

Contents lists available at ScienceDirect

Comptes Rendus Biologies

www.sciencedirect.com

Molecular biology and genetics/Biologie et génétique moléculaires

Molecular genetic diversity and population structure in *Lycium* accessions using SSR markers

Wei-Guo Zhao^{a,b}, Jong-Wook Chung^a, Young-Il Cho^a, Won-Hee Rha^a, Gi-An Lee^c, Kyung-Ho Ma^c, Sin-Hee Han^d, Kyong-Hwan Bang^d, Chung-Berm Park^d, Seong-Min Kim^a, Yong-Jin Park^{a,*,e}

^a Department of Plant Resources, College of Industrial Science, Kongju National University, Yesan 340-702, Republic of Korea

^b Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Jiangsu University of Science and technology, Zhenjiang Jiangsu 212018, China

^c National Agrobiodiversity Center, National Institute of Agricultural Biotechnology, RDA, Suwon 441-707, Republic of Korea

^d Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA, Suwon 369-873, Republic of Korea

^e Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702, Republic of Korea

ARTICLE INFO

Article history: Received 21 July 2010 Accepted after revision 6 October 2010 Available online 13 November 2010

Keywords: Lycium chinense Mill. Molecular diversity Population structure Simple sequence repeats (SSRs)

ABSTRACT

This study was conducted to assess the genetic diversity and population structure of 139 *Lycium chinense* accessions using 18 simple sequence repeat (SSR) markers. In total, 108 alleles were detected. The number of alleles per marker locus ranged from two to 17, with an average of six. The gene diversity and polymorphism information content value averaged 0.3792 and 0.3296, with ranges of 0.0793 to 0.8023 and 0.0775 to 0.7734, respectively. The average heterozygosity was 0.4394. The model-based structure analysis revealed the presence of three subpopulations, which was consistent with clustering based on genetic distance. An AMOVA analysis showed that the between-population component of genetic variance was less than 15.3%, in contrast to 84.7% for the within-population component. The overall F_{ST} value was 0.1178, indicating a moderate differentiation among groups. The results could be used for future *L. chinense* allele mining, association mapping, gene cloning, germplasm conservation, and designing effective breeding programs.

© 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The genus *Lycium L.* (*Solanaceae*) comprises approximately 70 species of spiny shrubs and small trees. The fruit of the *Lycium* species are all red in color, with very similar physical appearance and anatomical structure. Most species occur in arid and subarid regions, but some occur in subsaline regions or along the seacoast [1–3]. *Lycium chinense* Mill. and *Lycium barbarum* are perennial foliage

* Corresponding author.

plants endemic to Korea, Japan, and China and are widely used for medicinal purposes with a history of almost 2000 years' use [4,5]. *Lycii fructus, Lycii folium*, and *Lycii cortex* of *L. chinense* contain betaine, rutin, tocopherols, chlorogenic acid, kukoamine A, *b*-sitosterol, and various fatty acids [6– 8]. These plants, especially *L. chinense*, have been used to replenish the vital essence of the liver and kidney and to improve eyesight. Chinese physicians also prescribe them to strengthen muscles and bones [9].

L. chinense is well known as a key medicinal plant, and knowledge of germplasm genetic diversity and population structure are critical for its utilization in genotype identification and genetic improvement [10]. Traditionally, *L. chinense* genotypes have been authenticated by morphological and histological analyses. Recently, chemical analysis methods such as high-performance liquid chromatography have also been used for different *Lycium* species,

Abbreviations: SSR, Simple sequence repeat; PIC, Polymorphism information content; RAPD, Random amplified polymorphic DNA; SCAR, Sequenced characterized amplified regions; AMOVA, Analysis of molecular variance; UPGMA, Unweighted pair group method with arithmetic mean.

E-mail address: yjpark@kongju.ac.kr (Y.-J. Park).

^{1631-0691/\$ -} see front matter © 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crvi.2010.10.002

but these have failed to distinguish closely related species due to similar chemical compounds [11]. Peng et al. [12] established a Fourier-transform infrared spectroscopy method to identify seven species and three varieties of Lycium. With the rapid development of modern biological methods, identification of species relationships using traditional anatomical and physiochemical methods is being supplemented by DNA fingerprinting techniques. In recent years, DNA-based molecular markers, such as random amplified polymorphic DNA (RAPD), sequenced characterized amplified regions (SCAR), and chloroplast and internal transcribed spacer DNA sequences [4,13-18] have been used to authenticate the species and analyze genetic variation. Due to their high polymorphism, co-dominance, and reproducibility, microsatellite or simple sequence repeat (SSR) markers have proved to be highly efficient molecular tools for marker-assisted selection, the analysis of genetic diversity, population genetic analysis, tracking desirable traits in large-scale breeding programs, as anchor points for map-based gene cloning strategies, and for other purposes in various species. However, so far, only a minor attempt has been made to isolate and characterize L. chinense SSRs [19]. It is important to understand genetic variation and genetic structure for conservation and sustainable use of *Lycium* species. In the present study, we used the Structure software program [20] to evaluate the genetic diversity and population structure of 139 accessions of *L. chinense* using a set of 18 newly developed microsatellite markers. The information may provide a more rational basis for expanding the gene pool and for identifying materials harboring valuable alleles to improve *L. chinense*.

2. Materials and methods

2.1. Plant materials

One-hundred and thirty nine *L. chinense* accessions, originating from four different countries, were obtained from the National Genebank of the Rural Development Administration (RDA-Genebank), Republic of Korea. The samples were mainly from the Republic of Korea (120) and China (17). A description of the accessions used in this study is shown in Table 1.

2.2. SSR genotyping

A set of 18 highly polymorphic microsatellite markers enriched using a modified biotin-streptavidin capture

Table 1

List of the 139 Lycium chinense accessions used in this study and their model-based groupings.

S. no.	Cultivar name or collection region	Origin	Model-based Subpopulation ^a
1	Yuseong1	Korea	Admixture
2	Yuseong2	Japan	S1
3	Cheongyangjaerae	Korea	S2
4	Jinbujaerae	Korea	S2
5	Jindojaerae	Korea	S2
6	Keumsanjaerae	Korea	S2
7	Haenamjaerae	Korea	S3
8	Collected from China	China	S3
9	Collected from China	China	S1
10	Collected from China	China	S3
11	Myeonan	Korea	S1
12	Bulro	Korea	S1
13	Cheongdae	Korea	S1
14	Jangmyeong	Korea	S1
15	Cheongun	Korea	S1
16	Cheongyang6	Korea	S1
17	Cheongyang7	Korea	S2
18	CL129-145	Korea	S1
19	CL124-23	Korea	S1
20	CL129-161	Korea	S1
21	CL7-20	Korea	S2
22	CL32	Korea	S1
23	CB01185-27	Korea	S1
24	Collected from China	China	S3
25	Collected from China	China	S3
26	Collected from China	China	S3
27	Collected from China	China	S2
28	Collected from China	China	S1
29	Collected from China	China	S1
30	Collected from China	China	S2
31	Collected from China	China	S3
32	CL2-32	Korea	S2
33	CL105-84	Korea	S1
34	CL15-106	Korea	S1
35	CL31-83	Korea	Admixture
36	CL37-4	Korea	Admixture
37	CL42-17	Korea	S1
38	CL123-575	Korea	S2
39	B0148-10	Korea	S1

Table 1 (Continued)

S. no.	Cultivar name or collection region	Origin	Model-based Subpopulation ^a
40	CI 54-36	Korea	<u>\$1</u>
40	CL54-82	Korea	Admixture
42	CL58-83	Korea	S2
43	CL47-157	Korea	S2
44	CL57-157	Korea	S1
45	CB01191-53	Korea	S2
46	CL60-1	Korea	S1
47	CL70-21	Korea	S2
48	CL70-177	Korea	S2
49	CL81-30	Korea	S1
50	CB01193-23	Korea	Admixture
51	CB01128-120	Korea	Admixture
52	CB01188-333	Korea	S1
53	Yuseong2(S)60Co32kr-3	Korea	S1
54	CL3-21	Korea	S2
55	CL31-15	Korea	S3
56	CL32-13	Korea	52
57	CB04329-114	Korea	51
58	CB04329-13	Korea	51
59	99148-10 C0148-04	Korea	52
61	D0148-54	Korea	51
62	B0148-72 B0148-43	Korea	52 S1
63	B0148-78	Korea	S1
64	Y0148-2	Korea	\$3
65	CL129-45	Korea	S1
66	CB00146-176	Korea	S3
67	CB00148-46	Korea	S1
68	CB01200-162	Korea	S1
69	CB00153-8	Korea	S1
70	CL137-65	Korea	S2
71	CB00156-101	Korea	S3
72	CB00159-140	Korea	S1
73	CB00171-1	Korea	S2
74	CB00169-37	Korea	S1
75	CB00169-109	Korea	S1
76	CL138-92	Korea	S2
//	CB001/1-189	Korea	52
/8 70	CI 120 16	Korea	51
79 80	CP00164 206	Korea	52
81	CB00130-345	Korea	S1
82	CI 137-65	Korea	\$2
83	CL137-39	Korea	S1
84	Collected from Mongolia	Mongolia	S3
85	Landrace1 (Chengyang)	Korea	Admixture
86	Landrace2 (Chengyang)	Korea	S2
87	Landrace3 (Kongju)	Korea	S2
88	Landrace4 (Kongju)	Korea	S2
89	Landrace5 (Boryeong)	Korea	S2
90	Landrace6 (Wando)	Korea	S2
91	Landrace7 (Munkyeong)	Korea	S2
92	Landrace8 (Munkyeong)	Korea	S2
93	Landrace9 (Sancheong)	Korea	S2
94	Landrace10 (Sancheong)	Korea	53
95	Landrace II (Yeongcheon)	Korea	52
96	Landrace12 (Yeongcheon)	Korea	52
97	Landrace14 (Coseong)	Korea	52
99	Landrace15 (Pyeongchang)	Korea	52
100	Landrace17 (Pyeongchang)	Korea	S2 S2
101	Collected from China	China	S1
102	Collected from China	China	S3
103	CB01191-53	Korea	S2
104	CB01191-36	Korea	S1
105	CB01204-287	Korea	S1
106	CB01210-12	Korea	S1
107	CB01208-228	Korea	S2
108	Collected from China	China	S3
109	Collected from China	China	S3
110	CB02214-11	Korea	S1

 Table 1 (Continued)

S. no.	Cultivar name or collection region	Origin	Model-based Subpopulation ^a
111	Collected from China	China	S3
112	Collected from China	China	S3
113	CB03282-102	Korea	S1
114	CB02214-111	Korea	S1
115	CB02214-131	Korea	S1
116	CB01185-20	Korea	S1
117	CB03286-89	Korea	Admixture
118	CB03289-172	Korea	S2
119	CBP03310-250	Korea	S1
120	Cheongyang8	Korea	S1
121	Cheongyang9	Korea	S3
122	CBP03302-5	Korea	S1
123	99797	Korea	Admixture
124	99892	Korea	S1
125	Cheongyang13	Korea	S1
126	Cheongyang14	Korea	S1
127	CBP05400-2	Korea	Admixture
128	CBP05400-4	Korea	S1
129	Hwaboon	Korea	S1
130	99148-10	Korea	S2
131	99412-1	Korea	S2
132	B0148-43	Korea	S1
133	B0148-78	Korea	S1
134	D0148-62	Korea	S2
135	D0148-72	Korea	S2
136	C0148-74	Korea	S1
137	C0148-120	Korea	S1
138	Y0148-2	Korea	S3
139	Y0148-24	Korea	S3

^a As defined by the program STRUCTURE.

method as described earlier [19] was used for the present study (Table 1). A three-primer system [21] including a universal M13 oligonucleotide (TGTAAAACGACGGCCAGT) labeled with one of the fluorescent dyes (6-FAM, NED, or HEX) was used, which allows PCR products to be triplexed during electrophoresis. A special forward primer composed by the concatenation of the M13 oligonucleotide and the specific forward primer was used with the normal reverse primer for SSR PCR amplification. Primer sequences and PCR amplification conditions for each set of primers have been described previously [19]. SSR alleles were resolved on an ABI PRISM 3100 DNA sequencer (Applied Biosystems, Foster City, CA, USA) using GENES-CAN 3.7 software and were sized precisely using GeneScan 500 ROX (6-carbon-X-rhodamine) molecular size standards (35-500 bp) with GENOTYPER 3.7 software (Applied Biosystems).

2.3. Data analysis

The number of alleles, gene diversity (GD), heterozygosity (H), and polymorphism information content (PIC) per locus as well as the genetic distance were calculated with the PowerMarker 3.25 program [22]. The unweighted pair group method with an arithmetic mean (UPGMA) tree from shared allele frequencies was constructed using the MEGA 4.0 program [23], which is embedded in Power-Marker.

The possible population was analyzed using the Structure 2.2 model-based program [20] with a burn-in of 10,000, a run length of 150,000, and a model allowing for an admixture and correlated allele frequencies. Five runs of

Structure were performed by setting the number of populations (*K*) from 1 to 12, and an average likelihood value, L(K), was calculated for each *K* across all runs. The model choice criterion to detect the most probable value of *K* was ΔK , which is an ad hoc quantity related to the second order change of the log probability of data with respect to the number of clusters inferred by Structure [24].

The molecular variance for model-based subgroups, F_{ST} , and the correlation of alleles within subpopulations were calculated using an analysis of molecular variance (AMOVA) approach in the Arlequin 3.11 program [25].

3. Results

3.1. SSR polymorphism

The 18 SSR markers revealed 108 alleles among the 139 L. chinense accessions representing the four countries (Table 1). The SSR loci diversity data are summarized in Table 2. The allelic richness per locus varied widely among the markers, ranging from two (GB-LCM-029; GB-LCM-111; GB-LCM-119; GB-LCM-199) to 17 (GB-LCM-022) alleles (average, six alleles). The frequency of major alleles per locus varied from 0.254 (GB-LCM-167) to 0.959 (GB-LCM-092). The allelic frequency database showed that rare alleles (frequency < 0.05) comprised 63.9% of all alleles, whereas intermediate (frequency of 0.05-0.50) and abundant alleles (frequency > 0.50) comprised 23.1 and 13.0% of all detected alleles, respectively. These results indicated the presence of a relatively large proportion of rare alleles, and most alleles were at a low frequency among the L. chinense accessions studied (Fig. 1). The high

Table 2

Total number of alleles and the genetic diversity index for 18 simple sequence repeat (SSR) loci in the 139 Lycium chinense accessions.

Locus	GeneBank accession	Primers	N_{G}	N _A	M_{AF}	N_R^a	GD	Н	PIC
GB-LCM-004	FJ487889	F: ACATTTTGAATCTCCCCGT	4	4	0.801	2	0.3307	0.3971	0.2960
		R: GGGAATCAAGATCAATAGTCA							
GB-LCM-022	FJ487891	F: AAGACAGCACGCCAAAAA	21	17	0.788	15	0.3716	0.2793	0.3629
		R: TGTATGATCCCTAAGTCCCG							
GB-LCM-025	FJ487892	F: TGGATGGTCTATGCATGTTG	2	3	0.500	1	0.5142	1.0000	0.3962
		R: AGCCACCCCCAACTAAAA							
GB-LCM-029	FJ487893	F: CTGCTTAAACGATTGCCG	2	2	0.939	0	0.1148	0.1223	0.1082
		R: CAAGCCACCAAACCTTCA							
GB-LCM-037	FJ487894	F: GTGTGTGGGGGTCTGAGC	3	3	0.563	1	0.4954	0.0074	0.3763
		R: GAAAGAGCCCAATGCAAA							
GB-LCM-044	FJ487895	F: TCTCCTTCGGACCCATTT	8	7	0.817	5	0.3111	0.1655	0.2816
		R: CAAAGTCACAACGTCGCA							
GB-LCM-075	FJ487896	F: CTCCTGAATACCCTGGGC	19	16	0.597	13	0.5632	0.6855	0.5048
		R: TTGGCATAAGGTGCTCGT							
GB-LCM-087	FJ487897	F: TTATCGTTGATGGTGGGG	7	7	0.903	6	0.1818	0.1799	0.1769
		R: AGAAGAAGCAGCAGCACG							
GB-LCM-092	FJ487898	F: TTTGGAATGAAACGACGG	5	3	0.959	2	0.0793	0.0410	0.0775
		R: GGATCCACAGATTCATCACC							
GB-LCM-104	FJ487899	F: GCCAAAAGAAGGAATGGG	3	3	0.814	1	0.3056	0.3723	0.2631
		R: ACACCCCCGAGACTTAGC							
GB-LCM-111	FJ487900	F: AATGTACATCGCCCCA	2	2	0.888	0	0.1982	0.2230	0.1785
		R: CGAGCTAAATCTCGAGGG							
GB-LCM-119	FJ487901	F: GATTCAGGCCGAATGAGA	2	2	0.511	0	0.4998	0.9784	0.3749
		R: GATTCGGAGCCTGCTTTT		_		_			
GB-LCM-120	FJ487902	F: CGTGACTAGTGCCCGAAC	6	7	0.928	6	0.1366	0.1367	0.1331
		R: CACATGGCGTATGGACAA							
GB-LCM-145	FJ487903	F: CCIGAGAGCIGAIGIGGC	4	3	0.547	1	0.5190	0.8898	0.4100
an 1 an 1 a a	FX 40 F 0 0 4	R: IGTAIGAICCCACICGCC							
GB-LCM-166	FJ487904	F: CITGAAGATGGAGGAAAGCA	6	4	0.489	1	0.5569	0.9474	0.4580
		R: AGGAGGAGAAGGGGGGAAG							
GB-LCM-167	FJ487905	F: CCATTIGCACCACAAAGG	28	15	0.254	11	0.8023	0.8551	0.7734
CD 1 CM 100	FI 405005	R: CCCAAAATTAAAGGGGGCA	2		0.005	0	0.0007	0 0 0 0 0	0.4000
GB-LCM-199	FJ487907		2	2	0.885	0	0.2037	0.2302	0.1830
CD LON 017	FI 407000	R: TAAGGGCCCTCTTCAACG		0	0.470		0.0440	0 0005	0.5705
GB-LCM-217	FJ487908	F: CIGCIIAAACGAIIGCCG	14	8	0.470	4	0.6418	0.3985	0.5785
		K: GAGCAAGCGCAACACITT							
Total			138	108		69			
Mean			7.7	6		3.8	0.3792	0.4394	0.3296

 N_{G} , genotype number; N_{A} , number of alleles; M_{AF} , major allele frequency; N_{R} , number of rare alleles; GD, gene diversity; H, heterozygosity; PIC, polymorphic information content.

^a Alleles with a frequency less than 5%.

Fig. 1. Allele frequency histograms for the 108 alleles in the 139 *Lycium chinense* accessions.

frequency of rare alleles (36.3%) among *L. chinense* accessions (especially among Korean accessions) indicates that they make a greater contribution to the overall genetic diversity of the collection. Hence, it is important to include rare alleles to maximize the genetic variation in the gene bank collections and to utilize them for breeding. The values for heterozygosity ranged from 0.00 at GB-LCM-037 to 1.00 at GB-LCM-025 with an average of 0.439. The average gene diversity and PIC values were 0.3792 and 0.3296, with a range from 0.0793 (GB-LCM-092) to 0.8023 (GB-LCM-167) and from 0.0775 (GB-LCM-092) to 0.7734 (GB-LCM-167), respectively.

3.2. Population structure analysis

Effective conservation and management strategies for *L. chinense* accessions require a fundamental understanding of their population structure. The model-based

Fig. 2. (Log) Likelihood of the data (n = 139), L(K), as a function of K (the number of groups used to stratify the sample). For each K value, five independent runs (blue diamonds) were considered and data were averaged over the replicates.

clustering method was performed using all 139 accessions and 18 SSR markers [20]. At this level, individual proportions of membership in each group, estimated using the multi-allele data set, suggested the existence of some population structure. Estimated likelihood values for a given K in five independent runs vielded consistent results, but the distribution of L(K) did not show a clear mode for the true K (Fig. 2) due to expected behaviour when factors such as inbreeding and departures from Hardy-Weinberg equilibrium are present [26]. These factors could lead to an overestimation of the number of K populations. Thus, another ad hoc quantity (ΔK) was used to overcome the difficulty of interpreting the real K values [24]. ΔK was developed and tested under different simulation routines in which real population structure was present. ΔK showed a clear peak at the true value of K. In this study, the highest value of ΔK for the 139 accessions was K=3 (Fig. 3), which was consistent with

Fig. 3. Values of ΔK , with its modal value detecting a true *K* of the three groups (*K* = 3).

clustering based on the genetic distance (Fig. 4), so we choose a value of K = 3 for the final analysis. The relatively small value of the alpha parameter ($\alpha = 0.099$) indicates that most accessions originated from one primary ancestor, with a few admixed individuals [26]. As shown in Fig. 4, most of the accessions were clearly classified into one of the three subpopulations (S1-S3) including 65, 51, and 23 L. chinense accessions, respectively (Table 3). S1 consisted of 65 accessions, originating from three different countries but predominantly from Korea (60) and China (4). S2, with 51 accessions, consisted predominantly of Korean accessions (49), whereas the remaining accessions were from China (2). S3 consisted of 23 accessions, predominantly from China (11) and Korea (11) (Table 1). In addition to the accessions that were clearly assigned to a single population, i.e., greater than 70% of their inferred ancestry was derived from one of the model-based populations, 10 accessions (8.2%) in the sample were categorized with admixed ancestry (Fig. 4).

Fig. 4. Model-based ancestry for each of the 139 accessions based on the 18 simple sequence repeat (SSR) markers used to build the Q matrix.

Table 3

Comparisons among model-based populations with regard to average genetic diversity and population differentiation.

Inferred group	Diversity	Diversity				F _{ST} ^f			
	n ^a	$N_A{}^b$	GD ^c	H ^d	PIC ^e	1	2	Overall	
1	65	3.4	0.3350	0.4321	0.2902	-	-	-	
2	51	3.4	0.3107	0.4152	0.2679	0.2616	-	-	
3	23	4.7	0.4863	0.5222	0.4276	0.0849	0.1050	-	
Overall	139	6.0	0.3792	0.4394	0.3296	-	-	0.1178	

^a The number of accession.

^b Average number of allele.

^c Gene diversity.

^d Heterozygosity.

^e Polymorphic information content.

^f For AMOVA-based estimates, *P* < 0.005 for 100 permutations for all population comparisons.

4. Genetic diversity and differentiation in model-based populations

The amount and organization of genetic diversity differed (Table 3). Among the three model-based populations, the S3 subgroup contained a higher allelic richness and an average of 4.7 alleles per locus, while S1 and S2 had the same alleles. S3 also had the highest genetic diversity and PIC (gene diversity = 0.4863; PIC = 0.4276), followed by S1.

The overall AMOVA analysis revealed that 15.3% of the variation was due to differences among subpopulations, and the remaining 84.7% was due to differences within subpopulations. Pairwise estimates of F_{ST} indicated a different degree of differentiation among the three model-based populations, with values ranging from 0.0849 (between S1 and S3) to 0.2616 (between S1 and S2) (Table 3). The overall F_{ST} value was 0.1178, indicating moderate differentiation among the three groups.

5. Discussion

Traditional Chinese medicine has been used for thousands of years in China. Authentication of Chinese medicinal materials is an old but important issue. L. chinense is a key medicinal plant; pharmacological studies have demonstrated that it has a large variety of beneficial effects, such as reducing blood glucose and serum lipids, anti-aging, immunomodulating, anticancer, and anti-fatigue activities, and improvements in male fertility [8,27,28], but it is difficult to distinguish among the species using traditional morphological and histological analyses. Cheng et al. [13] investigated L. barbarum sold on the Taiwan market using RAPD analysis, and only two RAPD fingerprinting types were outlined, revealing low genetic diversity among the samples. Zhang et al. [14] developed the RAPD technique to distinguish L. barbarum from related Lycium species. Sze et al. [17] applied the SCAR marker to authenticate L. barbarum and its adulterants. Nevertheless, SSRs have become one of the most widely used molecular markers for various plant studies in recent years. In this study, we identified the genetic diversity and population structure of L. chinense accessions. The SSR loci newly developed by our group [19] were polymorphic and detected an average of 6.0 alleles per locus, with an average PIC value of 0.3296. The major allele frequency distribution was analyzed at each locus (Table 2). A high proportion of rare alleles might be of adaptive significance, so the capture and preservation of rare alleles and genotypes is an important objective of any conservation strategy [10]. The correlation analysis revealed that allelic richness was significantly and positively associated with the PIC value (r = 0.54, P < 0.05).

The SSRs revealed considerable genetic diversity in the 139 accessions with diverse origins (Fig. 5); the similarity coefficient levels ranged from 0.4287 to 1.0000, with an average value of 0.7614. The high level of genetic variation observed in this study among the different accessions revealed by SSRs reflected a high level of polymorphism at the DNA level.

The Structure program implements a model-based clustering method for inferring population structure using genotype data consisting of unlinked markers (Pritchard

Fig. 5. Unrooted neighbor-joining tree based on a Nei's genetic distance matrix among 139 accessions. The colors correspond to the model-based populations.

et al. [20]). The model does not assume a particular mutation process, and in most cases, the estimated log probability of the data does not provide a correct estimate of the number of clusters, *K* [24]. We observed in our simulations that as the real *K* is reached, *L*(*K*) continues to increase slightly at larger Ks plateaus, and the variance between runs increases (Fig. 2). The distribution of *L*(*K*) did not show a clear mode for the true *K*, but we found that ΔK did show a clear peak at the true value of *K* [24] (Fig. 3).

The model-based structure analysis used here revealed the presence of three populations (S1-S3). When clustering based on genetic distance and structure analyses based on the model were compared, similar patterns of accession groupings were discovered (Figs. 3 and 4). The degree of admixture, alpha (α = 0.0999), was inferred from the data. When alpha is close to zero, most individuals are essentially from one population or another, whereas when alpha is greater than one, most individuals are admixed [24]. The distribution of the 139 accessions, which shared at least 70% ancestry within one of the three inferred groups, is summarized in Table 1. In addition to the groups identified by this analysis, 8.2% of accessions showed evidence of mixed population ancestry. The mixture is likely the result of breeding, domestication history, and resource exchange, which have had large effects on diversity structure. The independent population histories of the groups have also shaped the gene pools. Because genetic variability is present in breeding programs, human-mediated gene flow may exist within a population due to breeding, resulting in a large amount of variation attributed to differences within groups (84.7%) rather than among the three inferred groups. A moderate differentiation existed among the three groups. The genetic diversity in each model-based population was also measured (Table 3). Within the subpopulation had lower allele number than among the population, but S3 had the highest genetic diversity and PIC.

Assessing genetic diversity and population structure is an essential component of germplasm characterization and conservation. The results derived from genetic diversity analyses could be used for designing effective breeding programs aimed at broadening the genetic bases of accessions.

Conflict of interest statement

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, "Molecular genetic diversity and population structure in *Lycium* accessions using SSR markers".

Acknowledgements

This study was supported by the agenda project (#2009010FT072045008) from the Rural Development Administration (RDA), the Republic of Korea.

References

- [1] C.L. Hitchcock, A monographic study of the genus *Lycium* of the western hemisphere, Ann. Missouri Bot. Gard. 19 (1932) 179–374.
- [2] A.T., Hunziker, South American Solanaceae: a synoptic survey, in: G.J. Hawkes, R.N. Lester, A.D. Skelding (Eds.), The Biology and taxonomy of the Solanaceae, Academic Press, London, 1979, pp. 49–85.
- [3] W.G. D'Arcy, Classification of Solanaceae, in: G.J. Hawkes, R.N. Lester, A.D. Skelding (Eds.), The biology and taxonomy of the Solanaceae, Academic Press, London, 1979,pp. 3–47.
- [4] S.Y. Park, H. Kim, B.C. Lee, C.K. Sung, Y.P. Lim, Identification and classification of *Lycium chinense* Mill. cultivars by RAPD analysis, Korean J. Breed. 28 (1996) 221–226.
- [5] A. Chevallier, The Encyclopedia of Medicinal Plants, Dorling Kindersley, London, 1996.
- [6] J.G. No, J.S. Park, G.S. Seo, Composition of chemical components depending on extracting conditions in a stem and shoot of *Lycium chinense*, RDA J. Agric. Sci. 37 (1995) 586–590.
- [7] W.J. Park, Studies on chemical composition and biological activities of *Lycium chinensis*, Miller (Ph. D. dissertation), Republic of Korea: Gunkuk University, 1995.
- [8] Y.H. Yeh, T.S. Hahm, C.M. Sabliov, Y.M. Lo, Effects of Chinese wolfberry (*Lycium chinense* P. Mill.) leaf hydrolysates on the growth of *Pediococcus acidilactici*, Bioresource Technol. 99 (2008) 1383–1393.
- [9] K.C. Huang, The pharmacology of Chinese herbs, CRC Press, Florida, 1993.
- [10] Y.J. Park, J.K. Lee, N.S. Kim, Simple sequence repeat polymorphisms (SSRPs) for evaluation of molecular diversity and germplasm classification of minor crops, Molecules 14 (2009) 4546–4569.
- [11] Y.B. Zhang, P.C. Shaw, C.W. Sze, Z.T. Wang, Y. Tong, Molecular authentication of Chinese herbal materials, J. Food Drug Anal. 15 (2007) 1–9.
- [12] Y. Peng, S.Q. Sun, Z.Z. Zhao, H.W. Leung, A rapid method for identification of genus Lycium by FTIR spectroscopy, Spectrosc Spect. Anal. 24 (2004) 679–681.
- [13] K.T. Cheng, H.C. Chang, H. Huang, C.T. Lin, RAPD analysis of Lycium barbarum medicine in Taiwan market, Bot. Bull. Acad. Sin. 1 (2004) 11– 14.
- [14] Y.B. Zhang, H.W. Leung, H.W. Yeung, R.N. Wong, Differentiation of *Lycium barbarum* from its related *Lycium* species using random amplified polymorphic DNA, Planta Med. 67 (2001) 379–381.
- [15] T. Fukuda, J. Yokoyama, H. Ohashi, Phylogeny and biogeography of the genus *Lycium* (*Solanaceae*): inferences from chloroplast DNA sequences, Mol. Phylogenet. Evol. 19 (2001) 246–258.
- [16] X.L. Yin, K.T. Fang, Y.Z. Liang, R.Ns. Wong, A.W. Ha, Assessing phylogenetic relationships of *Lycium* samples using RAPD and entropy theory, Acta. Pharmacol. Sin. 26 (2005) 1217–1224.
- [17] S.C.W. Sze, J.X. Song, R.Ns. Wong, Y.B. Feng, T.B. Ng, Y. Tong, et al., Application of SCAR (sequence characterized amplified region) analysis to authenticate *Lycium barbarum* (wolfberry) and its adulterants, Biotechnol. Appl. Biochem. 51 (2008) 15–21.
- [18] J.S. Miller, Phylogenetic relationships and the evolution of gender dimorphism in Lycium (Solanaceae), Syst. Bot. 27 (2002) 416–428.
- [19] S.J. Kwon, G.A. Lee, S.Y. Lee, Y.J. Park, G.J. Gwag, T.S. Kim, K.H. Ma, Isolation and characterization of 21 microsatellite loci in *Lycium chinense* and cross-amplification in *Lycium barbarum*, Conserv. Genet. 10 (2009) 1557–1560.
- [20] J.K. Pritchard, M. Stephens, P. Donnelly, Inference of population structure using multilocus genotype data, Genetics 55 (2001) 945–959.
- [21] M. Schuelke, An economic method for the fluorescent labeling of PCR fragments, Nature Biotechnol. 18 (2000) 233–234.
- [22] K. Liu, S.V. Muse, PowerMarker: an integrated analysis environment for genetic marker analysis, Bioinformatics 21 (2005) 2128–2129.
- [23] K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0, Mol. Biol. Evol. 24 (2007) 1596–1599.
- [24] G. Evanno, S. Regnaut, J. Goudet, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol. 14 (2005) 2611–2620.
- [25] L. Excoffier, G. Laval, S. Schneider, Arlequin ver. 3.0: An integrated software package for population genetics data analysis, Evol. Bioinf. Online 1 (2005) 47–50.
- [26] D. Falush, M. Stephens, J.K. Pritchard, Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies, Genetics 164 (2003) 1567–1587.
- [27] M.S. Yu, Y.S. Ho, K.F. So, W.H. Yuen, R.C.C. Chang, Cytoprotective effects of *Lycium barbarum* against reducing stress on endoplasmic reticulum, Int. J. Mol. Med. 17 (2006) 1157–1161.
- [28] Z.P. Gao, Z. Ali, I.A. Khan, Glycerogalactolipids from the fruit of Lycium barbarum, Phytochemistry 69 (2008) 2856–2861.