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Analysis of the effects of fragmentation-coagulation in planktology

Suares Clovis Oukouomi Noutchie a,b

a Department of Mathematical Sciences, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
b African Institute for Mathematical Sciences, 6–8, Melrose Road, Muizenberg 7945, South Africa

A R T I C L E I N F O

Article history:

Received 12 August 2009

Accepted after revision 26 August 2010

Available online 18 October 2010

Keywords:

Fragmentation

Coagulation

Semigroup

Honesty

Aggregates

A B S T R A C T

A theoretical approach is used to investigate the quantitative and qualitative effects of the

flocculation and break-up of aggregates of phytoplankton. The importance of these

processes in the study of fish recruitment is discussed. Furthermore, results indicate that

fragmentation and coagulation dynamics do not play a significant role in the overall

evolution of the phytoplankton population.
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1. Introduction

Phytoplankton are microscopic plant-like organisms
that live in oceans, seas, lakes, or other bodies of water.
They contain the pigment chlorophyll, which gives them
their greenish color. Chlorophyll is used by plants for
photosynthesis, in which sunlight is used as an energy
source to fuse water molecules and carbon dioxide into
carbohydrates (plant food). Photosynthesis uses carbon
dioxide and water, releasing oxygen as a waste product
[1,2]. As phytoplankton accounts for half of all photosyn-
thesis activity on Earth, they are responsible for most of the
oxygen present in the Earth’s atmosphere. Aside from
playing a key role in the reduction of global warming by
the absorbtion of a huge quantity of carbon dioxide,
phytoplankton are the foundation of the marine food
chain. In fact, they are initially the sole prey item for almost
all fish larvae as they use up their yolk sacs and switch to
external feeding for nutrition. Fish species rely on the
density and distribution of phytoplankton for good
survival of larvae, which can otherwise starve. Since
phytoplankton depend upon certain conditions for growth,
they are a good indicator of change in their environment.
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For these reasons, and because they also exert a global-
scale influence on climate, phytoplankton are of primary
interest to oceanographers and Earth scientists around the
world. The formation of large particles through multiple
collision of smaller ones is a highly visible phenomenon in
oceanic waters. Several authors have attempted to model
the dynamics of phytoplankton in such a way as to exhibit
this structure [3–9]. In this setting, the individual unit is an
aggregate and aggregates are structured by their size. The
population changes in time, the cohorts of a certain size
grow or on the contrary lose some members. An equation
describing the dynamical behaviour of phytoplankton cells
in which the effects of cell division and aggregration was
incorporated by coupling the coagulation-fragmentation
equation with the McKendrick-von Foerster renewal
model of an age-structured population was examined in
[7]. Under the assumption that the fragmentation rate was
linearly bounded, the associated initial boundary value
problem was shown to be well-posed in the Banach space

X0;1 :¼ L1ððx0;1Þ; ð1þ xÞdxÞ

¼ c : ck k1 :¼
Z 1

x0

ð1þ xÞjcðxÞjdx<1
� �

(1)

We adopt a similar model. Because of the turbulence
over water surfaces, the fragmentation rate of large
aggregates may become very high. This is responsible
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for the observed maximum size range that an aggregate
can take before breaking up. The importance of the article
is twofold:
� t
he analysis in [7] is extended to arbitrary fragmentation
rates in order to account for various break up ranges. This
generalizes earlier works on fragmentation-coagulation
models with linearly bounded fragmentation. It is a good
foundation for numerical studies of the dynamics of
phytoplankton in turbulent areas of the ocean, where
fragmentation rates for large aggregates might be
extremely large;

� t
he honesty of the model in the space

X1 :¼ L1ððx0;1Þ; xdxÞ

¼ c : ck k1 :¼
Z 1

x0

xjcðxÞjdx<1
� �

(2)

is established. The space X1 is chosen in a natural way

because
R1

x0
x c xð Þj jdx is the total mass of the ensemble. It

turns out that ‘honesty’ in X1 has a proper biological

explanation. In fact, it suggests that the evolution of the

phytoplankton population is driven by the growth and

death of the aggregates.

In the last part of the article, the results are discussed.
We show that fragmentation-coagulation dynamics do not
affect the evolution of the phytoplankton population.
However, it will be conjectured that they play a major role
in the study of fish recruitment. In order to provide a
meaningful introduction, let us first give a brief description
of the model and introduce the necessary notation.

2. Description of the model

Following [7], we consider the following non-linear
transport equation that contains terms responsible for the
growth of phytoplankton aggregates, their fragmentation,
coagulation and death:

@
@t

u t; xð Þ ¼ � @
@x

r xð Þu t; xð Þ½ � � d xð Þu t; xð Þ � a xð Þu t; xð Þ (3)

þ
Z 1

xþx0

a yð Þb xjyð Þu t; yð Þdy� u t; xð Þ
Z 1

x0

k x; yð Þu t; yð Þdy

þxU xð Þ
2

Z x�x0

x0

k x� y; yð Þu t; x� yð Þu t; yð Þdy;

where xU is the characteristic function of the interval U ¼
2x0;1ð Þ and x0> 0 is the smallest size of a single

phytoplankton cell. The dynamics of the system is
described using the aggregate density function u (t, x).
Here x 2 (x0, 1 ) is a variable that represents the size, or
mass, of the aggregate, the variable t represents time and u

(t, x) is the concentration of aggregates of size x at time t.
We assume that for each t� 0 the function x 7!u t; xð Þ is
from the space X1.

The fragmentation operator is given by

Fu½ � xð Þ :¼ � a xð Þu xð Þ þ
Z 1

xþx0

a yð Þb xjyð Þu yð Þdy; (4)
where a is the fragmentation rate, satisfying 0 �
a2 L1;loc x0;1ð Þð Þ The mass distribution x of daughter
aggregates after fragmentation of a parent of mass y is
denoted by b xjyð Þ. As mentioned earlier, particles of mass
less than 2x0 cannot fragment, hence we assume a xð Þ ¼ 0
for 0< x< x0. Similarly, b xjyð Þ ¼ 0 for y< x + x0 and x< x0.
We assume that mass is conserved in each fragmentation
event, so that b must satisfy

Z y�x0

x0

xb xjyð Þdx ¼ y; (5)

for each y> 2x0.
Next let us discuss the coagulation process. The

coagulation kernel k x; yð Þ is the rate at which particles of
mass x coalesce with particles of mass y. The coagulation
kernel k is assumed to be a non-negative function in
L1 x0;1ð Þ � x0;1ð Þð Þ. The characteristic function xU

ensures no particle of mass x< 2x0 can emerge as a result
of coagulation. The coagulation operator is given by the
expression

[Kψ](x) =
χU (x) x−x0

k(x − y, y)ψ(x − y)ψ(y)dy
[TD$INLINE]

2 x0

− ψ(x)
∞

x0

k(x, y)ψ(y)dy.

(6)

Next, we introduce the other two processes incorpo-
rated into the model. The death process is modelled by an
exponential decay with size dependent death rate d. We
assume that 0 � d2 L1 x0;1ð Þð Þ Aggregates may grow as a
result of divisions of cells. The growth rate is denoted by r.
In phytoplankton models typically, we have r xð Þ� x as
growth is proportional to number of particles (cells) in the
aggregate. Thus, we assume that r is a non-negative
function and

r 2AC x0;1ð Þð Þ \X1; (7)

where r2AC x0;1ð Þð Þ means that r is absolutely continu-
ous on each compact subinterval of x0;1ð Þ and X1 is the
dual space of X, so that the duality pairing is given by

<c;v> ¼
Z 1

x0

c xð Þv xð Þdx

Note that the range of r we have accommodated is
rather wide. The growth operator is given by
[TD$INLINE] ]([ )= [ )]()(xu xr u x . A vital role in the analysis of the
model also is played by the integrability of 1=r xð Þ at x0, see
[10,7]. If 1=r xð Þ is not integrable at x0, then the
characteristics of [TD$INLINE] do not reach the line x = x0 and there
is no need to prescribe any boundary condition at x0. On
the other hand, if 1=r xð Þ is integrable at x0, the
characteristics do reach the line x = x0 and therefore the
boundary condition becomes crucial for the uniqueness
investigation. A general boundary condition considered in
this article reads

lim
x! xþ

0

r xð Þu t; xð Þ ¼
Z 1

x0

b yð Þu t; yð Þdy; (8)

where 0�b 2 X1. If b	 0, then we have standard no-influx
condition. If, however, b yð Þ 6¼0, then it describes the rate at
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which an aggregate of size y sheds single cells which then
re-enter the system as new aggregates and start to grow.
The nonlinear integro-differential equation (3) is supple-
mented with the initial condition

u 0; xð Þ ¼ u0 xð Þ; (9)

where u0 2 X1 and with the boundary condition (8):

lim
x! xþ

0

r xð Þu t; xð Þ ¼
Z 1

x0

b yð Þu t; yð Þdy;

if 1=r xð Þ is integrable at x = x0.

3. Analysis of the problem

In this section, we make use of the theory of semilinear
abstract Cauchy problems. The idea is to show that the
linear operator induced by the fragmentation, growth and
death of the aggregates generates a strongly continuous
semigroup. Then the linear operator shall be perturbed by
the nonlinear operator induced by the coagulation of the
aggregates.

3.1. Analysis of the linear part

In what follows we denote by [TD$INLINE] and [TD$INLINE] some
expressions appearing on the right-hand side of Eq. (3);
that is,

[TD$INLINE][ ]( ) = [ ( ) ( )] ( ) ( )x r x x q x x (10)

where q = a + d,

[TD$INLINE][ ]( ) = ( ) ( | ) ( )dx a y b x y y y (11)

The expressions [TD$INLINE] and [TD$INLINE] are defined on measurable and
finite almost everywhere functions c for which they make
pointwise (almost everywhere) sense.

Let us denote by T the realization of [TD$INLINE] (defined via (10))
on the domain

D ¼ c2X1; qc2X1; rc2AC x0;1ð Þð Þ rcð Þx 2X1

� �
(12)

if r�1 non-integrable at x0, and on the domain

Db ¼ c2D :
lim

x! xþ0
r xð Þc xð Þ ¼

Z 1
x0

b yð Þc yð Þdy

� �
; (13)

otherwise. Further, let B be the realization of B

(see (11)) on the domain D Bð Þ ¼ D Tð Þ ¼ c2X1; qc2X1;f
rc2AC x0;1ð Þð Þ rcð Þx 2X1g

Set k :¼ rk k1 in case r�1 non-integrable at x0 and
k :¼ x0 bk k1 þ rk k1 for r�1 integrable at x0.

Theorem 2.1. There is an extension G of the operator T + B

that generates a positive semigroup SG tð Þð Þt�0 in X1. More-
over, the generator G is characterized by

lI � Gð Þ�1c ¼
X1
n¼0

lI � Tð Þ
�1

B lI � Tð Þ�1
h in

c; (14)

for c 2 X1 and l> k.

Proof. The proof is a generalization of a similar result on the
space X0,1, obtained in [7] by assuming that the fragmen-
tation rate a is linearly bounded. The analysis in [7] can be
easily extended to general fragmentation rates because the
fragmentation equation behaves well in the bigger space
X1. A complete proof of this theorem is available in
[11]. &

Theorem 2.2. Assume lim
x! x0

¼ lim
x! x0

aðxÞ þ dðxÞ< þ1, then

G ¼ T þ F, thus the semigroup SG tð Þð Þt�0 is honest.

Proof. The theory of extension of operators is instrumental
in the proof of this theorem. In the case r�1 non-integrable
at x0, the assumption made in the theorem is not necessary.
The semigroup SG tð Þð Þt�0 is honest for arbitrary fragmen-
tation rate a2 L1;loc x0;1ð Þð Þ and death rate d2 L1 x0;1ð Þð Þ.
The proof is analogous to the analysis for honesty
performed in [10] with x0 = 0. For r�1 integrable at x0,
the proof is obtained in a similar way as in [7] where
honesty was investigated in the space X0,1. &

3.2. Global solution of the evolution equation

The combined mortality, coagulation and mass growth
fragmentation equation reads:

du

dt
tð Þ ¼ Gþ K½ �u tð Þ

u 0ð Þ ¼ u0; (15)

where K is the realization of the expression

Kψ](x) =
χ

U
(x) x−x0

k(x − y, y)ψ(x − y)ψ(y)dy
[TD$INLINE]

2 x0

− ψ(x)
∞

x0

k(x, y)ψ(y)dy,

(16)

for non-zero c on the space X1 and K 0ð Þ ¼ 0. Since the
linear semigroups SG tð Þð Þt�0 is positive, we shall work in
the positive cone of X1, denoted by X1+.

Theorem 2.3. Let u0 2 X1+, then the Cauchy problem

ut tð Þ ¼ G u tð Þ½ � þ K u tð Þ½ �; u 0ð Þ ¼ u0 (17)

has a unique global solution.

Proof. In order to prove that (15) has a solution which is
global in time, we shall proceed in a standard way [12] by
converting it into an integral equation. Then we use the fact
that X1+ is a complete metric space as a closed subspace of a
Banach space, (see [13], Theorem 6.1.2). The method is
analogous to the proof of global existence on the space X0,1 in
[7]. Similar calculations are possible because the minimum
size x0 that a single phytoplankton cell may have is strictly
positive. Note that it does not work in general in non-
biological models (x0 = 0) [14] &.

4. Biological interpretation of the results

Phytoplankton stickiness, defined as the probability of
adhesion upon collision, is a key factor determining the
potential for aggregate formation. Transparent exopoly-
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meric particles (TEP), produced by phytoplankton cells, are
responsible for the cells’ stickiness. Thus coagulation
depends on the amount of TEP produced. In the fishery
industry, the size of an aggregate is very important. An
abundance of very small aggregates does not help as they
can not be seen by the early stage fishes. Also, the
consumption of large aggregates by more mature fishes is
considered to some extend a loss, as they can feed on a
great variety of products. The fragmentation and coagula-
tion rates of the aggregates play a significant role in their
size distribution in the water:
� a
 poor presence of TEP yields a low coagulation rate and a
high fragmentation rate. In this case, early stage fishes
will starve not because of the absence or the scarcity of
phytoplankton, but because of the low quantity of visible
aggregates;

� a
 huge presence of TEP yields a high coagulation rate and

a low fragmentation rate. In this case, the phytoplankton
aggregates will be essentially consumed by the mature
fishes due to the abundance of large aggregates. There is
a risk of extinction of the phytoplankton population.

The main result of this article is the honesty of the
phytoplankton model in the space X1. It simply suggests
that fragmentation and coagulation processes do not
influence the evolution of the total size of the phytoplank-
ton population. In other words, the overall progression of a
phytoplankton community entirely depends on the growth
and death rates of the aggregates. The death of the
phytoplankton aggregates as a result of their consumption
by the small fishes and zooplankton is essential as it
represents the base of the food chain. Thus the most
efficient way to improve the phytoplankton production is
to increase the growth rate of the aggregates. Interestingly,
aggregates grow as a result of divisions of phytoplankton
cells. Therefore cell-division plays a fundamental role in
phytoplankton dynamics.
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