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A B S T R A C T

The Modern Evolutionary Synthesis formalizes the role of variation, heredity, differential

reproduction and mutation in population genetics. Here we explore a mathematical

structure, based on the asymptotic limit theorems of communication theory, that

instantiates the punctuated dynamic relations of organisms with their embedding

environments, including the possibility of the transfer of heritage information between

different classes of organism. The approach applies a standard coevolutionary argument

to genes, environment, and gene expression reconfigured as interacting information

sources. In essence, we provide something of a formal roadmap for the modernization of

the Modern Synthesis, making applications to both relatively rapid evolutionary

punctuated equilibrium and to the conservation of ecological interactions across deep

evolutionary time.
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1. Introduction

Richard Lewontin’s [1] review of the recent book by
Fodor and Piattelli-Palmarini [2] neatly summarizes the
predominant evolutionary paradigm, the ‘Modern Synthe-
sis’.

‘‘The modern skeletal formulation of evolution by
natural selection consists of [several] principles that
provide a purely mechanical basis for evolutionary change,
stripped of its metaphorical elements:
(1) T
A
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doi:
he principle of variation: among individuals in a
population there is variation in form, physiology, and
behavior.
(2) T
he principle of heredity: offspring resemble their
parents more than they resemble unrelated indivi-
duals.
(3) T
he principle of differential reproduction: in a given
environment, some forms are more likely to survive
and produce more offspring than other forms. . .
(4) T
he principle of mutation: new heritable variation is
constantly occurring.’’
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Tellingly, Lewontin asserts:

‘‘The trouble with this outline is that. . . [t]here is an
immense amount of biology that is missing.’’

The synthesis itself, minus that immense amount of
biology, has been formalized, and hence frozen, into the
elaborate apparatus of mathematical population genetics
that some find quite elegant [3]. But mathematical fashion
– elegance, after all, is in the eye of the beholder – is not
quite the same as science.

The omission of the role of embedding environment in
the development of organisms (e.g., epigenetic effects such
as heritable stress-induced gene methylation) and the
omission of other interactions between organism and
embedding environment (e.g., niche construction sensu
Odling-Smee et al. [4]) severely limits the biological
relevance of that synthesis. Here, following [5–7], we will
describe genes, environment, and gene expression, in
terms of information sources that interact and affect each
other through a broadly coevolutionary crosstalk having
quasi-stable ‘resilience’ modes in the sense of Holling [8,9].

This implies, among other things, that internal dynam-
ics, for example the ‘large deviations’ described in [10], can
trigger ecosystem shifts that, in turn, create selection
pressure on organisms. The aerobic transition seems a
lsevier Masson SAS. All rights reserved.
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most telling example. External factors may also trigger
punctuated ecosystem shifts that can entrain organisms:
volcanism, meteor strikes, ice ages, and the like.

But the story does not end with niche construction,
epigenetics, or catastrophe.

Recently Sun and Caetano-Anolles [11] claimed evi-
dence for deep evolutionary patterns embedded in tRNA
phylogenies, calculated from trees reconstructed from
analyses of data from several hundred tRNA molecules.
They argue that an observed lack of correlation between
ancestries of amino acid charging and encoding indicates
the separate discoveries of these functions and reflects
independent histories of recruitment. These histories were,
in their view, probably curbed by co-options and impor-
tant take-overs during early diversification of the living
world. That is, disjoint evolutionary patterns were
associated with evolution of amino acid specificity and
codon identity, indicating that co-options and take-overs
embedded perhaps in horizontal gene transfer affected
differently the amino acid charging and codon identity
functions. These results, they claim, support a strand
symmetric ancient world in which tRNA had both a genetic
and a functional role [12].

Clearly, ‘co-options’ and ‘take-overs’ are, perhaps, most
easily explained as products of a prebiotic serial endo-
symbiosis, instantiated by a Red Queen between signifi-
cantly, perhaps radically, different precursor chemical
systems.

Witzany [13] also takes a broadly similar ‘language’
approach to the transfer of heritage information between
different kinds of proto-organisms. In that paper he
reviews a massive literature, arguing that not only rRNA,
but also tRNA and the processing of the primary transcript
into the pre-mRNA and the mature mRNA seem to be
remnants of viral infection events that did not kill their
host, but transferred phenotypic competences to their host
and changed both the genetic identity of the host organism
and the identity of the former infectious viral swarms. His
‘biocommunication’ viewpoint investigates both commu-
nication within and among cells, tissues, organs and
organisms as sign-mediated interactions, and nucleotide
sequences as code, that is, language-like text. Thus editing
genetic text sequences requires, similar to the signaling
codes between cells, tissues, and organs, biotic agents that
are competent in correct sign use. Otherwise, neither
communication processes nor nucleotide sequence gener-
ation or recombination can function. From his perspective,
DNA is not only an information storing archive, but a life
habitat for nucleic acid language-using RNA agents of viral
or subviral descent able to carry out almost error-free
editing of nucleotide sequences according to systematic
rules of grammar and syntax.

Koonin et al. [14] and Vetsigian et al. [15] take a roughly
similar tack, without, however, invoking biocommunica-
tion: Koonin et al. postulate a Virus World that has
coexisted with cellular organisms from deep evolutionary
time, and Vetsigian et al. suggest a long period of vesicle
crosstalk symbiosis driving standardization of genetic
codes across competing populations, leading to a ‘Darwin-
ian transition’ representing path dependent lock-in of
genetic codes.
In particular, before the lock-in of the precursor of the
current genetic code [16–18], vesicle structure may have
been rather more plastic than today, permitting analogs to
gene transfer between quite different prebiotic organisms.

Synthesizing these considerations, we introduce a fifth
Principle:
(5) ‘‘
The principle of environmental interaction: indivi-
duals and groups engage in powerful, often punctuat-
ed, dynamic mutual relations with their embedding
environments that may include the exchange of
heritage material between markedly different organ-
isms.’’

We begin with the reexpression of some familiar
biological phenomena as information sources, leading to a
formal mathematical structure that expresses these
extensions in terms of familiar coevolutionary models.

2. Ecosystems as information sources

We first consider a simplistic (and distinctly unreal-
istic, since populations can become negative) picture of
an elementary predator/prey ecosystem. Let X represents
the appropriately scaled number of ‘predators’, Y the
scaled number of ‘prey’, t the time, and v a parameter
defining their interaction. The model assumes that the
ecologically dominant relation is an interaction
between predator and prey, so that dX/dt = vY and
dY/dt =�vX.

Thus the predator populations grows proportionately to
the prey population, and the prey declines proportionately
to the predator population.

After differentiating the first and using the second
equation, we obtain the simple relation d2X/dt2 + v2X = 0
having the solution X tð Þ ¼ sin vtð Þ; Y tð Þ ¼ cos vtð Þ. Thus

X tð Þ2 þ Y tð Þ2 ¼ sin2 vtð Þ þ cos2 vtð Þ�1:

In the two dimensional phase space defined by X(t) and
Y(t), the system traces out an endless, circular trajectory in
time, representing the out-of-phase sinusoidal oscillations
of the ‘predator’ and ‘prey’ populations.

Divide the X� Y phase space into two components – the
simplest coarse-graining – calling the halfplane to the left
of the vertical Y-axis A and that to the right B. This system,
over units of the period 1/(2pv) traces out a stream of A’s
and B’s having a single very precise grammar and syntax:
ABABABAB � � �

Many other such statements might be conceivable, e.g.,

AAAAA � � � ;BBBBB � � � ;AAABAAAB � � � ;ABAABAAAB � � � ;

and so on, but, of the obviously infinite number of
possibilities, only one is actually observed, is ‘grammati-
cal’: ABABABAB � � �.

More complex dynamical system models, incorporating
diffusional drift around deterministic solutions, or even
very elaborate systems of complicated stochastic differen-
tial equations, having various domains of attraction, that is,
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different sets of grammars, can be described by analogous
symbolic dynamics ([19], Ch. 3).

Rather than taking symbolic dynamics as a simplifica-
tion of more exact analytic or stochastic approaches, we
generalize symbolic dynamics to a more comprehensive
information dynamics. Ecosystems may not have identifi-
able sets of stochastic dynamic equations like noisy,
nonlinear mechanical clocks, but, under appropriate
coarse-graining, they may still have recognizable sets of
grammar and syntax over the long-term: the turn-of-the
seasons in a temperate climate, for many natural
communities, looks remarkably the same year after year:
the ice melts, the migrating birds return, the trees bud, the
grass grows, plants and animals reproduce, high summer
arrives, the foliage turns, the birds leave, frost, snow, the
rivers freeze, and so on.

Suppose it possible to empirically characterize an
ecosystem at a given time by observations of both habitat
parameters such as temperature and rainfall, and numbers
of various plant and animal species.

Traditionally, one can then calculate a cross-sectional
species diversity index using a standard information or
entropy metric [20]. This is not the approach to be taken
here. Quite the contrary, in fact. Suppose it possible to
coarse grain the ecosystem at time t according to some
appropriate partition of the phase space in which each
division Aj represents a particular range of numbers of
each possible species in the ecosystem, along with
associated parameters such as temperature, rainfall,
and the like. What is of particular interest to our
development is not cross-sectional structure, but rather
longitudinal paths, that is, ecosystem statements of the
form x nð Þ ¼ A0;A1; . . . ;An defined in terms of some natural
time unit of the system. Thus n corresponds to an again
appropriate characteristic time unit T, so that t = T,
2T,. . .,nT.

To reiterate, unlike the traditional use of information
theory in ecology, the central interest is in the serial

correlations along paths, and not at all in the cross-sectional
entropy calculated for of a single element of a path.

Let N(n) be the number of possible paths of length n that
are consistent with the underlying grammar and syntax of
the appropriately coarsegrained ecosystem: spring leads to
summer, autumn, winter, back to spring, etc., but never
something of the form spring to autumn to summer to
winter in a temperate ecosystem.

The fundamental assumptions are that – for this chosen
coarse-graining – N(n), the number of possible grammati-
cal paths, is much smaller than the total number of paths
possible, and that, in the limit of (relatively) large n,

H ¼ lim
n!1

log N nð Þ½ �
n

(1)

both exists and is independent of path.
This is a critical foundation to, and limitation on, the

modeling strategy and its range of strict applicability, but
is, in a sense, fairly general since it is independent of the

details of the serial correlations along a path.
Again, these conditions are the essence of the parallel

with parametric statistics. Systems for which the assump-
tions are not true will require special nonparametric
approaches. We are inclined to believe, however, that, as
for parametric statistical inference, the methodology will
prove robust in that many systems will sufficiently fulfill
the essential criteria.

This being said, not all possible ecosystem coarse-
grainings are likely to work, and different such divisions,
even when appropriate, might well lead to different
descriptive quasi-languages for the ecosystem of inter-
est. The example of Markov models is relevant. The
essential Markov assumption is that the probability of a
transition from one state at time T to another at time
T + DT depends only on the state at T, and not at all on the
history by which that state was reached. If changes
within the interval of length DT are plastic, or path-
dependent, then attempts to model the system as a
Markov process within the natural interval DT will fail,
even though the model works quite well for phenomena
separated by natural intervals.

Thus empirical identification of relevant coarse-grain-
ings for which this body of theory will work is clearly not
trivial, and may, in fact, constitute the hard scientific core
of the matter.

This is not, however, a new difficulty in ecosystem
theory. Holling [9], for example, explores the linkage of
ecosystems across scales, finding that mesoscale struc-
tures – what might correspond to the neighborhood in
a human community – are ecological keystones in
space, time, and population, which drive process and
pattern at both smaller and larger scales and levels of
organization.

Levin [21] argues that there is no single correct scale
of observation: the insights from any investigation are
contingent on the choice of scales. Pattern is neither a
property of the system alone nor of the observer, but of
an interaction between them. Pattern exists at all levels
and at all scales, and recognition of this multiplicity of
scales is fundamental to describing and understanding
ecosystems. In his view there can be no ‘correct’ level of
aggregation: we must recognize explicitly the multiplic-
ity of scales within ecosystems, and develop a perspec-
tive that looks across scales and that builds on a
multiplicity of models rather than seeking the single
‘correct’ one.

Given an appropriately chosen coarse-graining, whose
selection in many cases will be the difficult and central
trick of scientific art, suppose it possible to define joint and
conditional probabilities for different ecosystem paths,
having the form PðA0;A1; . . . ;AnÞ; PðAn A0;A1; . . . ;An�1j Þ,
such that appropriate joint and conditional Shannon
uncertainties can be defined on them. For paths of length
two these would be of the form

HðX1;X2Þ� �
X

j

X
k

PðA j;AkÞlog P A j;Ak

� �� �
HðX1 X2j Þ � �

X
j

X
k

PðA j;AkÞlog P A j Akj
� �� � (2)

where the Xj represents the stochastic processes generat-
ing the respective paths of interest.

The essential content of the Shannon-McMillan Theo-
rem is that, for a large class of systems characterized as
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information sources, a kind of law-of-large numbers exists
in the limit of very long paths, so that

H X½ � ¼ lim
n!1

log N nð Þ½ �
n

¼ lim
n!1

HðXn X0; . . . ;Xn�1j Þ

¼ lim
n!1

HðX0;X1; . . . ;XnÞ
nþ 1

(3)

Taking the definitions of Shannon uncertainties as
above, and arguing backwards from the latter two
equations, it is indeed possible to recover the first, and
divide the set of all possible temporal paths of our
ecosystem into two subsets, one very small, containing
the grammatically correct, and hence highly probable
paths, that we will call ‘meaningful’, and a much larger set
of vanishingly low probability [22].

Basic material on information theory can be found in
any number of texts [22–24].

3. Genetic heritage as an information source

Adami et al. [25] make a case for reinterpreting the
Darwinian transmission of genetic heritage in terms of a
formal information process. They assert that genomic
complexity can be identified with the amount of informa-
tion a sequence stores about its environment: genetic
complexity can be defined in a consistent information-
theoretic manner. In their view, information cannot exist
in a vacuum and must be instantiated. For biological
systems information is instantiated, in part, by DNA. To
some extent it is the blueprint of an organism and thus
information about its own structure. More specifically, it is
a blueprint of how to build an organism that can best
survive in its native environment, and pass on that
information to its progeny. Adami et al. assert that an
organism’s DNA thus is not only a ‘book’ about the
organism, but also a book about the environment it lives in,
including the species with which it co-evolves. They
identify the complexity of genomes by the amount of
information they encode about the world in which they
have evolved.

Ofria et al. [26] continue in the same direction and
argue that genomic complexity can be defined rigorously
within standard information theory as the information the
genome of an organism contains about its environment.
From the point of view of information theory, it is
convenient to view Darwinian evolution on the molecular
level as a collection of information transmission channels,
subject to a number of constraints. In these channels, they
state, the organism’s genome codes for the information (a
message) to be transmitted from progenitor to offspring,
subject to noise from an imperfect replication process and
multiple sources of contingency. Information theory is
concerned with analyzing the properties of such channels,
how much information can be transmitted and how the
rate of perfect information transmission of such a channel
can be maximized.

Adami and Cerf [27] argue, using simple models of
genetic structure, that the information content, or
complexity, of a genomic string by itself (without referring
to an environment) is a meaningless concept and a change
in environment (catastrophic or otherwise) generally leads
to a pathological reduction in complexity.

The transmission of genetic information is thus a
contextual matter involving operation of an information
source that, according to this perspective, must interact
with embedding (ecosystem) structures. Such interaction
is, as we show below, often highly punctuated, modulated
by mesoscale ecosystem transitions via a generalization of
the Baldwin effect akin to stochastic resonance, i.e., a
‘mesoscale resonance’ [5,6].

4. Gene expression as an information source

Wallace and Wallace [5,6], following the footsteps of
[28,29], argue at some formal length that a ‘cognitive
paradigm’ is needed to understand gene expression, much
as Atlan and Cohen [30] invoke a cognitive paradigm for
the immune system.

Cohen and Harel [28] assert that gene expression is a
reactive system that calls our attention to its emergent
properties, i.e., behaviors that, taken as a whole, are not
expressed by any one of the lower scale components that
comprise it. The essential point is that cellular processes
react to both internal and external signals to produce
diverse tissues internally, and diverse general phenotypes
across various scales of space, time, and population, all
from a single set or relatively narrow distribution of genes.

Chapter 1 of [7] provides detailed justification of a
cognitive paradigm for gene expression that we will not
repeat here.

The essential point, from the perspective of this paper,
is that a broad class of cognitive phenomena can be
characterized in terms of a dual information source that
can interact with other such sources: Atlan and Cohen [30]
argue that the essence of cognition is comparison of a
perceived external signal with an internal, learned picture
of the world, and then, upon that comparison, the choice of
one response from a much larger repertoire of possible
responses. Such reduction in uncertainty inherently
carries information, and it is possible to make a very
general model of this process as an information source
[31].

Cognitive pattern recognition-and-selected response,
as conceived here, proceeds by convoluting an incoming
external ‘sensory’ signal with an internal ‘ongoing activity’
– which includes, but is not limited to, the learned picture
of the world – and, at some point, triggering an appropriate
action based on a decision that the pattern of sensory
activity requires a response. It is not necessary to specify
how the pattern recognition system is trained, and hence
possible to adopt a weak model, regardless of learning
paradigm, which can itself be more formally described by
the Rate Distortion Theorem. Fulfilling Atlan and Cohen’s
criterion of meaning-from-response, we define a lan-
guage’s contextual meaning entirely in terms of system
output.

The model, a simplification of the standard neural
network, is as follows.

A pattern of ‘sensory’ input – incorporating feedback
from the external world – is expressed as an ordered
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sequence y0, y1,. . .. This is mixed in a systematic (but
unspecified) algorithmic manner with internal ‘ongoing’
activity, a sequence w0, w1,. . ., to create a path of composite
signals x = a0, a1,. . .,an,. . ., where aj = f(yj,wj) for some
function f. This path is then fed into a highly nonlinear,
but otherwise similarly unspecified, decision oscillator
generating an output h(x) that is an element of one of two
(presumably) disjoint sets B0 and B1. We take
B0� b0; . . . ; bkf g; B1� bkþ1; . . . ; bmf g.

Thus we permit a graded response, supposing that if
h(x) 2 B0 the pattern is not recognized, and if h(x) 2 B1 the
pattern is recognized and some action bj, k + 1� j�m takes
place.

This approach is broadly analogous to, but simpler than,
the Hopfield/Hebb stochastic neuron in which series of
inputs y j

i ; i ¼ 1; . . . ;m from m nearby neurons at time j is
convoluted with ‘weights’ w j

i ; i ¼ 1; . . . ;m, using an inner
product

a j ¼ y j �w j ¼
Xm

i¼1

y j
i w j

i

in the context of a ‘transfer function’ f y j �w j
� �

such that
the probability of the neuron firing and having a discrete
output zi = 1 is P z j ¼ 1

� �
¼ f y j �w j

� �
. Thus the probability

that the neuron does not fire at time j is 1� f y j �w j
� �

.
In the terminology of this section, the m values y j

i

constitute ‘sensory activity’ and the m weights w j
i the

‘ongoing activity’ at time j, with aj = yj �wj and x = a0, a1, . . .,
an, . . .. A little more work leads to a fairly standard neural
network model in which the network is trained by
appropriately varying the w through least squares or
other error minimization feedback.

The principal focus of the simpler model presented here
is the composite paths x that trigger pattern recognition-
and-response. That is, given a fixed initial state a0, such
that h a0ð Þ 2 B0, we examine all possible subsequent paths x

beginning with a0 and leading to the event h xð Þ 2B1. Thus
h a0; . . . ; a j

� �
2B0 for all 0� j<m, but h a0; . . . ; amð Þ 2B1.

Remember, the yj, the ‘sensory’ input convoluted with the
internal wj, contains feedback from the external world, i.e.,
how well h matches intent with need.

For each positive integer n let N(n) be the number of
grammatical and syntactic high probability paths of length n

which begin with some particular a0 having h a0ð Þ 2B0 and
lead to the condition h xð Þ 2B1. We shall call such paths
meaningful and assume N(n) to be considerably less than the
number of all possible paths of length n – pattern
recognition-and-response is comparatively rare. We –
again – assume that the longitudinal finite limit
H� limn!1log NðnÞ½ �=n both exists and is independent of
the path x. We will – not surprisingly – call such a cognitive
process ergodic.

Note that disjoint partition of state space may be
possible according to sets of states which can be connected
by meaningful paths from a particular base point, leading
to a natural coset algebra of the system defining a
groupoid. This is a matter of some importance pursued
at length in [7].

It is thus possible to define an ergodic information
source X associated with stochastic variates Xj having joint
and conditional probabilities P a0; . . . ; anð Þ and
P an a0; :::; an�1jð Þ such that appropriate joint and condition-
al Shannon uncertainties may be defined which satisfy the
relations above.

This information source is taken as dual to the ergodic
cognitive process.

Again, the Shannon-McMillan Theorem and its variants
provide ‘laws of large numbers’ that permit definition of
the Shannon uncertainties in terms of cross-sectional sums
of the form H ¼ �

P
Pklog Pk½ �, where the Pk constitutes a

probability distribution.
Different quasi-languages will be defined by different

divisions of the total universe of possible responses into
various pairs of sets B0 and B1. Like the use of different
distortion measures in the Rate Distortion Theorem,
however, it seems obvious that the underlying dynamics
will all be qualitatively similar.

Nonetheless, dividing the full set of possible responses
into the sets B0 and B1 may itself require higher order
cognitive decisions by another module or modules,
suggesting the necessity of choice within a more or less
broad set of possible quasi-languages. This would directly
reflect the need to shift gears according to the different
challenges faced by the organism or organic subsystem. A
critical problem then becomes the choice of a normal zero-
mode language among a very large set of possible
languages representing accessible excited states. This is
a fundamental matter that mirrors, for isolated cognitive
systems, the resilience arguments applicable to more
conventional ecosystems, that is, the possibility of more
than one zero state to a cognitive system. Identification of
an excited state as the zero mode becomes, then, a kind of
generalized autoimmune disorder that can be triggered by
linkage with external ecological information sources
representing various kinds of structured stress.

In sum, meaningful paths – creating an inherent
grammar and syntax – have been defined entirely in
terms of system response, as Atlan and Cohen [30] propose.

5. Interacting information sources

Here we model the interaction of these information
sources: embedding environment, genetic heritage (possi-
bly across different organisms), and cognitive gene
expression, using a formalism equivalent to that invoked
both for nonequilibrium thermodynamics and traditional
studies of coevolution [32]. That is, this is a straightforward
coevolution model in which the interacting ‘populations’
are the information sources representing environment,
genes, and cognitive gene expression.

Consider a set of information sources representing
these three phenomena. There may be many different
interacting sources of each kind.

Use inverse measures *j� 1/Hj, j 6¼m as parameters for
each of the other sources, writing

Hm ¼ Hm K1; . . . ;Ks; . . . ;H j; . . .
� �

; j 6¼m;

where the Ks represent other relevant parameters.
The dynamics of such a system is defined by a standard

recursive network of stochastic differential equations,
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quite similar to those used to study many other highly
parallel dynamic structures [33].

Letting the Kj and *m all be represented as parameters
Qj, (with the caveat that Hm not depend on *m), one can
define a ‘disorder’ measure analogous to entropy in
nonequilibrium thermodynamics, following the argu-
ments of [5–7], Sm

H �Hm �
P

iQ i@Hm=@Qi to obtain the
standard recursive system of phenomenological ‘Onsager
relations’ stochastic differential equations,

dQ j
t ¼

X
i

L j;i t; . . . ;
@Sm

H

@Qi
; . . .

 !
dt þ s j;i t; . . . ;

@Sm
H

@Qi
; . . .

 !
dBi

t

" #

¼ L j Q1; . . . ;Qn
� �

dt þ
X

i

s t;Q1; . . . ;Qn
� �

dBi
t (4)

where we have collected terms and expressed both the
reciprocal *’s and the external K’s in terms of the same
Qj, and the gradient of the Sm with respect to the Qi

represents the analog to ‘thermodynamic force’ in a
physical system.

The index m ranges over the interacting information
sources and we could allow different kinds of ‘noise’ dBi

t ,
having particular forms of quadratic variation which
may, in fact, represent a projection of environmental
factors under something like a rate distortion manifold
[34].

This equation requires some further explanation. It’s
origin lies in the formal similarity between the expression
for free energy density and information source uncertain-
ty, explored in more detail in [5–7]. The argument is as
follows:

Let F(K) be the free energy density of a physical system,
K the normalized inverse temperature, V the volume and
Z(K,V) the partition function defined from the Hamiltonian
characterizing energy states Ei. Then

Z V ;Kð Þ ¼
X

i

exp �Ei Vð ÞK½ �

and
F Kð Þ ¼ lim
V!1

� 1

K

log Z V ;Kð Þ½ �
V

�
log Ẑ K;Vð Þ
h i

V
;

similar to the first part of Eq. (3).
If a nonequilibrium physical system is parameterized

by a set of variables {Qi}, then the empirical Onsager
equations are defined in terms of the gradient of the
entropy S� F�

P
jQjdF/dQj as

dQ j=dt ¼
X

i

Li; j@S=@Qi

where the Li,j are empirical constants. The stochastic
version is just Eq. (4), with ‘S’ defined in terms of
information sources as

Sm
H �Hm �

X
i

Q i@Hm=@Qi:

It is important to note that information systems are not

locally reversible, so there is no analog to the ‘Onsager
reciprocal relations’ Li,j = Lj,i.
There are several obvious possible dynamic patterns for
the system of Eq. (4):
1. s
etting Eq. (4) equal to zero and solving for stationary
points gives attractor states since the noise terms
preclude unstable equilibria;
2. t
his system may converge to limit cycle or pseudoran-
dom ‘strange attractor’ behaviors in which the system
seems to chase its tail endlessly within a limited venue –
the traditional Red Queen;
3. w
hat is converged to in both cases is not a simple state
or limit cycle of states. Rather it is an equivalence class,
or set of them, of highly dynamic information sources
coupled by mutual interaction through crosstalk. Thus
‘stability’ in this structure represents particular patterns
of ongoing dynamics rather than some identifiable static
configuration.

Here we become deeply enmeshed in a system of highly
recursive phenomenological stochastic differential equa-
tions [35], but in a dynamic rather than static manner. The
objects of this dynamical system are equivalence classes of
information sources, rather than simple ‘stationary states’
of a dynamical or reactive chemical system. Imposition of
necessary conditions from the asymptotic limit theorems
of communication theory has beaten the mathematical
thicket back one full layer.

These results are essentially similar to the work of
Diekmann and Law [32], who invoke evolutionary game
dynamics to obtain a first order canonical equation for
coevolutionary systems having the form

dsi=dt ¼ KiðsÞ@Wiðs0i; sÞ s0i; s
�� (5)

The si, with i = 1,. . .,N denote adaptive trait values in a
community comprising N species. The Wi s0i; s

� �
are

measures of fitness of individuals with trait values s0i in
the environment determined by the resident trait values s,
and the Ki(s) are non-negative coefficients, possibly
distinct for each species, that scale the rate of evolutionary
change. Adaptive dynamics of this kind have frequently
been postulated, based either on the notion of a hill-
climbing process on an adaptive landscape or some other
sort of plausibility argument.

When this equation is set equal to zero, so there is no
time dependence, one obtains what are characterized as
‘evolutionary singularities’ or stationary points.

Diekmann and Law contend that their formal derivation
of this equation satisfies four critical requirements:
1. t
he evolutionary process needs to be considered in a
coevolutionary context;
2. a
 proper mathematical theory of evolution should be
dynamical;
3. t
he coevolutionary dynamics ought to be underpinned
by a microscopic theory;
4. t
he evolutionary process has important stochastic
elements.

Equation (4) above is exactly similar, although focused
on information sources representing environment, genetic
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Fig. 1. ‘Small’ scale, ‘fast’ time behavior of the system obtained by setting

Eq. (4) to zero. Diffusive drift about a quasi-equilibrium is interrupted by a

highly structured large deviation leading to another quasi-equilibrium, in

the pattern of punctuated equilibrium of Eldredge and Gould.
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Fig. 2. ‘Large’ scale, ‘slow’ time enlargement of Fig. 1, showing the

conservation of ecological interactions across deep evolutionary time as

variation about a single, larger, singularity.
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heritage and cognitive gene expression, allowing elaborate
patterns of phase transition punctuation in a natural
manner [7].

Champagnat et al. [36], in fact, derive a higher order
canonical approximation extending equation (5) that is
closer to Eq. (4), i.e., a stochastic differential equation
describing coevolutionary dynamics. Champagnat et al. go
even further, using a large deviations argument to analyze
dynamical coevolutionary paths, not merely evolutionary
singularities. They contend that in general, the issue of
evolutionary dynamics drifting away from trajectories
predicted by the canonical equation can be investigated by
considering the asymptotic of the probability of ‘rare
events’ for the sample paths of the diffusion.

By ‘rare events’ they mean diffusion paths drifting far
away from the canonical equation. The probability of such
rare events is governed by a large deviation principle: when
a critical parameter (designated e) goes to zero, the
probability that the sample path of the diffusion is close
to a given rare path f decreases exponentially to 0 with rate
I(f), where the ‘rate function’ I can be expressed in terms of
the parameters of the diffusion. This result, in their view, can
be used to study long-time behavior of the diffusion process
when there are multiple attractive evolutionary singulari-
ties. Under proper conditions the most likely path followed
by the diffusion when exiting a basin of attraction is the one
minimizing the rate function I over all the appropriate
trajectories. The time needed to exit the basin is of the order
exp(H/e) where H is a quasi-potential representing the
minimum of the rate function I over all possible trajectories.

An essential fact of large deviations theory is that the rate
function I which Champagnat et al. invoke can almost
always be expressed as a kind of entropy, that is, in the form

I ¼ �
X

j

P jlog P j

� �

for some probability distribution. This result goes under a
number of names; Sanov’s Theorem, Cramer’s Theorem,
the Gartner-Ellis Theorem, the Shannon-McMillan Theo-
rem, and so forth [37]. A detailed example is given in [10].

These considerations lead very much in the direction of
Eq. (4) above, but now seen as subject to internally-driven
large deviations that are themselves described as information

sources, providing * parameters that can trigger punctu-
ated shifts between quasi-stable modes, in addition to
resilience transitions driven by ‘catastrophic’ external
events or the exchange of heritage information between
different classes of organisms.

Equation (4) provides a very general statistical model
that combines Principle (5) – in concert with the possibility
of large deviations – with earlier theory.

Indeed, the direct inclusion of large deviations regular-
ities within the context of the statistical model of Eq. (4)
suggests that other factors that can be characterized in
terms of information sources may be directly included
within the formalism. Section 6.1 of [7], for example,
explores the impact of culture, taken as a generalized
language, on the evolution of human pathogens. The
methodology thus provides a straightforward means of
incorporating the evolutionary effects of animal traditions,
as described by Avital and Jablonka [38].
The basic statistical model is illustrated by Fig. 1, for a
‘fast’ time, ‘small’ scale process. Here, two quasi-equilibria
are characterized by diffusive drift about their singularities
in a two-dimensional system, but are coupled by a highly
structured large deviation connecting them. The pattern
most obviously encompasses the punctuated equilibrium
of Eldredge and Gould [39,40].

Fig. 2 expands the system of Fig. 1 to ‘slow’ time, ‘large’
scale, so that the large deviations of Fig. 1 are seen as, in
essence, variation about a single ‘larger’ singularity. This
latter structure could account for the observations of
Gomez et al. [41] who show that, as with other niche
components, ecological interactions are evolutionarily
conserved, suggesting a shared pattern in the organization
of biological systems through evolutionary time that is
particularly mediated by marked conservation of ecologi-
cal interactions among taxa.

6. Conclusions

We have reexpressed ecosystem dynamics, genetic
heritage, and (cognitive) gene expression producing
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phenotypes that interact with the embedding ecosystem,
all in terms of interacting information sources. This
instantiates Principle (5) of the Introduction, producing
a system of stochastic differential equations closely
analogous to those used to describe more traditional
coevolutionary phenomena, subject to punctuated resil-
ience shifts driven both by internal large deviations and
large-scale external perturbations.

That is, environments affect living things, and living
things affect their environments: Cyanobacteria created
the aerobic transition, greatly changing the very atmo-
sphere of the planet. Organisms can, more locally, engage
in niche construction that changes the local environment
as profoundly. Environments select phenotypes that, in a
sense, select environments. Genes record the result, as does

the embedding landscape. The system co-evolves as a unit,
with sudden, complicated transitions between the quasi-
equilibria of Eq. (4).

To reiterate, these transitions can be driven by internal
‘large deviation’ dynamics, as the aerobic transition, or by
external events, volcanic eruptions or meteor strikes, and
so on. Ecosystem resilience shifts entrain the evolution of
individual organisms that, in turn, drive ecosystem
resilience transitions.

Enlargement of scale, however, can produce a model of
the conservation of ecological interactions across the tree
of life.

Thus the introduction of Principle (5) to the Modern
Synthesis generates the complex system of Eq. (4), perhaps
best characterized by the term ‘evolution of ecosystems’.
The essential point is that the Modern Synthesis now
requires modernizing, recognizing the importance and
ubiquity of a mutual interaction with the embedding
ecosystem that includes the possibility of the exchange of
heritage information between different classes of organ-
isms.

Here we have, in the arguments leading to Eq. (4),
outlined a ‘natural’ means for implementing such a
program, based on the asymptotic limit theorems of
communication theory that provides necessary conditions
constraining the dynamics of all systems producing or
exchanging information, in the same sense that the Central
Limit Theorem provides constraints on systems that
involve sums of stochastic variates. That is, we provide
the basis for a new set of statistical tools useful in the study
of ecological and evolutionary phenomena. Statistics,
however, is not science, and the fundamental problems
of data acquisition, ordination, and interpretation remain.

Acknowledgments

The author thanks a reviewer for perceptive comments
useful in revision.

References

[1] R. Lewontin, Not so natural selection, New York Review of Books Online,
2010.

[2] J. Fodor, M. Piattelli-Palmarini, What Darwin got wrong, Farrar, Straus,
and Giroux, New York, 2010.

[3] W. Ewens, Mathematical population genetics, Springer, New York,
2004.
[4] F. Odling-Smee, K. Laland, M. Feldman, Niche Construction:the
neglected process in evolution, Princeton University Press, NJ, 2003.

[5] R. Wallace, D. Wallace, Punctuated equilibrium in statistical models of
generalized coevolutionary resilience: how sudden ecosystem transi-
tions can entrain both phenotype expression and Darwinian selection,
Transactions on Computational Systems Biology IX LNBI 5121 (2008)
23–85.

[6] R. Wallace, D. Wallace, Code, context, and epigenetic catalysis in gene
expression, Transactions on Computational Systems Biology XI, LNBI
5750 (2009) 283–334.

[7] R. Wallace, D. Wallace, R.G. Wallace, Farming human pathogens: eco-
logical resilience and evolutionary process, Springer, New York, 2009.

[8] C. Holling, Resilience and stability of ecological systems, Annual
Reviews of Ecological Systematics 4 (1973) 1–23.

[9] C. Holling, Cross-scale morphology, geometry, and dynamics of eco-
systems, Ecological Monographs 62 (1992) 447–502.

[10] R. Wallace, R.G. Wallace, On the spectrum of prebiotic chemical sys-
tems: an information-theoretic treatment of Eigen’s Paradox, Origins of
Life and Evolution of Bioshperes 38 (2008) 419–455.

[11] F. Sun, G. Ceataeno-Anolles, Evolutionary patterns in the sequence and
structure of transfer RNA: a window into early translation and the
genetic code, PLOS one 3 (2008) 32799.

[12] S. Rodin, A. Rodin, On the origin of the genetic code: signatures of its
primordial complementarity in tRNAs and aminoacyl-tRNA synthe-
tases, Heredity 100 (2008) 341–355.

[13] G. Witzany, Noncoding RNAs: persistent viral agents as modular tools
for cellular needs, Annals of the New York Academy of Sciences 1178
(2009) 244–267.

[14] E. Koonin, T. Senkevich, V. Dolja, The ancient virus world and evolution
of cells, Biology Direct (2006), doi:10.1186/1745-6150-1-29.

[15] K. Vetsigian, C. Wose, N. Goldenfield, Collective evolution and the
genetic code, Proceedings of the National Academy of Sciences 103
(2006) 10696–10701.

[16] T. Tlusty, A model for the emergence of the genetic code as a transition
in a noisy information channel, Journal of Theoretical Biology 249
(2007) 331–342.

[17] T. Tlusty, Casting polymer nets to optimize noisy molecular codes,
Proceedings of the National Academy of Sciences 105 (2008) 8238–
8243.

[18] R. Wallace, Metabolic constraints on the evolution of genetic codes,
http://www.precedings.nature.com/documents/4120/version/3, 2010.

[19] C. Beck, F. Schlogl, Thermodynamics of Chaotic Systems, Cambridge
University Press, Cambridge, UK, 1993.

[20] E. Pielou, Mathematical ecology, Wiley, New York, 1977.
[21] S. Levin, Ecology in theory and application, in : S. Levin, T. Hallam, L.

Gross (Eds.), Applied mathematical ecology, biomathematics texts 18,
Springer, New York, 1989.

[22] A. Khinchin, Mathematical foundations of information theory, Dover,
New York, 1957.

[23] R. Ash, Information theory, Dover, New York, 1990.
[24] T. Cover, J. Thomas, Elements of information theory, Wiley, New York,

1991.
[25] C. Adami, C. Ofria, T. Collier, Evolution of biological complexity,

Proceedings of the National Academy of Sciences 97 (2000) 4463–
4468.

[26] C. Ofria, C. Adami, T. Collier, Selective pressures on genomes in molec-
ular evolution, Journal of Theoretical Biology 222 (2003) 477–483.

[27] C. Adami, N. Cerf, Physical complexity of symbolic sequences, Physica D
137 (2000) 62–69.

[28] I. Cohen, D. Harel, Explaining a complex living system: dynamics,
multi-scaling and emergence, Journal of the Royal Society Interface
4 (2007) 175–182.

[29] S. O’Nuallain, Code and context in gene expression, cognition,
and consciousness, Chapter 15, in : M. Barbiere (Ed.), The codes of
life: the rules of macroevolution, Springer, New York, 2008 , pp. 347–
356.

[30] H. Atlan, I. Cohen, Immune information, self-organization and meaning,
International Immunology 10 (1998) 711–717.

[31] R. Wallace, Consciousness: a mathematical treatment of the global
neuronal workspace model, Springer, New York, 2005.

[32] U. Diekmann, R. Law, The dynamical theory of coevolution: a derivation
from stochastic ecological processes, Journal of Mathematical Biology
34 (1996) 579–612.

[33] C. Wymer, Structural nonlinear continuous-time models in economet-
rics, Macroeconomic Dynamics 1 (1997) 518–548.

[34] J.F. Glazebrook, R. Wallace, Rate distortion manifolds as models for
cognitive information, Informatica 33 (2009) 309–345.

[35] R. Zhu, A. Rebirio, D. Salahub, S. Kauffmann, Studying genetic regulatory
networks at the molecular level: delayed reaction stochastic models,
Journal of Theoretical Biology 246 (2007) 725–745.

mailto:rodrick.wallace@gmail.com
mailto:rodrick.wallace@gmail.com


R. Wallace / C. R. Biologies 333 (2010) 701–709 709
[36] N. Champagnat, R. Ferriere, S. Meleard, Unifying evolutionary dynam-
ics: from individual stochastic processes to macroscopic models, The-
oretical Population Biology 69 (2006) 297–321.

[37] A. Dembo, O. Zeitouni, Large deviations and applications, second ed.,
Springer, NY, 1998.

[38] E. Avital, E. Jablonka, Animal traditions: behavioral inheritance in
evolution, Cambridge University Press, NY, 2000.
[39] N. Eldredge, S. Gould, Punctuated equilibrium: an alternative to phy-
letic gradualism, in : T. Schopf (Ed.), Models in Paleobiology, Freeman,
Cooper and Co., San Francisco, 1972, pp. 82–115.

[40] S. Gould, The structure of evolutionary theory, Belknap, Harvard, 2002.
[41] J. Gomez, M. Verdu, F. Perfectti, Ecological interactions are evolution-

arily conserved across the entire tree of life, Nature 465 (2010) 918–
921.


	Expanding the modern synthesis
	Introduction
	Ecosystems as information sources
	Genetic heritage as an information source
	Gene expression as an information source
	Interacting information sources
	Conclusions
	Acknowledgments
	References


