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A B S T R A C T

Within the framework of a general equilibrium model we study the long-run dynamics of a

prey-predator model in the presence of an alternative prey. Our results show that

sustainability, i.e. a positive value of the population in the long run, essentially depends on

individual harvesting efforts and digesting factors relative to alternative prey. A detailed

bifurcation analysis evidences the richness of possible long-run dynamics. Our model

clearly shows that the role of an alternative prey must be taken into consideration when

studying prey-predator dynamics.
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1. Introduction

The modelling of commercial exploitations of renew-
able biological resources is a challenging task, as it includes
the non-linear interaction of biological, economic and
social components. In recent past years, many researchers
have paid attention to the management of renewable
resources, considering different parameters and external-
ities. In the management of common property renewable
resources (such as fisheries, forestry and wildlife) har-
vested by competing individuals, societies or countries, the
problem known as ‘‘The tragedy of commons’’ after Hardin
[1]. Later on Clark [2], Masterton-Gibbons [3], Conrad [4]
discussed many issues and techniques on this subject.
Clark [2] discussed the problem of non-selective harvest-
ing of two ecologically independent populations obeying
logistic growth. Kar and Chaudhuri [5] discussed non-
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selective harvesting of a multispecies fishery. There are
also some papers on competitive fish-species and on prey-
predator models (see Gordon [6]; Datta and Mirman [7];
Bischi and Kopel [8]; Dubey et al. [9]; Bischi et al. [10]).
Most of the prey-predator models consider a single prey
called the focal prey; however, many authors have
emphasized that the presence of alternative foods can
effect biological control through a variety of mechanisms.
For example, the presence of one prey species can have
negative effects on the population of another prey species,
by allowing the population of a shared predator to
increase, thus leading to higher predation rates upon both
prey items. In contrast, alternative prey can also lower
predation on focal prey because of predator preference for
alternative prey resources (Abram and Matsuda [11]). In
such instances, the alternative prey can have a positive
effect on population densities of the focal prey. Many
massive piscivores, including spiny dogfish in the North-
West Atlantic, and Pacific hake, undertake extensive
seasonal migrations on a spatial scale much larger than
the habitat occupied by some of their prey, and the
development of realistic models for these prey-predator
systems will require consideration of alternative prey.
Vence [12], Spencer and Collie [13] have considered
alternative prey in their models.
lsevier Masson SAS. All rights reserved.
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Methods used for managing predators, and associated
public perception, are a crucial consideration in developing
effective systems of management for predators and prey.
Controlling predator populations to reduce predation on a
threatened or endangered species may be difficult to
achieve. Keeping wolf and cougar (wild American cat)
populations in check might require reducing alternate
prey. Control of mule deer populations in Sierra mountains
of California might be required in addition to reductions in
cougar numbers to prevent extirpation (complete destruc-
tion) of Sierra Nevada big horned sheep populations. The
Alberta Government has issued additional hunting permits
for moose and deer in an attempt to reduce alternate prey
for wolves, hoping to reduce wolf numbers and thereby
predation pressure on caribou.

In this study, we develop a simple, two species
predator-prey model that incorporates the effect of
alternative prey. We consider logistic production function
of prey and a Holling type-II predator functional response
(Holling [14]) so that there may present multiple
equilibrium population levels. In our model, the growth
rate of prey is formulated as

dN

dT
¼ rNð1� N=KÞ � a1NP

aþ N
(1)

where N = N(T) = size of prey at time T, P = P(T) = size of
predator at time T, K = environmental carrying capacity of
prey, r = intrinsic growth rate of prey, a1 = predation co-
efficient, a = half-saturation constant.

The growth rate of predator population is taken as

dP

dT
¼ b1a1NP

aþ N
þ d1Pð1� N=KÞ � g1P (2)

where b1 is a conversion factor (we assume b1 < 1, since
the whole biomass of the prey is not transferred to the
biomass of the predator), d1 is the digesting factor relative
to alternative prey and g1 is mortality rate of predator
population.

Here, as the focal prey population (N) increases, the
predator uses less alternative prey and when N! K the
mass of alternative prey consumed tends to zero, and
conversely, as the focal prey decreases, the predators
increase their feeding on alternative prey. If N! 0 then dP/
dT! (d1� g1)P. Thus even in case of the extinction of the
focal prey the predator population maintains its growth
rate, varying linearly with its density.

Now we introduce dimensionless variables by the
following substitution N = ax, P = ray/a1, T = t/r then our
Eqs. (1) and (2) become

dx

dt
¼ xð1� x=

K

a
Þ � xy

1þ x
(3)

dy

dt
¼ b1a1

r

xy

1þ x
þ d1

r
yð1� x=

K

a
Þ � g1

r
y (4)

Letting
K
a ¼ h; b1a1

r ¼ b; d1
r ¼ d; g1

r ¼ g
we can write the governing equations as

dx

dt
¼ xð1� x=hÞ � xy

1þ x
(5)
dy

dt
¼ bxy

1þ x
þ dyð1� x=hÞ � gy (6)

For considering the exploited prey-predator system, we
introduce scaled harvesting efforts E1 and E2 for prey and
predator, respectively and then the equations governing
our model become

dx

dt
¼ xð1� x=hÞ � xy

1þ x
� E1x (7)

dy

dt
¼ bxy

1þ x
þ dyð1� x=hÞ � gy� E2y (8)

The Note is organized as follows. The existence of
different equilibrium points are considered in section 2.
Stability analysis and bifurcations are given in section 3. In
section 4, detailed numerical simulations are given. The
Note ends with a conclusion in section 5.

2. Equilibrium of the model

Letting f1ðxÞ ¼ x
xþ1 ; f2ðxÞ ¼ ð1� x=h� E1Þðxþ 1Þ

and f3(x) = bf1(x) + d(1� x/h)� (E2 + g)
the governing equations (7) and (8) become

dx

dt
¼ f1ðxÞ½f2ðxÞ � y� (9)

dy

dt
¼ yf3ðxÞ (10)

The prey zero growth lines are obtained by setting dx/

dt = 0, which gives f1(x) = 0, y = f2(x) that is x = 0 (y-axis)
and the curve y = f2(x). The curve y = f2(x) passes through
the points (0, 1 – E1) and (h(1� E1), 0).

We see that

f02ðxÞ ¼ ð1� x=h� E1Þ þ ð1þ xÞð�1=hÞ

¼ 1� E1 � 1=h� 2x=h:

Thus, f02ð0Þ ¼ 1� E1 � 1=h, and
f2
0(h(1� E1)) =� (1� E1 + 1/h)

Thus if h(1� E1)> 1, then f02ð0Þ and f02ðhð1� E1ÞÞ are of
opposite signs and so f2(x) has a local maximum between
x = 0 and x = h(1� E1). The predator zero growth lines are
obtained by setting dy/dt = 0 i.e. y = 0 (x-axis) and f3(x) = 0.
Thus isoclines of predator other than x-axis are the zeros of
f3(x).

These are given by

bf1ðxÞ þ dð1� x=hÞ � ðE2 þ gÞ ¼ 0;

or,

�dx2=hþ ðbþ d� d=h� E2 � gÞxþ d� E2 � g ¼ 0 (11)

The zeros of f3(x) are given by

x2; x1 ¼
h

2d
½ðdþ b� d=h� E2 � gÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ b� d=h� E2 � gÞ2 � 4d

h
ðE2 þ g � dÞ

s
�

(12)
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Here we investigate the different cases for positive
zeros of f3(x) to have interior equilibrium. From the above
discussion we already have two boundary equilibria
P0(0, 0), P1((1� E1)h, 0) while P1 exists if E1< 1.

Case 1.
If ðdþ b� d

h� E2 � gÞ>0; and E2 + g� d< 0, that is, if
E2 <Minfðb� d

hÞ þ d� g; d� gg, then f3(x) has only one
positive zero given by

x2 ¼
h

2d
½ðdþ b� d=h� E2 � gÞ

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ b� d=h� E2 � gÞ2 � 4d

h
ðE2 þ g � dÞ

s
� (13)

and the corresponding value of y is
y2 ¼ f2ðx2Þ ¼ ð1þ x2Þð1� x2

h � E1Þ, which lies in Rþ2 if
E1< 1� x2/h.

Thus, in this case, the trivial equilibrium P0(0, 0) always
exists, the boundary equilibrium P1((1� E1)h, 0) exists if
E1< 1 and the only interior equilibrium P2(x2, f2(x2)) exists
if E1< 1� x2/h and E2 <Minfðb� d

hÞ þ d� g; d� gg.
Here it can be observed that if P2 exists then P1 also

exists.
Case 2.
Let ðdþ b� d

h� E2 � gÞ<0, E2 + g� d< 0. In this case
only one positive interior equilibrium may be obtained if
(d� g)> 0, (b� d/h)< 0 i.e. if d>max{g, bh} and
ðdþ b� d

h� gÞ< E2 < ðd� gÞ.
In this case x = x2 is a positive zero of f3(x) and P2(x2,

f2(x2)) is a positive interior equilibrium while E1< 1� x2/h
along with the above conditions. Therefore, in this case, the
trivial equilibrium P0(0, 0) always exists, the boundary
equilibrium P1((1� E1)h, 0) exists if E1< 1 and the interior
equilibrium P2(x2, f2(x2)) exists if E1< 1� x2/h, d>max{g,
bh} and ðdþ b� d

h� gÞ< E2 < ðd� gÞ. Here also we see
that the conditions of existence of P2 suffice the existence
of P1.

Case 3.
Let

ðdþ b� d

h
� E2 � gÞ>0; E2 þ g � d>0

and

ðdþ b� d

h
� E2 � gÞ

2

>
4d

h
ðE2 þ g � dÞ

More explicitly,

d� g < E2 < d� g þ b� d

h

and

ðdþ b� d

h
� E2 � gÞ

2

>
4d

h
ðE2 þ g � dÞ

for g< d< hb, or, d<g < ðb� d
hþ dÞ.

Then there are two positive zeros of f3(x) which are
x1, x2 given in (12) and

f3ðxÞ ¼
>0
<0

�
for x1 < x< x2

for 0< x< x1; x> x2;
i.e. f03ðx1Þ>0 and f03ðx2Þ>0. In this case all four equilibria
exist. The boundary equilibrium P1((1� E1)h, 0) exists if
the condition:(H1): E1 < 1 is satisfied. One interior
equilibrium P2(x1, f2(x1)) exists if the following conditions

are satisfied:(H2): ðdþ b� d
h� E2 � gÞ2 > 4d

h ðE2 þ g � dÞ;
E1 <1� x1=h with g< d< hb, or d<g < ðb� d

hþ dÞ; and

the other interior equilibrium P3(x2, f2(x2)) exists if the

conditions below are satisfied:(H3): d� g < E2 < d� gþ
b� d

h,ðdþ b� d
h� E2 � gÞ2 > 4d

h ðE2 þ g � dÞ; E1 <1� x2=h

with g< d< hb or d<g < ðb� d
hþ dÞ.

It is observed that at P2 & P3 both the species co-exist
under some conditions stated above.

3. Stability analysis

The Jacobian matrix for our model is

Jðx; yÞ ¼ f01ðxÞðf2ðxÞ � yÞ þ f1ðxÞf
0
2ðxÞ �f1ðxÞ

yf03ðxÞ f3ðxÞ

� �
: (14)

Since f1ðxÞ ¼ x
1þx ; therefore f01ðxÞ ¼ 1

ð1þxÞ2
and from the

expressions of f2(x), f3(x) we get

f02ðxÞ ¼ 1� E1 �
1

h
�2x

h
;

f03ðxÞ ¼ bf01ðxÞ �
d

h
¼ b

ð1þ xÞ2
� d

h
:

We first investigate the stability at the trivial equilibri-
um P0(0, 0), the boundary equilibrium P1((1� E1)h, 0), and
then the discussion of stability of interior equilibrium will
be considered in different cases as they appear in terms of
their existence.

At P0(0, 0) the corresponding community matrix is
simplified to be

JðP0Þ ¼
1� E1 0

0 d� E2 � g

� �
;

whose eigen values are (1� E1) and (d� E2� g). Therefore
the equilibrium at P0 is stable if

E1 >1 and E2 > d� g (15)

At P1((1� E1)h, 0) the matrix J is evaluated as

JðP1Þ ¼
�ð1� E1Þ f1ðð1� E1ÞhÞ

0 f3ðð1� E1ÞhÞ

� �

whose eigen values are l1 =� (1� E1)< 0, since E1 < 1 for
existence of P1 and l2 = f3((1� E1)h).
Now l2< 0 if

bð1� E1Þh
1þ ð1� E1Þh

þ dð1� ð1� E1Þh
h

Þ � ðE2 þ gÞ >0

i.e. if

E2 >
bð1� E1Þh

1þ ð1� E1Þh
þ dE1 � g:
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Thus, P1 is a stable equilibrium if

E2 >
bð1� E1Þh

1þ ð1� E1Þh
þ dE1 � g (16)

and E1< 1
Now we go through the following cases for discussing

the stability at interior equilibrium, taking the references
of the cases of existence of equilibrium points discussed
earlier.

Case 1.
Let-

E2 <Minfðb� d
hÞ þ d� g; d� gg and E1 <1� x2=h;then

only the positive interior equilibrium is P2(x2, f2(x2)). At
this equilibrium

J ¼ f1ðx2Þf02ðx2Þ �f1ðx2Þ
f2ðx2Þf03ðx2Þ 0

" #

The characteristic equation is

l2 � lf1ðx2Þf02ðx2Þ þ f1ðx2Þf2ðx2Þf03ðx2Þ ¼ 0 (17)

Since x1, x2 are the roots of f3(x) = 0, therefore from
Eq. (11) we have

f3ðxÞ ¼ �
d

h
½ðx� x2Þðx� x1Þ�

where x2> x1 and hence

f03ðxÞ ¼ �
d

h
½ðx� x2Þ þ ðx� x1Þ�

so that

f03ðx2Þ ¼ �
d

h
ðx2 � x1Þ <0

Thus f1(x2)f2(x2)f3
0(x2)< 0 as f1(x2), f2(x2) are posi-

tive and hence (17) has one positive and one negative root.
Therefore in this case P2(x2, f2(x2)) is an unstable
equilibrium.

Case 2.
Let

ðdþ b� d

h
� E2 � gÞ<0 and E2 þ g � d<0:

In this case P2(x2, f2(x2)) is the only positive interior
equilibrium. As in Case 1, f03ðx2Þ <0 and the equilibrium is
unstable at P2(x2, f2(x2)).

Case 3.
Let

ðdþ b� d

h
� E2 � gÞ>0; E2 þ g � d>0

and

ðdþ b� d

h
� E2 � gÞ

2

>
4d

h
ðE2 þ g � dÞ:

In this case two interior equilibrium points P2(x1,
f2(x1)) and P3(x2, f2(x2)) exist.

Now we investigate the stability at P2 and P3.
At P2(x1, f2(x1)) the community matrix is reduced to

JðP2Þ ¼ f1ðx1Þf02ðx1Þ �f1ðx1Þ
f2ðx1Þf03ðx1Þ 0

� �
(18)

whose characteristic equation is

l2 � lf1ðx1Þf02ðx1Þ þ f1ðx1Þf2ðx1Þf03ðx1Þ ¼ 0 (19)

Now f1ðx1Þ f2ðx1Þ f03ðx1Þ are all positive under the
conditions of existence of P2(x1, f2(x1)). Thus by Descartes’
rule of signs, P2 is a node or a focus or a centre. By Routh-
Hurwitz condition, the equilibrium at P2(x1, f2(x1)) is
stable if f02ðx1Þ<0, and is unstable if f02ðx1Þ>0. A limit

cycle is expected closed to the curve f02ðx1Þ ¼ 0. Now

f02ðx1Þ ¼ 0 implies that 1� E1 � 1
h�

2x1
h ¼ 0; or 1� E1 ¼

1
h ð1þ 2x1Þ:

Or,

E1 ¼ 1� 1

h
ð1þ 2x1Þ

¼ 1� 1

h
� 1

d
½ðdþ b� d

h
� E2 � gÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ b� d

h
� E2 � gÞ

2

� 4d

h
ðE2 þ g � dÞ

s
�

i.e.

E1 ¼ fðE2Þ (20)

where

fðE2Þ ¼ 1� 1

h
� 1

d
½ðdþ b� d

h
� E2 � gÞ

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdþ b� d

h
� E2 � gÞ

2

� 4d

h
ðE2 þ g � dÞ�

s
(21)

Thus if f02ðx1Þ<0 i.e. if E1>f(E2) then P2(x1, f2(x1)) is
locally asymptotically stable and if E1<f(E2) then P2(x1,
f2(x1)) is unstable in the positive quadrant of x1x2� plane.
For E1 = f(E2) i.e., for f02ðx1Þ ¼ 0 the roots of (19) ur
discussion on stability at P3(x2, f2(x2)) we see that the
characteristic equation of the community matrix at P3 is

l2 � lf1ðx2Þf02ðx2Þ þ f1ðx2Þf2ðx2Þf03ðx2Þ ¼ 0 (22)

Since we have earlier discussed that f03ðx2Þ<0;
f1ðx2Þ>0; f2ðx2Þ>0 for the existence of P3; therefore
by Descartes’ rule of signs, the roots of (22) are both real
and of opposite sign. Thus P3(x2, f2(x2)) is an unstable
saddle point whatever the sign of f02ðx2Þ may be.

We now state the following theorem:

Theorem 1. If the conditions (H1), (H2) and (H3) are
satisfied then:

(i) P0(0, 0) is stable if E1> 1, E2> d� g.

(ii) P1((1� E1)h, 0) is stable if E2 >
bð1�E1Þh

1þð1�E1Þh
þ dE1 � g

and is unstable when E2 <
bð1�E1Þh

1þð1�E1Þh
þ dE1 � g:

(iii) P2(x1, f2(x1)) is stable if E1>f(E2) and is unstable
when E1<f(E2).

(iv) P3(x2, f2(x2)) is always unstable.
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Fig. 1. Bifurcation diagram in the (E1, E2) plane.
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We notice that

d

dE1
ðTrace JÞE1¼fðE2Þ ¼

d

dE1
½f1ðx1Þf2

0ðx1Þ�E1¼fðE2Þ

¼ � x1

1þ x1
6¼0:

Hence by the Hopf bifurcation theorem (Hassard et al.
[15]) the system (9) and (10) enters into a Hopf type small
amplitude periodic oscillation at the parametric values
E1 = f(E2) near the positive interior equilibrium P2(x1,
f2(x1)). Hence we may state the following theorem:

Theorem 2. For E1 = f(E2) a super critical Hopf bifurcation
takes place for the equilibrium P2.

Proof. Let us consider the Jacobian matrix (18). By direct
calculation the eigen values are given by:

l1;2 ¼

f1ðx1Þf02ðx1Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ff1ðx1Þf02ðx1Þg

2 � 4f1ðx1Þf2ðx1Þf03ðx1Þ
q

2

Or, l1;2 ¼
TðE1 ; E2Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2�4DðE1 ; E2Þ

p
2 , where T = trace of J

and D = det J.

Now for T = 0, D > 0 and in corresponding to the values
of E1 = f(E2) the matrix has two purely imaginary
eigenvalues l1;2 ¼ �i

ffiffiffiffi
D
p

. Moreover d=dE1ðReðl1;2ÞÞE1
¼

fðE2Þ. Thus, all conditions of Hopf theorem are satisfied
and a stable limit cycle for E1<f(E2) may be found. All
these conditions together prove the existence of a super
critical Hopf bifurcation for the equilibrium P2.

We also have the following result on global stability in
the region of local stability:

Theorem 3. If P2(x1*, f2(x1*)) is locally asymptotically
stable, then it is globally stable in the interior of R2

+.

Proof. If possible, let there be a periodic orbit G = (x(t),
y(t)), 0� t� T with the enclosed region V and consider the
variational matrix J about the periodic orbit,

Jðx; yÞ ¼ f01ðxÞðf2ðxÞ � yÞ þ f1ðxÞf
0
2ðxÞ �f1ðxÞ

yf03ðxÞ f3ðxÞ

� �
:

We compute
D ¼
ZT
0

f1
0ðxÞ½f2ðxÞ � yÞ þ f1ðxÞf

0
2ðxÞ þ f3ðxÞ�dt

For biological equilibrium in the region of local stability
it can easily be seen that

D ¼
ZT
0

f1ðxÞf2
0ðxÞdt<0

Therefore, D< 0 and the periodic orbit G is orbitally
asymptotically stable (Cheng et al. [16] and Hale [17]).
Since every periodic orbit is orbitally stable then there is a
unique limit cycle. From the Poincare–Bendixson Theorem,
it is impossible to have unique stable limit cycle enclose a
stable equilibrium. This is the desired contradiction. Hence
there is no limit cycle and P2 is globally stable.

As the analytical results already indicate, the existence
and stability of the interior equilibrium, as well as the
stability of the trivial and boundary equilibrium will
depend on the specific parameters that determine the
dynamic evolution of the resource stock and the popula-
tion. In the next section we present a more in-depth
analysis of the complexity of the long run dynamics of
population and resource stocks as they depend on the
parameters of the system. The results are obtained through
a detailed numerical and global bifurcation analysis.

4. Numerical simulations

We consider numerical simulations of different cases to
understand the theoretical findings.

For h = 60, b = 4, d = 0.6, g = 0.9 we have the bifurcation
diagram shown in Fig. 1, and the point (E1, E2) = (0.9, 2.69)
marked by * is in stable region and the point (E1, E2) = (0.75,
2.69) marked by � is in the region of unstability.

Fig. 1 illustrates a detailed picture of the possible long
run dynamics as they depend on the values of the
harvesting efforts E1 and E2 for the benchmark case. The
various dynamic behaviors are described in separate
figures that show the corresponding stable and unstable
equilibria in phase space together with selected time
paths.

In brief, the bifurcation diagram as presented in Fig. 1
allows us to investigate the specific combination of efforts
E1 and E2 that may cause the model to shift from
sustainable long run equilibrium towards a limit cycle
and finally the collapse of the system. Local bifurcation
theory is the numerical tool that determines the
boundaries between these regions in parameter space
(Fig. 2).

We see that as d increases from 0.6 to 0.9 the area of
region of stability decreases as shown in Fig. 2. If we
increase d again to 1.0 the stable region of stability shrinks
more, as depicted in the Fig. 3.
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Fig. 2. Bifurcation diagram for d = 0.9.
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Fig. 3. Bifurcation diagram for d = 1.0.
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Fig. 4. The phase diagram for (E1, E2) = (0.9, 2.69) with d = 0.6.
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Fig. 5. The phase diagram for (E1, E2) = (0.9, 2.69) with d = 0.9.
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Fig. 6. The phase diagram for (E1, E2) = (0.9, 2.69) with d = 1.0.

T.K. Kar, S.K. Chattopadhyay / C. R. Biologies 333 (2010) 841–849846
Figs. 1, 2 and 3 show bifurcation diagrams in the (E1,
E2)-plane for d = 0.6, 0.9 and 1, respectively. We see that the
stability region becomes smaller as d becomes larger. We
may say that d destabilizes the coexisting equilibrium P2.
Thus for the long run sustainability of a prey-predator
system, this might require reducing alternative prey
(Fig. 4).

The phase diagram for d = 0.06 is shown in Fig. 4. When
d increases to 0.9 or 1.0 then the point (E1, E2) = (0.9,2.69)
marked by * lies outside the stable region and the interior
equilibrium becomes unstable. The corresponding phase
diagrams are shown in the Figs. 5 and 6.

Figs. 7 and 8 shows the phase diagram of prey and
predator with a fixed value of E2 = 2.69 and different values
of E1. Fig. 9 has E1 = 0.39, and E2 = 3.60

Figs. 10 and 11 shows the isoclines of prey and predator
with a fixed value of E2 = 2.69 and different values of E1. It is
observed that the equilibrium point for the prey popula-
tion gradually decreases when the respective fishing effort
used to harvest prey population is simultaneously
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Fig. 8. The phase diagram for (E1, E2) = (2, 2.69) in region-III of Fig. 1.

[()TD$FIG]

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10

x

y

Fig. 9. The phase diagram for (E1, E2) = (0.39, 3.60) in the Region IV of

Fig. 1.
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Fig. 10. For d = 0.6.
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Fig. 11. For d = 0.
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increased. In Fig 10, d = 0.6 and in Fig. 11 d = 0 (Figs. 12
and 13).

Figs. 12 and 13 show the isoclines of prey and predator
population with a fixed value of E1 = 0.6 and different
values of E2. It is observed that the equilibrium point for
the prey population gradually increases as the effort E2

increases. It is natural as an increase in E2 decreases the
predator population and hence enhancing the survival rate
of the prey.

5. Conclusion

Managing predator-prey systems involves complex
challenges for resource managers. Many studies have
demonstrated populations consequences of predators on
prey population, but how managers should use this
information are not easy to decide. Predator control can
be effective at enhancing survival and recruitment in
populations of prey, but the potential role of predators in
structuring ecological communities has been recognized
for sometime. For example, overexploitation of sea otter
populations resulted in increase in sea urchins that
subsequently destroyed kelp beds that provided habitats
for fish and other marine organisms. Because of such
complexity of food webs in ecological communities it is
difficult to anticipate the full ramifications of eliminating
or restoring predators. For example, reducing predator
numbers to increase abundance of prey can have counter-
productive results such as increasing disease and parasite
infection in prey.

We believe that prey-predator management requires
ecosystem management and this must include careful
consideration of habitats as well as the particular predator
prey populations. Management actions include adjusting
season length and bag limits for hunter and trappers, but
must also include other activities such as management of
habitats that provide secure areas for prey. Ecosystem
management acknowledges the value of predators in the
environment.

Thus unregulated exploitation and extinction of many
natural and biological resources is a major problem of
present day. This work pays attention to the exploitation or
harvesting of such resources. It describes some strategies
on harvesting efforts of a prey-predator model incorporat-
ing an alternative prey for the predators. It gives a study of
a prey-predator model with an alternative prey, which
shows some methods to control the system and how the
state can be driven into equilibrium. We have considered
all possible cases for the variation of parameters for the
equilibrium and stability analysis of the model. It has also
been discussed, how the system bifurcates from equilibri-
um. We have seen that the interior equilibrium in Case 3 is
stable for E1>f(E2) and is unstable for E1<f(E2) and
another interior equilibrium is always unstable. Some
numerical examples also show how the system becomes
stable at an interior equilibrium and how it bifurcates from
the equilibrium and also some other features of the model.

Managing prey-predator populations for hunter harvest
becomes more complex when predators are competing
with humans for the same prey. Adjustments to harvest
regimes may be necessary, but certainly we can have
sustainable harvest of populations under predation. Elk on
the northern range of Yellowstone National Park are
harvested by hunters when they move into Montana
during winter. The sustainability of this harvest is ensured
because the Montana Department of Fish, Wildlife and
Parks has density dependent harvest guidelines so that the
number of tags issued for the late-Gardiner elk hunt
increases with the number of elk censused on the northern
range. This helps to balance the hunter harvest with wolf
predation ensuring that the elk population is not driven to
low levels by excessive hunter harvest.

Model that has been developed permit harvest guide-
lines while accommodating predators and these can be
used to achieve sustainable yields. However application of
this model will require data to manage a prey-predator
systems.
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