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Abstract

G protein-coupled receptors (GPCRs) control all the main physiological functions and are targeted by more than 50% of ther-
apeutics. Our perception of GPCRs signalling has grown increasingly complex since it is now accepted that they activate large
signalling networks which are integrating the information fluxes into appropriate biological responses. These concepts lead the
way to the development of pathway-selective agonists (or antagonists) with fewer side effects. Systems biology approaches fo-
cused on GPCR-mediated signalling would help dealing with the huge complexity of these mechanisms therefore speeding-up the
discovery of new drug classes. In this review, we present the various technical and conceptual possibilities allowing a systems
approach of GPCR-mediated signalling. The main remaining limitations are also discussed. To cite this article: D. Heitzler et al.,
C. R. Biologies 332 (2009).
© 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Vers une biologie systémique de la signalisation des récepteurs couplés aux protéines G : Défis et attentes. Les récepteurs
couplés aux protéines G (RCPGs) contrôlent toutes les grandes fonctions physiologiques et sont la cible de plus de 50% des médi-
caments. Notre perception de la signalisation des RCPGs s’est considérablement complexifiée puisqu’il est maintenant admis qu’ils
activent de larges réseaux de signalisation capables d’intégrer les flux d’information en des réponses biologiques appropriées. Ces
concepts ouvrent la voie au développement d’agonistes (ou d’antagonistes) sélectifs de voies de signalisation qui présenteraient
moins d’effets indésirables. Une démarche de biologie systémique appliquée à la signalisation des RCPGs aiderait à appréhender
la complexité des mécanismes de signalisation et accélérerait ainsi l’émergence de nouvelles classes de médicaments. Dans cette
revue, nous présentons les différentes possibilités techniques et conceptuelles permettant la mise en place d’une approche systé-
mique de la signalisation des RCPGs. Les principaux défis auxquels nous restons confrontés sont également discutés. Pour citer
cet article : D. Heitzler et al., C. R. Biologies 332 (2009).
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1. Introduction

An impressive amount of detailed information has
been gathered over the past decades on how exter-
nal stimuli activate plasma membrane receptors, how
they translate to the activation of linear downstream
signalling cascades and eventually affect cell fate. Re-
cently, the advent of highly sensitive proteomic methods
has produced maps of protein interactions and led to
the reconstruction of biochemical networks [1]. As a
consequence, it is now widely accepted that signalling
pathways are organized as coordinated communication
networks in which multi-protein complexes process and
integrate the signal fluxes. Now, the challenge in cell
signalling is to understand the behaviour of these in-
tertwined communication networks in order to decipher
the cellular language [2]. G protein-coupled receptors
(GPCR) represent the largest class of membrane recep-
tors. They are capable of binding a wide diversity of
molecules that regulate most physiological processes
and are involved in a plethora of diseases. Noteworthy,
GPCRs have long been preferential targets of therapeu-
tic research and development and they currently account
for up to 50% of marketed drugs [3].

2. The growing complexity of GPCR-induced
signalling

Classically, upon ligand binding, GPCRs undergo
a conformational change that leads to heterotrimeric
G protein recruitment and activation, followed by the
generation of diffusible second messengers such as
cAMP (cyclic Adenosine Mono-Phosphate), calcium or
phosphoinositides. However, it is increasingly recog-
nized that GPCRs trigger multiple signalling pathways
which lead to the formation of signalling networks
[4] (Fig. 1). For instance, some GPCRs have the abil-
ity to couple to multiple G protein subtypes [5] and
many GPCRs directly interact with non-G protein sig-
nalling effectors through specific protein–protein inter-
action domains [6]. But quite remarkably, outside of
heterotrimeric G proteins, only two protein families are
able to specifically interact with the majority of GPCRs
in their activated conformation: G protein-coupled re-
ceptor kinases (GRKs) and β-arrestins [7]. Historically,
GRKs and β-arrestins have been associated with the
desensitization and internalization/recycling of most
GPCRs [8]. However, recently, GPCRs have also been
demonstrated to elicit signals, independently of het-
erotrimeric G protein coupling, through interaction with
β-arrestins 1 and 2. Indeed, β-arrestins have been
shown to act as multifunctional scaffolds and activators
for a growing number of signalling proteins including
ERK, p38, JNK, I-κB, Akt and RhoA [7,9–13]. More-
over, a recent proteomic study has reported as many
as 337 protein interactions involving β-arrestins [14],
strongly suggesting that they play a central role in the
ability of GPCRs to activate very complex signalling
networks. In addition, GRKs have also been reported
to elicit signalling responses on their own right through
protein/protein interactions [13]. Indeed, GRKs inter-
act with a variety of proteins involved in signalling and
trafficking such as Gαq, Gβγ , PI3Kγ , clathrin, GIT
(G protein-coupled receptor kinase-interacting protein)
and caveolin [15]. Phosphorylation of Raf kinase in-
hibitor protein (RKIP) by PKC displaces it from Raf and
increases its association with GRK2 [16]. In addition,
the physical interaction between GRK2 and Akt leads
to the inhibition of Akt activity [17]. Finally, GRK2
and MEK1 have been found in the same multimolec-
ular complex and this interaction is correlated with an
inhibition of MEK activity [18].

Adding to this complexity is the fact that GPCR-
induced signals can be spatially and temporally en-
coded. Signalling networks actively modulate the trans-
mitted signals: negative feedback allows pathways to
adapt or desensitize to persistent stimuli whereas cross
inhibition is used to avoid crosstalk between pathways
[19,20]. In addition to transmit qualitative informa-
tion (e.g. the presence or absence of a stimulus), sig-
nalling pathways must also convey quantitative infor-
mation about the strength of the stimulus (i.e. lig-
and concentration). It has been recently shown that
signalling pathways can take advantage of their non-
linear nature to convert stimulus intensity into signal
duration [21]. Modulation of signal duration increases
the range of stimulus concentrations for which dose-
dependent responses are possible as dose-dependent re-
sponses are still possible after apparent saturation of
the receptors. Another well documented example of
spatial and temporal encoding in GPCR-induced sig-
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Fig. 1. GPCR-induced signalling networks. Schematic representation of the different transduction mechanisms leading to the activation of signalling
pathways upon activation of a GPCR and how they define a complex signalling network. Cross-activations and cross-inhibitions between the
G protein-dependent and -independent sub-networks are depicted as green and red arrows respectively. Gs, Gq, Gi and G12: different alpha subunits
of heterotrimeric G protein; Gβγ : G beta and gamma subunits of heterotrimeric G proteins; other GIPs: other GPCR interacting proteins; β-arrs:
β-arrestin 1 and 2. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
nalling pathways is the dual activation mechanism of
ERK by G protein and β-arrestins [22–26]. G protein-
mediated ERK activation is rapid, transient and translo-
cates to the nucleus. In contrast, the ERK activated via
β-arrestins are slower in onset (∼5–10 min to reach
maximum), very persistent (t1/2 > 1 hour) and are se-
questered in the cytosol. Such spatial and temporal
differences in GPCR-induced signals substantially in-
crease the complexity of signalling systems, hence their
processing power. Collectively, these features highlight
the importance of considering the dynamic properties
of signalling pathways when characterizing their be-
haviour.

3. Pathway-selective ligands for GPCR: A new era
in drug discovery?

Interestingly, this emerging conceptual framework
opens new research avenues for the development of
therapeutics [27]. There is increasing evidence that
some GPCR targeting drugs can selectively modulate
a subset of the signalling events triggered by the full
agonist. These effects have been given various names in-
cluding “stimulus-trafficking”, “biased agonism”, “col-
lateral efficacy” or “functional selectivity” [28]. More-
over, several GPCR ligands have already been reported
to selectively activate or inhibit β-arrestin signalling
[29–31]. Consideration of these new concepts might
lead to the development of therapeutics with more se-
lective actions, hence less side-effects. For instance, one
drug, carvedilol, a β adrenergic receptor antagonist, has
proven particularly effective in the treatment of heart
failure. Interestingly, of 16 clinically relevant β adren-
ergic receptor antagonists, carvedilol displays a unique
ability to stimulate β-arrestin-mediated signalling while
preventing receptor coupling to Gs [31].

4. What added value can systems biology provide?

GPCRs’ complex signalling mechanisms probably
lead to context-adapted cellular responses relying on
emerging system-level properties that cannot be pre-
dicted from the individual components of the induced
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networks. Therefore, it would be of paramount inter-
est to provide a conceptual framework for deciphering
and possibly predicting how an extra-cellular signal that
activates a GPCR translates into a given biological or
pathological response. This “global” level of analysis
of GPCRs’ biology is in its infancy. Pioneer work car-
ried out in yeast has recently shown the value of sys-
tems biology for elucidating complex signalling mech-
anisms triggered by GPCRs [32,33]. Aspects of cell
signalling and the mechanisms (i.e. feedback and feed-
forward regulations) that regulate pathway activity trig-
gered by GPCRs have been studied in yeast, and nicely
illustrate how mathematical modelling can be used to
understand the logic of various pathway architectures.
In mammals, a system-level grasp of GPCR-mediated
signalling networks would be a significant asset to ra-
tionalize and speed-up the discovery of new “pathway-
selective” drugs. Indeed, the rate of new drug discovery
using standard approaches, based essentially on het-
erotrimeric G protein-dependent activities, such as sec-
ond messenger accumulation, has been slowing down
despite increased investments by the pharmaceutical in-
dustry.

It has been proposed that computational modelling
offers a powerful tool for examining GPCR pathways
[34]. Such models can be used to better understand hy-
pothesized mechanisms, run virtual (in silico) experi-
ments, interpret data, suggest new drug targets, motivate
experiments, and offer new explanations for observed
phenomena. In the remaining part of the present review,
we will identify and discuss the different challenges that
the scientists in the field will be confronted with in their
efforts to establish a systems biology approach to GPCR
signalling.

Understanding the whole cell as an integrated system
has been a goal for almost a century [35]. As in other
fields of cell biology, deciphering GPCR signalling by
at least descriptive, at most analytical methods has oc-
cupied the last 4 decades. Consequently, an enormous
amount of data is published every year on some GPCR
signalling aspects. However, these studies are highly
heterogeneous in terms of the nature of the GPCR stud-
ied, the signalling pathway studied, the cellular system
used, etc. As a consequence, it has been tremendously
difficult to transform this huge amount of information
into general concepts. An important effort of standard-
ization and data sharing between laboratories in the field
is needed. In addition, publicly accessible databases
gathering and distributing standardized raw data related
to GPCR signalling, especially dynamic data, would
undoubtedly stimulate the modelling of GPCR-induced
signalling networks.
5. Challenges in high throughput generation of
signalling data

More recently, feeding system-level analyses with
relevant high quality biological data have become pos-
sible thanks to new experimental techniques that al-
low large scale accumulation of unbiased signalling
data (Fig. 2). Speeding up the production of new data
sets and enhancing their quality is not only essential
to feed model-building but also to allow testing of key
model findings. Signalling events are often propagated
within the cell by post-translational modifications in-
volving protein–protein interactions and enzymatic ac-
tivities. Noteworthy, reversible protein phosphorylation
is centrally involved in signal transmission within cells.
The comprehensive and quantitative analysis of the pro-
tein phosphorylation patterns in different cellular back-
grounds is therefore critical to reach a system level
analysis of cell signalling. Lately, high-throughput has
spread to molecular biology and biochemistry, giving
access to most items of information necessary for the
comprehension of organisms’ behaviour [36]. In par-
ticular, breakthroughs have been achieved in the iso-
lation of phosphorylated peptides from complex sam-
ples, as well as in their analysis by mass spectrome-
try coupled to computational methods. Using such ap-
proaches, thousands of phosphopeptides and phospho-
rylation sites can now be identified in a single sample
[37–39]. However, despite their unparalleled analyti-
cal power, mass spectrometry-based approaches present
a static snapshot of cellular events; they do not allow
the acquisition of dynamical phosphorylation data at
large-scale and with high throughput. This limitation re-
mains a major hurdle towards the development of pow-
erful systems biology approaches in the field of cellu-
lar signalling. Over the last decade, the possibility to
analyze the proteome using protein microarray-based
methods has emerged into proteomics research, diag-
nostics, and drug discovery. In particular, automated
spotting of concentrated and complex protein extracts
permits their analysis with phosphospecific antibodies.
This method, referred to as Reverse-Phase Protein Ar-
ray (RPPA), uses very small quantities of biological
material, which allows a wide sample collection with
a high number of different antibodies to be screened
[40–43]. Since it has a very high throughput, detailed
kinetic experiments can be systematically carried out
and analyzed. Moreover, the simultaneous quantifica-
tion of thousands of samples achieved with RPPA dras-
tically reduces data heterogeneity and variability which
traditionally hamper modelling. Therefore, RPPA po-
tentially represents a very attractive approach to cap-
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Fig. 2. Schematic representation of three high-throughput methods particularly adapted to the model-building process in the context of GPCR-
induced signalling. A. Reverse phase protein array (RPPA) relies on the ordered micro-arraying of cellular lysates. Specific signals are detected
using a primary antibody-fluorescently-labelled secondary antibody revelation system. This technology is easy to automate and when coupled
with the use of a repertoire of phospho-specific antibodies raised against signalling intermediates, it allows the analysis of signalling networks at
an unprecedented throughput. B. Fluorescence resonance energy transfer (FRET) biosensors are genetically-encoded fusion proteins linking two
fluorescent proteins with a peptide sensitive to either phosphorylation by a specific kinase or second messenger binding. Once altered by a signalling
event, the linker undergoes a conformational change that modifies the relative positions of the two fluorescent proteins hence their resonance. Cells
transfected with the sensor plasmid are analyzed using a microscope. The emission wavelength of the first fluorescent protein (generally CFP)
corresponds to the excitation wavelength of the second fluorescent protein (generally YFP). Therefore, FRET can be quantified in living cells with
exquisite time-resolution by using an excitation wavelength specific of the first fluorescent protein while recording the emission at the wavelength
specific of the second fluorescent protein. C. Transfected cell array (TCA) consists of parallelized micro-spots containing a transfection reagent,
a plasmid and/or a siRNA. Each spot is different and a very large number of them can be arrayed on one slide allowing large-scale screening. Cells
are seeded directly on the slide so that they attach and grow on it while being specifically transfected by the genetic material underneath. The effect
of each transfection can be analyzed for each spot individually based on morphology criteria, immunocytochemistry or reporter-gene activity.
ture the subtle and highly dynamic nature of phos-
phorylation cascades out of very large sample collec-
tions.
Recently developed imaging approaches that use flu-
orescent sensors of signalling activities combine un-
matched time and spatial resolution. Genetically en-
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coded fluorescence resonance energy transfer (FRET)-
based reporters have been used in living cells to monitor
the spatiotemporal patterns of diffusible second mes-
sengers, kinase activities and GPCR activation [44–46].
Protein–protein interactions can also be analyzed in real
time in living cells using either FRET or BRET (biolu-
minescence resonance energy transfer) [46–48]. When
used in multi-well plate format, both FRET and BRET-
based methods ensure the production of huge amounts
of high content dynamic data which are very well suited
to feed systems biology approaches.

If the ability to measure signalling outputs in a dy-
namic way is a key-point, so is the aptitude to control the
inputs (i.e. agonist stimulation) both in time and concen-
trations. Chemical signalling in/between cells is crucial
as it determines the cellular response, and is charac-
terized by various time-scales ranging from a few mil-
liseconds to several minutes [44]. However, with con-
ventional experiments, mimicking in vivo conditions re-
mains a challenge. The implementation of microfluidic
devices might help suppress the limitations found with
conventional approaches and allows multiplexed anal-
ysis with various stimulation patterns to be performed.
Indeed, microfluidics offers the possibility of not only
tightly controlling and modulating cell culture condi-
tions but also of applying well-defined (in intensity,
space and time) chemical stimulation (receptor ligands,
inhibitors, etc.) [49,50]. This should notably facilitate
an iterative dialog between computational modelling
and “wet lab” experiments (i.e. prediction versus vali-
dation).

An important aspect when trying to decipher and
model signalling networks is the ability to specifically
apply perturbations and to measure the interactions of
signalling pathways considered in the recent past as iso-
lated entities (Fig. 3). In addition to classical approaches
(e.g. kinase inhibitors, dominant negative constructs,
etc.), interfering RNAs offer the unique opportunity
to easily and specifically achieve gene knock-downs.
Moreover, genome-wide siRNA screening are now
available either in multi-well liquid phase or in trans-
fected cell array format [51–53]. Large-scale siRNA
screening may very well be an experimental break-
through facilitating the edification of highly complex
signalling networks.

6. Challenges in bioinformatics

Knowledge and data management is instrumental to
systems biology. Indeed, high-throughput approaches
generate huge quantities of heterogeneous data that can-
not be handled with classical labbooks, or even flat files.
Therefore, computational methods, standards and tools
must be developed and used to tackle this problem. Be-
yond the handling problem, the design, validation and
refinement of high fidelity models require the use of
all available experimental and non-experimental data.
To reach this objective, data produced by experimen-
tal biology and bioinformatics have to be accessible, in
compatible formats, and easy to correlate. Experimental
data management systems, called Laboratory Informa-
tion Management Systems (LIMS) should allow biol-
ogists to capture all the data relative to an experiment
(conditions, protocol, results). So far, the availability of
a LIMS to manage all the pieces of information required
has been the major stumbling-block of the design of
models in systems biology.

Once the data and knowledge are available and or-
ganized, the first modelling step consists in the con-
struction of a detailed representation of the studied sys-
tem. For intracellular signalling networks, the reaction/
interaction graph is commonly used. Its construction is
achieved manually, in a hypothesis-driven manner by
the expert, using prior knowledge of the system and cho-
sen experimental data. Sophisticated data analysis and
visualization tools, such as clustering, help in this task.
However, when the system is very large, choices have to
be made by the expert, and the resulting model is biased,
incomplete and often fails to reveal emerging features
from the studied network. The development of methods
to automatically infer influence graphs directly from the
ensemble of data would allow the production of unbi-
ased, thus potentially very innovative models from large
data sets. It is certainly a promising research area but
to date, only a few and limited attempts have been re-
ported [54].

7. Challenges in mathematical modelling

Currently, relatively detailed mechanistic models of
GPCR-induced signalling network can be formalized
using the systems biology Markup Language (SBML)
for representing the elementary interactions [55]. In this
initial formalization step, signalling networks can be
either directly written in SBML or drawn using CellDe-
signer which provides an intuitive SBML-based graph-
ical modelling environment [56,57]. Of note is the Bio-
chemical Abstract Machine BIOCHAM [58] which can
be used to compute the influence graph between molec-
ular species from the reaction/interaction graph [59],
formalize the (observed) biological properties of the
system by temporal logic formulae, and automatically
verify their satisfiability by model-checking algorithms.
From the influence graph, temporal logics and model-
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Fig. 3. GPCR-induced signalling systems can be specifically perturbed using different strategies: A. chemical inhibitors and toxins can be used
to specifically block some of the proximal transduction mechanisms as well as some of the nodes of the downstream network; B. interfering
RNA provide the unique possibility to knock-down any single gene putatively involved in the signalling network; C. when available, the use
of signalling pathway-selective “biased ligands” provides a very interesting way to imbalance the proximal transduction mechanism allowing to
measure the consequences on downstream network; D. alternatively, signalling pathway-selective mutant GPCR can be engineered; E. an interesting
and potentially powerful way to favour the much needed iterative interactions between model-based predictions and experimental validations
consists in applying tightly controlled agonist stimulation patterns to cells. Of course, this approach implies the use of adapted microfluidic devices;
F. finally, genetically-encoded modulators can also be serviceable for instance to modify reaction stoichiometry by overexpressing a protein.
Dominant negative constructs can also block a specific reaction or interaction.
checking algorithms have proven useful to express bio-
logical properties of complex biochemical systems and
automatically verify if they are appropriate. This ap-
proach has allowed the analysis of reachability and tem-
poral logic properties of signalling systems under vari-
ous conditions [60].
Considering the highly dynamic nature both in time
and space of GPCR-induced signalling pathways, a dy-
namic modelling approach is interesting and should
yield more predictive power than static approaches.
The aim of a dynamic model is to reproduce time-
course experiments and provide intrinsic concentrations
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for molecular species that are experimentally unreach-
able. There are several dynamical modelling approaches
such as ordinary differential equations (ODEs, popula-
tion view), Petri nets (discrete and independent mech-
anisms), and pi-calculus (stochastic approach) [61,62].
For all those methods, kinetics parameters (activation
rates, probability of transition) are needed to simulate
the changes in molecule concentrations over time. Fre-
quently, too many parameters are unknown and the ini-
tial large reaction/interaction graphs have to be reduced.
Stability analysis of the model (study of steady states,
bifurcation diagrams, etc.) can help to restrict the pa-
rameter space to biologically relevant areas and reveal
important differences in reaction speeds therefore pro-
viding an accurate way to reduce the model. Despite
its usefulness, stability analysis remains too limited to
ensure sufficient model reduction on its own. In addi-
tion, the qualitative properties of the influence graph
can help develop a reduced dynamic model amenable to
numerical simulations and parameter optimization with
respect to quantitative data [63]. This model reduction
approach remains however mostly empirical and even if
the main graphical properties of the network (i.e. posi-
tive and negative circuits in the influence graph, reach-
ability properties in the reaction graph) are preserved,
the simplification of the structure of the network may
suppress some delays and may limit the repertoire of
dynamic behaviours permitted by the original model.

Even though stability analysis can lead to the deter-
mination of some unknown kinetic parameters in func-
tion of the others, the number of remaining unknown pa-
rameters is often large. Thus, another central difficulty
concerns the non-linear optimization techniques that are
needed to infer the unknown kinetic parameter values
from the experimental data obtained under various con-
ditions. Several techniques of parameter learning by
data/property fitting can be used, such as gradient-based
methods, Monte Carlo methods, and the Covariance
Matrix Adaptation Evolution Strategy CMAES [64].
The latter two approaches minimize the error by re-
peated random sampling. Once the unknown parameters
have been optimized, simulations can be performed and
provide all component quantities over time. Simulations
can be performed with different stimulation patterns or
with in silico perturbations (modifications of total pro-
tein amounts, suppression of pathways, modulation of
kinetics parameters, etc.). Thanks to these perturbations,
the robustness of the system can be appreciated. Indeed,
robustness is classically defined as the error between the
perturbed and the initial simulations. Interestingly, the
formalization of the expected dynamic properties of the
system in temporal logic with numerical constraints also
makes it possible to quantify the robustness of the sys-
tem with respect to some important properties [65]. This
opens the way for integrating robustness criteria in the
process of building the model.

8. Necessity of an iterative dialog between
experimentation and modelling

The value of a computational model also needs to
be assessed by its ability to fit all the available experi-
mental observations made in either control or perturbed
conditions. Next, it can be used to make in silico pre-
dictions. Simulations present the decisive advantage of
providing the temporal evolution of all the constitutive
molecular species involved, including those that are ex-
perimentally unreachable. In addition, it is easy to sys-
tematically perturb the signalling system in silico, for
instance by suppressing one molecule or one reaction;
the predicted effects can then be verified experimentally.
Interesting predictions often result from this process.
Another way to evaluate the predictive power of a sig-
nalling network model is to modify the agonist input to
the system. Typically, different agonist concentrations
or patterns (i.e. positive or negative gradients, pulsatile
mode, etc.) can be applied in silico.

After initial experimental data gathering, a model is
designed, parameterized and simulated. Predictions are
made based on this initial model, and validation experi-
ments are undertaken. In this initial phase, it often hap-
pens that predictions are not experimentally validated.
In this case, the model has to be modified accordingly,
and submitted to experimental validation again. This
iterative process between modelling and experimenta-
tion is referred to as model refinement. According to
this workflow, any prediction leads to either hypothesis
validation or model refinement (Fig. 4). Thanks to this
virtuous circle, the decoding of the intimate functioning
of signalling networks’ should move forward. Under-
standing how signalling pathways encode and transmit
quantitative information about the external environment
not only deepens our understanding of these systems,
but will also lead to major achievements both in agri-
culture and medicine: models will point to molecular
targets to be optimized in normal animal physiology and
will help restore the proper function of pathways that
have become deregulated in disease.

9. Conclusion

The acquisition of reliable data has long been the pri-
mary challenge in the field of GPCR signalling. Now,
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Fig. 4. Proposed workflow to model signalling systems. Data are produced in the laboratory, using low and high throughput methods. Already
existing relevant and carefully standardized data can be extracted from publicly accessible databases (note that, once exploited, locally produced
data have the vocation to be deposited in such databases). Literature mining is also essential. Data and knowledge from these three sources
are combined, organized, analyzed and made available for modelling using various bioinformatics tools integrated into a comprehensive LIMS
(laboratory information management system). Influence graph is constructed and its qualitative analysis can lead to new hypotheses. In parallel,
this initial model is reduced and parameters are optimized. The dynamical model can be analyzed and its predictive power evaluated. An iterative
process then is engaged between experimentation and modelling which leads to novel findings and model refinement.
with the advent of high throughput technologies poten-
tially able to generate an unprecedented amount of dy-
namic signalling data, and to take into account the grow-
ing complexity of GPCR signalling, the challenges are
being re-centred towards more theoretical and concep-
tual aspects. State of the art bioinformatics and math-
ematics can already help better handle the complexity
associated with the large signalling networks and with
the tremendous development of systems biology, rapid
improvements can be expected.
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