
changes in chromocenter and chromatin organization
accompany changes in cell fate and differentiation
[70,73].

2.4. Nuclear organization in natural environments

Until now, most data have been gathered on isolated
plant cell nuclei or on nuclei from immortalized animal
cell lines outside their physiological environment, ex-
cept for circulating blood cells. Little is known about
nuclear organization of cells within their tissues [74].
Few studies compared nuclear organization in primary
cells versus cell lines, in cell lines versus tissues, in 2D
culture versus 3D cultures and suggested a control of
tissue architecture over nuclear organization [75–77].
In addition, few data on nuclear organization were ac-
quired in plant cell nuclei in situ [71,72]. In vivo ap-
proaches allowed distinguishing three main types of
plant nuclei based on their nuclear shapes (round, elon-
gated and rod-like nuclei), which are associated with
various cell-type or tissues [78]. Studies of chromatin
dynamics in plants have shown that confinement area
for tagged loci is different according to cell types [79].
Further investigation will be required in plant cell nu-
clei.

2.5. Current models of nuclear organization

Despite being at a very beginning of a system-level
view of the nucleus, two major models, a determinis-
tic model and a self-organizing model, emerged [2].
The deterministic model proposes that structure dictates
function and is consistent with stable observed struc-
tures in the nucleus. However, some experimental ev-
idence does not support this model, such as the loss
of prime structural elements without any major conse-
quences on genome function. On the other hand, the
nucleus can be seen as a self-organizing system, based
on the dynamic interaction of nuclear components and
various interplay between structure and function with
self-reinforcing mechanism. Indeed, nuclear processes
can lead to nuclear changes in global architecture and de
novo formation of nuclear structures. For example, sup-
ported by theoretical considerations as well as several
experimental results from chromosome conformation
capture (3C), transcription machinery may function as
a main molecular tie that maintain most genomic loops
and determine gene activity [80]. 3C experiments have
also recently revealed that repeat elements and nucle-
olus play central roles in the dynamic organization of
genome architecture [81]. However, as most probably,
the two models are not exclusive and additional forces
may have to be taken into considerations to explain
the structure/function of the nucleus such as stochas-
tic collisions [82], non-specific entropy-driven crowd-
ing forces [83] or “depletion-attraction” forces, highly
significant in crowded environments like those in nuclei
[14,84,85].

3. Overview of the project

3.1. Aim of the project and main achievements

Two main questions arising from the existing data
were at the origin of the project:

• Are there organization principles, and/or topo-
graphical landmarks to describe the nuclear archi-
tecture? If existing, are these principles identical in
the animal and plant kingdoms?

• What transformations allow to process from one
differentiation state to another? How are co-regu-
lated gene networks positioned with respect to these
topological landmarks?

To address these questions, we chose to analyze the
centric/pericentric heterochromatin compartment and
its three-dimensional nuclear distribution. Indeed, the
centric/pericentric compartment is well defined and
present in all cell types with some already described
variations. Its structure and cohesion are essential for
genome organization and proper cell division [70,73,
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86,87] and it is involved in genome regulation, usually
behaving as a transcriptional repressor compartment.

Aiming at producing generic models for the nuclear
architecture in physiological environment, we produced
images of 3D-preserved nuclei both from animal and
plant kingdoms in three different biological systems to
be able to extract robust organizational principles. We
performed fluorescence or immunofluorescence label-
ing to reveal the structural elements, generated a ho-
mogenous 3D-image collection of cell nuclei acquired
in standardized conditions (ICOPAN website/image re-
source: http://amib.jouy.inra.fr/icopan/) and developed
image processing and spatial statistical tools to analyze
and model the spatial distribution of the studied com-
partment.

3.2. Choice of the biological systems

Three biological complex systems were chosen,
two animal (rabbit) systems and one plant (Arabidop-
sis thaliana) system. Rabbit was chosen since: (i) its
complete genome sequence (2X coverage) was already
available and its 7X coverage was expected to be re-
leased in a near future; and (ii) rabbit is phylogenetically
closer to primates than rodents. A. thaliana is an excel-
lent plant model for which large molecular genomics
tools and genetic resources are available. Furthermore,
in the three systems, transitions between totipotency,
multipotency and terminal differentiation can be ex-
ploited and used to explore nuclear reorganization in
relation to modifications of the pattern of gene expres-
sion.

Pre-implantation rabbit embryos, the first system, of-
fer the possibility to follow directly a differentiation
process within the same intact organism. After the re-
programmation of the parental genomes at fertilization,
the first totipotent zygote leads in 5 days to a blastocyst
where two different populations of cells coexist, already
differentiated trophectoderm cells and totipotent cells of
the inner cell mass. The whole process can take place
in vitro in an appropriate culture medium. Finely tuned
modifications of gene expression occur during this pe-
riod, together with large restructuring of the nuclear ar-
chitecture. The advantage of the rabbit is that zygotic
genome activation occurs over an extended period of
time as compared to the mouse [88].

The second system, the rabbit mammary gland, is
subjected to successive cycles of intense development
and involution which extend from gestation through lac-
tation to weaning, and thus represents a powerful sys-
tem to explore the impacts of physiological situations
on genome function. During each cycle, genes coding
for milk proteins are turned on and off, together with
many other genes. However, no studies of the nuclear
organization of these epithelial cells in their tissue envi-
ronment exist so far, only few data deal with mammary
cell lines [77,89,90].

A. thaliana plantlets offer a third interesting system,
since after digestion of the cell walls, totipotent “pro-
toplasts” can be easily obtained. Upon culture in an
appropriate medium, protoplasts can redifferentiate into
tissues and new plants. A large reorganization of hete-
rochromatin accompanies the first steps of dedifferenti-
ation/redifferentiation in this system [73].

3.3. Development of modeling and computational tools

To explore the nucleus on a global scale, new tools
are required to establish computational models and to
unravel principles governing the spatial distribution of
nuclear compartments. Indeed most analyses were done
so far in 2D, and very rarely in 3D [31,39,91,92].
Few quantitative measures have been performed [93,
94]. Standard quantitative analyses of the nuclear orga-
nization are essentially based on distances measured on
2D images or on projections of 3D images, and rarely
obtained directly in 3D. Distances can be measured
between points (centers of compartments), or between
points and surfaces (e.g. the nuclear envelope). Some-
times distances are digitized into classes such as, for
example, in the so-called erosion analysis used to an-
alyze radial distributions within the nucleus [31].

The testing of complete spatial randomness is com-
monly used to show that the nucleus is indeed spatially
organized. A typical approach consists in choosing arbi-
trary parameters (distance or angle) and comparing their
experimental values with those obtained on patterns
simulated according complete spatial randomness. Such
an approach based on angles was used to test whether
chromosome territories are located independently from
each other [27]. In domains such as forestry, ecology,
or epidemiology, generic statistical tools have been de-
veloped for the analysis of spatial point patterns [95–
97]. To date, these tools have only rarely been used to
investigate nuclear spatial organizations [98–101]. For
example, Beil et al. [101] used the K-function to test
whether chromocenters are completely random and to
compare chromocenters patterns in undifferentiated and
differentiated NB4 human cells. However, the conven-
tional forms of spatial point pattern tools encompass no
normalization for nuclear shape variations and are not
applicable to repeated experiments.

To take into account the expected spatial hetero-
geneity of the nuclei and compare the heterochromatin

http://amib.jouy.inra.fr/icopan/
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(A)

(B)

Fig. 2. Spatial point patterns and analysis by distance functions.
A. The G-function is the cumulative distribution function of point
to nearest point distances. Points are shown as black dots and are
joined to their nearest neighbor by line segments. B. The F-function
is the cumulative distribution function of arbitrary positions to nearest
point distances. Sampled positions (shown as crosses) are connected
to nearest points (black dots) by line segments.

distribution, we developed new tools based on process-
ing and analysis of digital confocal images and a new
statistical approach using variants of the spatial point
patterns F- and G-functions (Fig. 2). These cumulative
distribution functions of nearest-neighbor distances (G-
function) or of distances between arbitrary points within
the domain of interest (here the nucleus) and their near-
est “events” (here nuclear elements) (F-function) in-
deed provide more comprehensive descriptors than ra-
dial distributions. Thus, they allow more powerful test-
ing of hypotheses on spatial distributions. In this study,
our F-function variant was the most appropriate tool
and allowed us to highlight a non-random distribution
of centric–pericentric heterochromatin in differentiated
cells from our three biological systems.

The use of this F-function variant requires an adapted
segmentation method to identify and localize the “in-
teresting” biological objects within images collected on
very different types of biological material. Furthermore,
the segmentation procedure needs to be automated in or-
der to analyze a large number of images. However, few
algorithms are actually available as they may vary ac-
cording to the specimen. Simple software, especially the
commercially available ones, used to extract and calcu-
late 3D nuclear distributions can be used on cells grown
in culture, with round shaped nuclei [27] but cannot
be used for more sophisticated samples like irregularly
shaped nuclei, tissue sections with clumped cells or low-
contrasted fluorescent staining. For this project, we set
up new automated or semi-automated segmentation al-
gorithms adapted to the different nuclear compartments
in the three dimensions of well-preserved nuclei.

4. Conclusion

The frame of the agroBI-INRA program entitled
“Nuclear Architecture: spatial modeling and application
to a better understanding of differentiation/dedifferenti-
ation mechanisms” allowed a fruitful confrontation be-
tween animal and plant biologists, together with statis-
ticians and modelers to define a common multidisci-
plinary approach. The first results of this joint study will
be presented in a forthcoming paper. We believe that
comparisons between plant and animals will be highly
beneficial to understand the similarities/differences in
genome organization, gene regulation and cell differen-
tiation processes.
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