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A B S T R A C T

We fit the parameters of a differential equations model describing the production of gap-

gene proteins Hunchback and Knirps along the antero-posterior axis of the embryo of

Drosophila. As initial data for the differential equations model, we take the antero-

posterior distribution of the proteins Bicoid, Hunchback and Tailless at the beginning of

cleavage cycle 14. We calibrate and validate the model with experimental data using

single- and multi-objective evolutionary optimization techniques. In the multi-objective

optimization technique, we compute the associated Pareto fronts. We analyze the cross

regulation mechanism between the gap-genes protein pair Hunchback-Knirps and we

show that the posterior distribution of Hunchback follow the experimental data if

Hunchback is negatively regulated by the Huckebein protein. This approach enables to us

predict the posterior localization on the embryo of the protein Huckebein, and to validate

with the experimental data the genetic regulatory network responsible for the antero-

posterior distribution of the gap-gene protein Hunchback. We discuss the importance of

Pareto multi-objective optimization techniques in the calibration and validation of

biological models.
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1. Introduction

In the Drosophila egg, maternal mRNAs are placed near
the poles of the oocyte by the mother’s ovary cells, defining
the antero-posterior axis of the embryo. Fertilization
triggers the translation of these maternal mRNAs to
proteins that regulate the expression of zygotic genes.
Each of the zygotic genes is transcribed in certain regions
of the embryo syncitial blastoderm, and the produced
proteins act as transcription factors that regulate the
expression of other zygotic genes.

After fertilization, the first 13 nuclear divisions occur
without the organization of cellular membranes, giving
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rise to a syncitial blastoderm. The cytoplasmic membranes
only become completely formed 3 hours after fertilization,
in the interphase following the 14th mitotic cycle, just
before the onset of gastrulation.

During the syncitial stage, the transcribed zygotic genes
are divided in three main families: gap, pair-rule and
segment polarity genes. The proteins resulting from their
expression define broad segmentation patterns along the
antero-posterior axis of the embryo. These segmentation
patterns appear as protein gradients along the antero-
posterior axis of the Drosophila embryo [1–4].

The proteins with origin in the maternal mRNAs form
gradients along the antero-posterior axis of the embryo. In
the beginning of cleavage cycle 14, proteins of maternal
origin act as transcription factors for gap genes, pair-rule
and segment polarity genes.

There are several models aiming to describe proteins
steady gradients in Drosophila early development. Some
lsevier Masson SAS. All rights reserved.
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models are based on the hypothesis of protein diffusion
along the antero-posterior axis of the embryo [5,6] and
other models are based on the diffusion of mRNA of
maternal origin [7,8]. The protein diffusion hypothesis is
sometimes justified by the absence of cellular membranes
during the first 14 cleavage cycles of the embryo, and has
been proposed by Driever and Nusslein-Volhard in the late
1980s [2]. The mRNA diffusion hypothesis is supported by
the recent observation of the mRNA Bicoid gradient [9],
and the associated diffusion mechanism has been reported
by Cha et al. [10] that observed rapid saltatory movements
in injected mRNA bicoid with dispersion but without
localization. Also maternal mRNA (nanos) has shown
diffusive-like behavior [11].

Here, we will be interested in the calibration and
validation of the genetic regulatory network involving
maternal proteins and the antero-posterior distribution of
the gap genes Hunchback (HB) and Knirps (KNI) along the
Drosophila embryo. One of the reasons for this study is that
the regulation of the gradient of the HB protein in the
posterior region of the embryo of Drosophila is poorly
understood [12].

In order to calibrate the genetic regulatory network
describing the production of the gap genes HB and KNI,
we make some biological assumption about our ap-
proach:
1) W
e assume that proteins of maternal origin are
expressed before cleavage cycle 14. At the beginning
of cleavage cycle 14, these proteins form gradients along
the antero-posterior axis of the embryo of Drosophila,
and are in steady states.
2) T
he model equations are derived from the mass action
law. The production of proteins are described by
ordinary differential equation describing the variation
of the concentrations of proteins and of the associated
genes. We do not use the Michaelis-Menten enzy-
matic functional form to describe the production of
proteins.
3) T
he mechanism of production of proteins HB and KNI
during cleavage cycle 14 is described in two steps. In
the first step, we describe the steady gradients of
proteins produced from mRNAs with maternal origin
(BCD and HB). We also assume that protein Tailless
(TLL), important for the regulation of KNI, is in a steady
state, prior to the begining of cleavage cycle 14, and
forms a gradient along the antero-posterior axis of the
embryo of Drosophila. In the second step, we consider
that the proteins with maternal origin and TLL are
transcription factors for the gap-gene proteins. In order
to simplify the model equations and the number of
parameters for the description of the gap-gene protein
production, we assume that maternal origin proteins
and TLL are not consumed in the activation or
repression of the gap-gene proteins. In the case of
the HB protein, in the first step, we consider that the
protein is produced from mRNA with maternal origin.
In a second step, it is assumed that HB is zygotically
produced. In the initial gap-gene phase, the gap-gene
proteins other than HB are assumed to have zero initial
concentration.
4) W
e also consider that the zygotically produced proteins
HB, KNI and Huckebein (HKB) do not diffuse along the
antero-posterior axis of the embryo of Drosophila.

This article is organized as follows. In section 2.1, we
briefly describe the models for production of proteins of
maternal origin. Then, we fit the experimental data of
maternal proteins Bicoid (BCD) and Hunchback (HB), and
of Tailless (TLL) with the equations for the steady state of a
reaction-diffusion model from Dilão and Muraro [7]. The
biological assumptions made are the ones described
above in 1). The experimental data were obtained in the
FlyEx database [13,14], and the fits of the models with
experimental data were obtained with an evolutionary
search algorithm. In these fits, we reproduce accurately
the experimental data for BCD, HB and TLL, and we
determine along the antero-posterior axis of the embryo
of Drosophila the initial localization of the mRNA of
maternal origin.

In section 2.2, we introduce the graph of the genetic
network associated with the production and the cross
regulation of the gap-gene proteins HB and KNI and we
derive a mass action production model. Then, we describe
the process of calibration of the parameters of the model
with the experimental data. The technique for parameter
estimation is based on genetic algorithms with single- and
multi-objective search techniques. As one of the main
goals of this paper is to analyze the cross regulation of the
zygotically produced HB and KNI proteins, we have two
objectives to fulfill. In this context, we find a continuous set
of parameter solutions or Pareto front of the two-
objectives optimization problem. This Pareto front corre-
sponds to all possible admissible solutions of the bi-
objective optimization problem. From the biological point
of view, all the parameter solutions on the Pareto front are
admissible and they correspond to different instances of
the model parameters. All these Pareto solutions are very
close to the experimental data and this has been evaluated
by chi-squared tests.

In section 3, we describe the methodology of the multi-
parameter fitting with evolutionary algorithms for one-
objective and multi-objective optimization techniques.
We briefly review the concept of Pareto multi-objective
optimization and its role in parameter estimation
problems. This section is essentially qualitative and
methodological, describing the geometry and structure
of the algorithms. All the programs are included in the
Supplementary material to this article [15]. Finally, in
section 4, we discuss the main biological conclusions of
the article.

2. Results and discussion

2.1. Steady state models for the distribution of proteins with

maternal origin

The first stages of the establishment of the positional
information for the cellular differentiation of the Drosoph-

ila embryo are determined by the initial distribution of
maternal mRNAs and the corresponding produced pro-
teins. Here, we consider three proteins whose gradients are
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established prior to the gap-gene phase (assumption 1) in
§ 1). These three proteins are Bicoid (BCD), Hunchback
(HB) and Tailless (TLL). We fit the steady state distribution
of these proteins with the experimental data, taken from
the FlyEx database ([13,14,16–18], http://flyex.ams.sunys-
b.edu/flyex/). For the fits, we use a single-objective
optimization technique for the distributions of BCD, HB
and TLL.

Hunchback and bicoid maternal mRNA are initially
distributed along the antero-posterior axis of the embryo.
The tailless gene is activated by the Torso (TOR) protein
that has maternal origin. Here, we consider that TLL is
produced directly from mRNA tll, which is not of maternal
origin. This choice is a simplification in the model and the
fit could be also obtained taking account of the activation
of the tll gene by TOR [6].

To describe the steady states of BCD, HB and TLL, we
assume a model for the production of proteins from the
initial distribution of the associated mRNAs. In fact, we can
adopt two alternative models. In one model, the produced
protein diffuses and degrades along the embryo, leading to
a gradient-like steady state [6]. In a second alternative
model, is the maternal mRNA that diffuses and degrades,
leading to a gradient-like steady state for the protein. The
second model is experimentally supported by the fact the
bicoid mRNA shows a gradient [9]. It has been shown in
Dilão and Muraro [7] that the protein steady states for both
models have the same functional form, with parameters
assuming different biological meanings. In the following,
and without lack of generality, we assume the simple
mRNA diffusion model for the production of proteins of
BCD, HB and TLL.

In order to arrive at the steady state functional forms for
the distribution of BCD, HB and TLL proteins along the
antero-posterior axis of the Drosophila embryo, we follow
the mass action approach developed in Alves and Dilão
[19] and Dilão and Muraro [20]. We consider the following
kinetic diagrams for protein production:

bcd!pBCD
bcdþ BCD; bcd!dbcd
hb!pHB
hbþ HB; hb!dhb
tll!pTLL
tllþ TLL; tll!dtll

where capital letters represent proteins and the italic
letters the corresponding mRNAs. The constants pBCD, pHB

and pTLL are the protein production rates from mRNAs, and
dbcd, dhb and dtll are mRNA degradation rates. By the mass
action law, to the above kinetic diagrams correspond the
equations for the concentrations,

@bcd

@t
¼ �dbcdbcdðxÞ þ Dbcd

@2
bcd

@x2
(1)

@BCD

@t
¼ pBCDbcdðxÞ (2)
@hb

@t
¼ �dhbhbþ Dhb

@2
hb

@x2
(3)
@HB

@t
¼ pHBhb (4)

@tll

@t
¼ �dtlltllþ Dtll

@2
tll

@x2
(5)

@TLL

@t
¼ pTLLtll (6)

This system of differential equations describe the produc-
tion and distribution of proteins and mRNA along the
antero-posterior axis of the embryo of Drosophila. The
antero-posterior axis is described by the independent
coordinate x. The x-dependent diffusion terms do not
follow from the mass action law, but they have been added
in order to describe the diffusive motion of the mRNAs. The
diffusion constants of the mRNAs are Dbcd, Dhb and Dtll.

In order to solve the system of Eqs. (1)–(6), we now
define boundary and initial conditions. Denoting by L the
length of the embryo, we have that x2 [0, L]. Assuming zero
flux boundary conditions for mRNAs and proteins, we have,

@bcd

@x
ðx ¼ 0; tÞ ¼ 0;

@bcd

@x
ðx ¼ L; tÞ ¼ 0; (7)

@BCD

@x
ðx ¼ 0; tÞ ¼ 0;

@BCD

@x
ðx ¼ L; tÞ ¼ 0 (8)

@hb

@x
ðx ¼ 0; tÞ ¼ 0;

@hb

@x
ðx ¼ L; tÞ ¼ 0; (9)

@HB

@x
ðx ¼ 0; tÞ ¼ 0;

@HB

@x
ðx ¼ L; tÞ ¼ 0 (10)

@tll

@x
ðx ¼ 0; tÞ ¼ 0;

@tll

@x
ðx ¼ L; tÞ ¼ 0; (11)

@TLL

@x
ðx ¼ 0; tÞ ¼ 0;

@TLL

@x
ðx ¼ L; tÞ ¼ 0 (12)

for every t� 0. As initial conditions, we take the piecewise
constant functions,

bcdðx; t ¼ 0Þ ¼
B>0; i f 0< L1 < x< L2 < L

0; otherwise

8><
>:

BCD ðx; t ¼ 0Þ ¼ 0

hbðx; t ¼ 0Þ ¼
H>0; i f 0<M1 < x<M2 < L

0; otherwise

8><
>:

HB ðx; t ¼ 0Þ ¼ 0

tllðx; t ¼ 0Þ ¼

T1 >0; i f 0<N1 < x<N2 <N3

T2 >0; i f N3 < x<N4 < L

0; otherwise

8>>><
>>>:

TLLðx; t ¼ 0Þ ¼ 0

(13)

for every x2 [0, L]. The functions bcd(x, t = 0) and hb(x, t = 0)
describe the distribution of bcd and hb maternal mRNA in
the regions [L1, L2] and [M1, M2], respectively, of the antero-
posterior axis of the embryo of Drosophila. The function
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tll(x, t = 0) is the distribution of the tll mRNA in the region
[N1, N2] [ [N3, N4], and B, H, T1 and T2 are constants.

Equations (1)–(6), with boundary conditions (7)–(12),
and initial conditions (13) define the mRNA diffusion
model for BCD, HB and TLL production. This model is linear,
and the steady states BCDeq(x), HBeq(x) and TLLeq(x) can be
obtained explicitly [7]:
BCD
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Fig. 1. Dots and error bars represent the mean values and the standard

deviations of the concentration of the protein Bicoid (BCD) along the

antero-posterior axis of the embryo of Drosophila, at cleavage cycle 14A.

The fit has been obtained with the steady state solution defined in (14),

(17) and (21). The parameter values found in the fit are: L1 = 0.00,

L2 = 0.24, a1 = 186.83 and a2 = 8.18. The reduced chi-squared value of this

fit is x2
BCDð~p1Þ ¼ 0:13. The interval [L1, L2] is the region where mRNA bcd is

deposited by the mother’s ovary cells.
BCDeqðxÞ ¼ 2
a1

e2a2=L � 1
coshða2

x

L
Þðsinhða2

L2

L
Þ � sinhða2

L1

L
ÞÞ

þ a1

2
ðe�a2ðxþL1Þ=L � e�a2ðxþL2Þ=LÞ þ IbcdðxÞ (14)

HBeqðxÞ ¼ 2
a3

e2a4=L � 1
coshða4

x

L
Þðsinhða4

M2

L
Þ � sinhða4

M1

L
ÞÞ

þ a3

2
ðe�a4ðxþM1Þ=L � e�a4ðxþM2Þ=LÞ þ IhbðxÞ (15)

TLLeqðxÞ ¼ 2
a5

e2a6=L � 1
coshða6

x

L
Þðsinhða6

N2

L
Þ � sinhða6

N1

L
ÞÞ

þ a5

2
ðe�a6ðxþN1Þ=L � e�a6ðxþN2Þ=LÞ þ I1tllðxÞ

þ2
a7

e2a8=L � 1
coshða8

x

L
Þðsinhða8

N4

L
Þ � sinhða8

N3

L
ÞÞ

þ a7

2
ðe�a8ðxþN3Þ=L � e�a8ðxþN4Þ=LÞ þ I2tllðxÞ (16)

where,

IbcdðxÞ ¼

a1

2
ðe�a2ðL1�xÞ=L � e�a2ðL2�xÞ=LÞ; i f x< L1

a1 �
a1

2
ðe�a2ðx�L1Þ=L þ e�a2ðL2�xÞ=LÞ; i f L1 � x � L2

a1

2
ðe�a2ðx�L2Þ=L � e�a2ðx�L1Þ=LÞ; i f x> L2

8>>>><
>>>>:

(17)

IhbðxÞ¼

a3

2
ðe�a4ðM1�xÞ=L � e�a4ðM2�xÞ=LÞ; i f x<M1

a3�
a3

2
ðe�a4ðx�M1Þ=L þ e�a4ðM2�xÞ=LÞ; i f M1 � x�M2

a3

2
ðe�a4ðx�M2Þ=L � e�a4ðx�M1Þ=LÞ; i f x>M2

8>>>><
>>>>:

(18)

I1tllðxÞ¼

a5

2
ðe�a6ðN1�xÞ=L � e�a6ðN2�xÞ=LÞ; i f x<N1

a5 �
a5

2
ðe�a6ðx�N1Þ=L þ e�a6ðN2�xÞ=LÞ; i f N1 � x� N2

a5

2
ðe�a6ðx�N2Þ=L � e�a6ðx�N1Þ=LÞ; i f x>N2

8>>>><
>>>>:

(19)
I2tllðxÞ¼

a7

2
ðe�a8ðN3�xÞ=L � e�a8ðN4�xÞ=LÞ; if x<N3

a7 �
a7

2
ðe�a8ðx�N3Þ=L þ e�a8ðN4�xÞ=LÞ; if N3 � x � N4

a7

2
ðe�a8ðx�N4Þ=L � e�a8ðx�N3Þ=LÞ; if x>N4

8>>>><
>>>>:

(20)

and,

a1 ¼ B
pBCD

dbcd
; a2

2 ¼ dbcd
L2

Dbcd
(21)

a3 ¼ H
pHB

dhb
; a2

4 ¼ dhb
L2

Dhb
(22)

a5 ¼ T1
pTLL

dtll
; a2

6 ¼ dtll
L2

Dtll
(23)

a7 ¼ T2
pTLL

dtll
; a2

8 ¼ dtll
L2

Dtll
(24)

Note that a6 = a8.
The steady states for the gradients of proteins BCD, HB

and TLL are given by Eqs. (14)–(24). For the calibration of
equations (14)–(24) with the experimental data, we have
taken from the FlyEx database the mean antero-posterior
distributions of the proteins BCD, HB and TLL. These
distributions have been calculated from the individual
spatial distributions measured in 954 different embryos.
These distributions are assumed to correspond to a steady
state and, in the case of HB, the steady state is assumed to
be established at the end of cleavage cycle 13. For the BCD
and the TLL proteins, the steady state distribution
corresponds to the beginning of cleavage cycle 14A. In
Figs. 1–3, we show the mean values and the correspond-
ing standard deviations of the gradients of proteins BCD,
HB and TLL along the antero-posterior axis of the embryo
of Drosophila. In these figures, all the embryos have been
scaled to the length L = 100.

To fit the experimental data of BCD, HB and TLL with
(14)–(24), we have used an evolutionary search algo-[()TD$FIG]

ies 333 (2010) 779–788
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Fig. 2. Dots and error bars represent the mean values and the standard

deviations of the concentration of the protein Hunchback (HB) along the

antero-posterior axis of the embryo of Drosophila, at the end of cleavage

cycle 13. The fit has been obtained with the steady state solution defined

in (15), (18) and (22). The parameter values found in the fit are: M1 = 0.04,

M2 = 0.47, a3 = 85.09 and a4 = 16.36. The reduced chi-squared value of this

fit is x2
HBð~p2Þ ¼ 0:02. The interval [M1, M2] is the region where mRNA hb is

deposited by the mother’s ovary cells.
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rithm (see § 3.1), and the choice of parameters has been
done by minimizing the reduced chi-square functions,

x2
BCDð~p1Þ ¼

1

n

Xn

i¼1

ðBCD eqðxi; ~p1Þ � BCD meanðxiÞÞ
2

BCD s2 ðxiÞ

x2
HBð~p2Þ ¼

1

n

Xn

i¼1

ðHB eqðxi; ~p2Þ � HB meanðxiÞÞ
2

HB s2 ðxiÞ

x2
TLLð~p3Þ ¼

1

n

Xn

i¼1

ð TLL eqðxi; ~p3Þ � TLL meanðxiÞÞ
2

TLL s2 ðxiÞ

(25)

where ~p1 ¼ ðL1; L2; a1; a2Þ is the vector of the free
parameters for the BCD production model, ~p2 ¼
ðM1;M2; a3; a4Þ is the vector of the free parameters for
the HB production model, and

~p3 ¼ ðN1;N2;N3;N4; a5; a6; a7; a8Þ
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Fig. 3. Dots and error bars represent the mean values and the standard

deviations of the concentration of the protein Tailless (TLL) along the

antero-posterior axis of the embryo of Drosophila, at cleavage cycle 14A.

The fit has been obtained with the steady state solution defined in (16),

(19), (20), (23) and (24). The parameter values found in the fit are:

N1 = 0.10, N2 = 0.19, N3 = 0.86, N4 = 0.97, a5 = 49.05, a6 = 39.56, a7 = 175.83

and a8 = 30.33. The reduced chi-squared value of this fit is x2
TLLð~p3Þ ¼ 0:03.
is the vector of the free parameters for the TLL production
model. The functions BCDmean(x), HBmean(x) and TLLmean(x)
are the mean values of the protein concentrations along
the antero-posterior axis of the embryo, and the functions
BCDs2 ðxÞ, HBs2ðxÞ and TLLs2 ðxÞ are the associated standard
deviations. In the fits, we have assumed that a6 and a8 are
independent parameters and we have taken n = 100. This
assumption gives more plasticity to the data fitting and is
based on the assumption that the goal of the fits is to find
an accurate fitting function for TLL. The protein TLL is
activated by the maternal origin protein Torso and this
mechanism is not considered here [6]. The results of the
three calibrations are shown in Figs. 1–3, and the fitted
parameter values are listed in the figure captions.

From the fits in Figs. 1–3, we conclude that the steady
state model describes well the distribution of proteins
predicted from the mRNAs with maternal origin. The
values of the reduced chi-squared test show that the
agreement between data and fits are very good. If a model
is successfully calibrated with experimental data, then it
corresponds, with some degree of plausibility, to the
mechanism that it pretends to describe.

Programs and software tools for evolutionary algo-
rithms optimization techniques and model construction
and analysis are available in the Supplementary material,
Dilão and Muraro [15].

We are now in condition to make the calibration and
validation of the gap-gene proteins HB and KNI.

2.2. Fitting the gap genes

To describe the production of gap-gene proteins, we
consider that BCD, HB and TLL proteins are in the steady
state with a gradient-like distribution along the antero-
posterior axis of the embryo of Drosophila, Figs. 1–3. We
consider that the production of the gap-genes proteins
begins at the cleavage cycle 14 and, at this stage, we do not
consider diffusion (assumptions 2)-4) in § 1). We expect
that the positional information is obtained by a threshold
mechanism associated with the mass action conservation
laws [19,20]. So, to model the gap-gene transcriptional
regulation of HB and KNI, we take as initial conditions the
antero-posterior distribution of BCD, HB and TLL, as found
in the previous section. Then, we build the regulatory
network following the mass action law strategy of Alves
and Dilão [19] and Dilão and Muraro [20].

The basic pattern of gap genes HB and KNI expression
pattern is due to strong mutual repression between these
genes. This complementarity is particularly clear in the
experimental data for the couple HB-KNI at cleavage cycle
14A-4, and has been confirmed in [21] and earlier results,
together with the repression of TLL over KNI, affecting the
posterior pole of the embryo.

The gap-gene genetic regulatory network involving HB
and KNI is displayed in Fig. 4. Associated with the
regulatory network of Fig. 4, we build the model for this
genetic regulatory model based on the mass action law and
following the description of transcriptional regulation by
the operon model and developed in Alver and Dilão [19]
and Dilão and Muraro [20]. Using the Mathematica

software package GeneticNetworks.m, we obtain the
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Fig. 4. Genetic regulatory network graph associated with the cross

regulation of the proteins HB and KNI in Drosophila early development.

The protein KNI is activated in the embryo by BCD. HB has a maternal

origin and is also regulated by BCD. Both KNI and zygotically produced HB

repress each other. In Fig. 2, we show the distribution of HB at the end of

the maternal phase, before considering the regulation by BCD as

described in this genetic network graph.
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Fig. 5. Dots and error bars represent the mean values and the standard

deviations of the concentration of the proteins Hunchback (HB) and

Knirps (KNI) along the antero-posterior axis of the embryo of Drosophila,

at the end of cleavage cycle 14A. The fit has been obtained by a multi-

objective optimization technique as described in § 3.3. The continuous

lines correspond to the differential equation model solutions ahbHB(x, t*)

and akniKNI(x, t*), away from the steady state t*<1), and for a particular

set of parameter values localized on the Pareto front of the bi-objective

optimized solution. In this case, the fitted value of time is t* = 10 s, and the

fitted proportionality constants have the values ahb = 0.1 and akni = 2.0.

The penalized chi-squared values, (27), of these fits are x2
HBð~p4Þ ¼ 0:28

and x2
KNIð~p4Þ ¼ 0:50, where p4 is the vector of the parameters that have

been fitted. In this case, P = 23. This fit shows that the genetic regulatory

network of Fig. 4 describes well the HB distribution away from the

posterior tip of the embryo of Drosophila, x> 80, as well as the

distribution of KNI away from the anterior pole of the embryo, x> 20.
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equations describing the time evolution of the gap-gene
protein concentrations. These differential equations in-
volve the concentration of the proteins and of the gap
genes with the different biding sites occupied or not. In the
particular case of Fig. 4, the full system of ordinary
differential equations has 14 equations and 23 free
parameters (Supplementary file S1).

In order to test the validity and completeness of the
genetic regulatory network in Fig. 4, we took from the
FlyEx database the experimental data of the distribution of
HB and KNI for the late cleavage cycle 14, and we have
integrated numerically in Mathematica the model equa-
tions generated by the GeneticNetworks.m software pack-
age. The free parameters on the model equations were
determined with a bi-objective optimization technique (§
3.3), minimizing the mean squared deviations between the
model solutions and the experimental data (27). Denoting
by HB(x, t) and KNI(x, t) the solutions of the model
equations, we have fitted the experimental data for the
antero-posterior distribution of HB and KNI with the
functions ahbHB(x, t) and akniKNI(x, t), where ahb and akni

are proportionality constants. The introduction of the
proportionality constants ahb and akni is due to the fact that
experiments do not correspond to a direct measurement of
local protein concentration, but it is proportional to protein
concentration. These proportionality constants change
from one protein to another. With these two additional
proportionality constants and time as a free parameter, we
have fitted the 23 parameters of the model with a bi-
objective optimization technique and we have calculated
the associated Pareto front in the reduced chi-squared
space.

In Fig. 5, we show the data for HB and KNI and the
corresponding fits. From the fits, it is clearly shown that the
genetic regulatory network of Fig. 4 describes well the HB
distributions away from the posterior tip of the Drosophila

embryo, x< 80. The distribution of the KNI protein is also
well described away from the anterior tip of the embryo,
x> 20. On the other hand, complementarity of the proteins
HB and KNI in the middle region of the embryo is observed.
This fact suggests that there are other proteins that
regulate the anterior and the posterior regions of the
embryo. For the case of regulation of the production of HB
in the posterior region of the embryo, a plausible candidate
is the Huckebein (HKB) protein, Margolis et al. [12].

In order to analyze the distribution of HB near the
posterior region of the embryo, there is experimental
evidence that Huckebein (HKB) protein has a band near the
posterior pole of the embryo, repressing the zygotic
production of HB. Therefore, we introduce HKB in the
gap-gene regulatory network as in Fig. 6. As there is
experimental evidence that HKB represses the production of
HB near the posterior pole of the embryo, we assume a band
type localization of HKB near the posterior tip of the embryo.

Following the same steps as in the modeling of the
previous section § 2.1, we assume that the HKB protein is
localized with the following steady state distribution:

HKBeqðxÞ ¼ 2
b1

e2b2=L � 1
coshðb2

x

L
Þðsinhðb2

P2

L
Þ � sinhðb2

P1

L
ÞÞ

þ b1

2
ðe�b2ðxþP1Þ=L � e�b2ðxþP2Þ=LÞ þ IbcdðxÞ (26)

where P1, P2, b1 and b2 are constants to be fitted and
have the same meaning as the constants in the BCD
equilibrium distribution (14). Under these conditions,
we have derived with the software package GeneticNet-

works.m a new set of equations associated with the
graph of interactions of Fig. 6 (Supplementary file S1).
We have assumed that HKB is distributed according (26)
and, to find the parameter values for the new model, we
have done a bi-objective optimization analysis for the
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Fig. 7. Dots and error bars represent the mean values and the standard

deviations of the concentration of the proteins Hunchback (HB) and

Knirps (KNI) along the antero-posterior axis of the embryo of Drosophila,

at the end of cleavage cycle 14A. Due to the lack of experimental data on

HKB its spatial experimental distribution is not represented. The fit has

been obtained by a bi-objective optimization technique for HB and KNI,

having also as free the parameters that describe the HKB distribution (26).

The continuous lines correspond to the differential equation model

solutions ahbHB(x, t*), akniKNI(x, t*) and HKBeq(x), for a particular set of

parameter values localized on the Pareto front of the bi-objective

optimized solution. In the case, the fitted value of time is t* = 29.1 s, and

the fitted proportionality constants have the values ahb = 0.11 and

akni= 0.65. The penalized chi-squared value, (27), of this fit are x2
HBð~p5Þ ¼

0:14 and x2
KNIð~p5Þ ¼ 0:59, where p5 is the vector of the parameters that

have been fitted. In this case, P = 31. The parameter values found for the

prediction of the HKB distribution (26) are: P1 = 0.856, P2 = 0.873,

b1 = 296.74 and b2 = 121.87. The HKB distribution found in the fit

corroborates the existence of a stripe of the protein HKB near the

posterior pole of the embryo as suggested experimentally. This fit

supports the statement that the genetic regulatory network of Fig. 6

describes well the distribution of HB along all the antero-posterior axis of

the embryo of Drosophila.
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new model. As we have a bi-objective optimization
problem having as goals the HB and KNI antero-posterior
distribution, we have calculated the associated Pareto
front in the reduced chi-squared space. In Fig. 7, we
show one of the Pareto instances of the fit of the model
with the experimental data for HB and KNI. We show
also the fitted distribution of the protein HKB.

The quality of the fits in Figs. 5 and 7 were evaluated
from the penalized chi-square functions,

x2
HBð~pÞ ¼

1

n� P=2

Xn

i¼1

ðHBeqðxi; ~pÞ � HBmeanðxiÞÞ
2

HBs2 ðxiÞ

x2
KNIð~pÞ ¼

1

n� P=2

Xn

i¼1

ðKNIeqðxi; ~pÞ � KNImeanðxiÞÞ
2

KNIs2 ðxiÞ

(27)

where ~p is the vector of the free parameters for the
differential equation model and P is the dimension of the
vector ~p (P = 23 for Fig. 5, and P = 31 for Fig. 7).

From the fits in Fig. 7, we conclude that the
transcriptional cross repression of HB over KNI and the
transcriptional repression of HKB over HB describe well the
spatial distributions of the HB protein along all the antero-
posterior axis of the embryo of Drosophila. This result also
predicts the approximate distribution of the protein HKB.
However, the distribution of the KNI protein is not well
fitted in the anterior region x< 20, suggesting the
existence of an addition regulation mechanism.

Another important conclusion common to both fits is
that gap-gene protein expression is a dynamic process
with a very fast expression time, of the order of 30 s (Fig.
7). This expression time is calculated relative to the
beginning of cleave stage 14A.

Programs and software tools for multi-objective opti-
mization techniques and Pareto front solutions are
available in the Supplementary material [15].

3. Materials and methods

In this section, we briefly describe the algorithms that
we have applied to calculate the parameters that best fit
the experimental data to the model equations generated
by the Mathematica software package GeneticNetworks.m.
These algorithms are based on the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) approach, an
evolutionary algorithm for black-box continuous optimi-
zation [22,23]. The first algorithm is for single-objective
optimization, used in § 2.1, and will be referred by CMA-ES.
The second algorithm is the multi-objective version of
CMA-ES, used in § 2.2, and uses several CMA-ES processes
together with a global Pareto-dominance based selection
[24]. In a maximization or a minimization problem, there is
a fitness function relative to which an optimization is
found. In multi-objective optimization problems, there are
several fitness functions, and in general when we optimize
in order to a fitness function, we are worsening in order to
the other fitness function. Pareto optimization is a way of
obtaining optimal solutions that, in a certain sense, are not
dominated by other solutions.

3.1. Single-objective optimization: CMA-ES

CMA-ES is an evolutionary algorithm that uses a
population of m parents to generate l offspring, and
deterministically selects the best m of those l offspring for
the next generation. In this contexts of parameter
optimization, parents and offsprings refer to points in
the high-dimensional space of parameters.
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Fig. 8. Pareto front for the fit of HB and KNI proteins of Fig. 5. In this bi-

objective optimization problem, the coordinates of the fitness space are
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KNIð~pÞ, where the vector

of the parameters ~p is a parameterization of the Pareto front. These

functions have been calculated as in (25). The cross represents the

particular instance of the parameter values of Fig. 5. The circles represent

the two other instances of the HB and KNI fits that are shown in Fig. 9.
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The parameter identification search problem is done as
follows: We take a compact subset X of the parameter
space S. The number of the parameter to be identified is the
dimension of S. Set an initial point p0 2 X� S and let C = In

be a covariance matrix, where In is the n� n identity
matrix. Then, from the multivariate Gaussian distribution
with covariance matrix C and mean value p0, sample l
offsprings. For each offspring or set of parameter values
calculate the solution of the model equations and then
calculate the fitness function, in our case the, chi-squared
distributions (25). From the best m (< l) offsprings,
according to the fitness function, recalculate a new mean
value p0 and a new (unbiased estimator) covariance matrix
C, and repeat the procedure. After several iterations, the
best individual ever found is a candidate for the best choice
of parameters. For details see Hansen and Ostermeier [22]
and Hansen [23]. The parameter values of the maternal
protein distributions in Figs. 1–3 have been determined
according to this technique.

3.2. Pareto optimization

Pareto optimization is concerned with the finding of the
set of optimal trade-offs between conflicting objectives.
Namely, Pareto solutions of a multi-objective problem are
optimized solutions such that the value of one-objective
cannot be improved without degrading the value of at least
another objective. Such best compromises are what is
called the Pareto set of the multi-objective optimization
problem.

Pareto optimization is based on the notion of dominance.
Consider a minimization problem with M real valued
objective functions f = (f1, . . ., fM) defined on a subset
X�Rn. A solution of the optimization problem x̄2X is said to
dominate another solution x2 X, denoted by x̄� x, if,

8m 2 f1; . . . ;Mg :
ð f mðx̄Þ � f mðxÞÞ ^ 9m2f1; . . . ;Mg : f mðx̄Þ< f mðxÞð Þ:

The Pareto set of an optimization problem is the set of non-
dominated solutions of a minimization (maximization)
problem. More formally,

Pareto set ¼ fx : ðx2XÞ ^@ x̄2X : x̄� xg:

The Pareto front is the image of the Pareto set in the fitness
space,

Pareto front ¼ f f ðxÞ : ðx2XÞ ^@ x̄2X : x̄� xg:

The goal of Pareto optimization is to find the Pareto set

of optimized parameters and the Pareto front. Therefore, in
a multi-objective approach, the natural choice for unbiased
parameter estimation is the determination of the Pareto
set of a given optimization problem. In this set, all the
solutions are optimized solutions. The distributions of the
gap-gene proteins HB and KNI in Figs. 5 and 7 correspond
to parameter values on a Pareto set of the bi-objective
optimization problem. In general, all the solutions on the
Pareto set are equally acceptable [8].
3.3. Multi-objective optimization: MO-CMA-ES

The Multi-Objective CMA-ES (MO-CMA-ES) optimiza-
tion technique is based on the specific CMA-ES algorithm
with a random choice of a large number of initial points in
the search parameter space [24]. Once defined the
multidimensional parameter search space X, we proceed
with the multi-objective optimization technique to deter-
mine the Pareto set and Pareto front of the two fitting
problems of § 2.2. The MO-CMA-ES techniques can be
divided in three steps:
1) In
 the compact search space X, choose randomly m
parents. For each parent, one offspring is generated with
the CMA-ES algorithm. Initially, the CMA-ES algorithm
is implemented with the identity as covariance matrix.
2) W
e now rank the best m individuals from the set of 2m
individuals found previously. For that we use the
concept of Pareto dominance. From the 2m individuals,
we select the set of all the non-dominated individuals
and we give them rank 1. We apply the same procedure
to the remaining individuals and we obtain the rank 2
individuals [25]. This procedure continues until a last
rank is reached.
3) In
 order to rank the individuals within the same rank of
non-dominance foundpreviously,wedoasecondranking
of individuals within each rank. This second orderranking
is done according to an hypervolume measure in the
objective space [26]. After this new ranking, we retain
only the best m individuals. With this procedure, we
obtain an approximation to the Pareto front with an
approximately uniform distribution of individuals within
each rank. Then, we repeat these three procedures until a
good converge to the Pareto front is achieved.

In Fig. 8, we show the Pareto front for the bi-objective
optimization problem associated with the parameter
identification describing the distribution of HB and KNI
as shown in Fig. 5. We show the position of the fit of Fig. 5
(cross) in the Pareto front of Fig. 8. In Fig. 9, we show two[()TD$FIG]
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Fig. 9. Two instances of the fit of HB and KNI in the Pareto front, represented by circles in Fig. 8. In a, we have the best fit for HB and the worst fit for KNI. In b

we have the worst fit HB and the best fit for KNI. As it is seen, all these fits are acceptable for parameter calibration and validation of models. The parameter

values are listed in the Supplementary file S1.
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other instances (circles) of the fits of HB and KNI proteins
on the Pareto front. Comparing the three fits, we conclude
that they are all acceptable.

In Fig. 10, we show the Pareto front for the fit of Fig. 7
and we mark the particular instance of the parameters of
Fig. 7 (cross).

In all the cases shown here, we conclude that the
experimental data are optimally realized by an infinite set
of parameters. This is particularly important in biology in
the case of selection pressure affecting simultaneously
several phenotypic characteristics of organisms.

4. Conclusions and final remarks

In order to describe the expression of the gap-gene
protein Hunchback along the antero-posterior axis of the
embryo of Drosophila, we have analyzed a genetic
regulatory network model for the proteins HB and KNI
and we have calibrated the experimental data with the
model predictions. In the most complete version of the
model of Fig. 6, we have shown that the distribution of HB
along the antero-posterior axis of the embryo are in fact
well described by a cross regulation mechanism between
HB and KNI together with the transcriptional repression of
HKB over HB. We have predicted the distribution of HKB in
the form of a localized stripe near the posterior tip of the
embryo. This same genetic regulatory network fails to
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Fig. 10. Pareto front for the fit of Hunchback, Knirps and Huckebein

proteins of Fig. 7. The cross represents the particular instance of the

parameter values of Fig. 7.
predict the distribution of KNI near the anterior pole of the
embryo suggesting the existence of an additional regula-
tion mechanism. In this approach, gap-gene proteins do
not diffused along the embryo. Recently [27] obtained a
similar prediction of the localization of the HKB protein,
additionally regulated by the proteins Giant and Caudal
and Krüppel. These authors considered that gap-gene
proteins diffuse along the antero-posterior axis of the
Drosophila embryo.

Another important conclusion we have obtained is that
the antero-posterior patterns of gap-gene proteins are
obtained as transient solutions of an ordinary differential
equation model, with diffusion playing no role at the level
of gap-gene protein expression patterns. With this
approach, diffusion is only relevant for the establishment
of gradients for proteins produced from mRNA with
maternal origin. The patterning obtained along the embryo
results from the differences in concentrations of the
maternal proteins of the embryo.

The calibration and validation of the genetic regulatory
network models have been done with evolutionary
algorithm techniques for parameter identification. We
have used single-objective and multi-objective techniques
within the evolutionary algorithms formalism, and we
have analyzed the usefulness of the concept of Pareto
optimization in biology. Due to similarities between the
fits and the experimental data, it is plausible to think that,
in the presence of several objectives, the number of
possible parametric solutions of a given problem is not
unique, producing an infinite set of parameter instantia-
tions. In this framework, the Pareto set and the Pareto front
are the correct approach to analyze these problems. In the
case of selection pressure on organisms affecting simulta-
neously several phenotypic characteristics, the Pareto type
solutions appear as the right quantitative approach to
quantify phenotypic variability.

In the most difficult case of the multi-objective
optimization problem analyzed here, we have fitted 31
parameters in a system of ordinary differential equations
with 18 independent variables, and we have implemented
these algorithms in a grid computing environment. In the
Supplementary material of this paper, we list all the
algorithms and all the associated C files developed under
this framework [15]. These techniques are general and can
be used in other parameter identification problems.
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