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A B S T R A C T

The set of these two theoretical papers offers an alternative to the hypothesis of a

primordial RNA-world. The basic idea of these papers is to consider that the first prebiotic

systems could have been networks of catalysed reactions encapsulated by a membrane. In

order to test this hypothesis it was attempted to list the main obligatory features of living

systems and see whether encapsulated biochemical networks could possibly display these

features. The traits of living systems are the following: the ability they have to reproduce;

the fact they possess an identity; the fact that biological events should be considered in the

context of a history; the fact that living systems are able to evolve by selection of

alterations of their structure and self-organization. The aim of these two papers is

precisely to show that encapsulated biochemical networks can possess these properties

and can be considered good candidates for the first prebiotic systems. In the present paper

it is shown that if the proteinoids are not very specific catalysts and if some of the reactions

of the network are autocatalytic whereas others are not, the resulting system does not

reach a steady-state and tends to duplicate. In the same line, these biochemical networks

possess an identity, viz. an information, defined from the probability of occurrence of these

nodes. Moreover interaction of two ligands can increase, or decrease, this information. In

the first case, the system is defined as emergent, in the second case it is considered

integrated. Another property of living systems is that their behaviour is defined in the

context of a time-arrow. For instance, they are able to sense whether the intensity of a

signal is reached after an increase, or a decrease. This property can be mimicked by a

simple physico-chemical system made up of the diffusion of a ligand followed by its

chemical transformation catalysed by a proteinoid displaying inhibition by excess

substrate. Under these conditions the system reacts differently depending on whether the

same ligand concentration is reached after an increase or a decrease.

� 2010 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

It is no doubt difficult, or even impossible, to offer a
scenario of the origins of life that is not, in part,
hypothetical, for we do not know the precise conditions
that have led to the appearance of the first living
organisms. Most of the present studies devoted to the
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problem of the origins of life are based on the proposal that
the first living systems have emerged, in a primordial RNA
world, from the unexpected properties of some RNA
molecules, more precisely from the fact that some RNA
fragments, called ribozymes, are able to catalyse chemical
reactions in addition to their ability to replicate [1–4]. As
outlined by Kauffman [5,6], there is, however, a problem if
we accept this view of an RNA world. This difficulty is
related to the fact it has been so far difficult, or even
impossible, to obtain the spontaneous replication of RNA
lsevier Masson SAS. All rights reserved.
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molecules in the absence of a replicase. Indeed, the lack of
evidence for a spontaneous replication of RNA molecules in
the absence of a replicase does not completely invalidate
the idea of a primordial RNA world for the spontaneously
replicating RNA fragments may still have to be discovered.
This situation makes it difficult, however, to accept as such
the classical view of a primordial RNA world without
reservation.

On the other hand one cannot imagine a living, or a
prebiotic, system, whatever its simplicity, as not being
made up of connected catalysed chemical reactions. This
idea has led a number of biologists, in particular Fox [7,8]
and Kauffman [5,6], to propose the view that the first
prebiotic systems could have been encapsulated networks
of chemical reactions. Such networks of catalysed bio-
chemical reactions having global collective properties, one
is led to the view that the problem of the origins of life
could be discussed in the frame of the ‘‘new science’’ of
systems biology [9,10] as applied to catalysed chemical, or
biochemical, networks. This approach necessitates the use
of both physical concepts and mathematical develop-
ments. In order to make the paper understandable to those
who are not familiar with these mathematical develop-
ments, the paper has been organized as to remain
understandable, even if Sections 5 and 6 are omitted.

2. Basic properties of biochemical networks

Sets of connected catalysed chemical reactions consti-
tute biochemical networks. Any node of these networks is
a catalysed chemical reaction or, more precisely, the
probability that this catalyst has bound its substrates. Any
link between two nodes is identified to the transport of a
metabolite from catalyst to catalyst. We shall discuss later,
in this article, the mathematical expressions of both the
nodes and the links. If, as stated before, a catalysed reaction
is identified to a node, this means that the overall network
is in fact a network of networks, or a meta-network, for
every catalysed reaction is itself a network. From a
mathematical viewpoint such biochemical meta-networks
are described by directed graphs for the links between the
nodes are, in most cases, unidirectional. Moreover these
meta-networks should be considered open-systems with,
at least, one input and one output of matter. They should be
viewed as dissipative structures [11–13].

It then appears obvious that the way we are going to
represent biochemical networks by mathematical models
is both different and incompatible with that found in
current recent literature [14,15]. Networks, as described in
many scientific papers, and whatever the physical nature
of their nodes, are in fact represented by the same type of
graph. This reasoning is incorrect for at least three reasons:
� it
 is erroneous to think that networks of social relation-
ships and chemical reactions, for instance, could be
described by the same model. As a matter of fact, social
relationships in a city are not submitted to thermody-
namic laws whereas chemical reactions are under the
control of – Networks of social relationships, for instance,
should be described by non-directed graphs. This does
not apply to biochemical networks that should, to a large
extent, be represented by directed graphs;

� n
etworks of social relationships can be viewed as closed

systems. Networks of chemical reactions should be
considered open systems with input and output of
matter.

Hence, it is an illusion, to claim there should exist a
general science of networks as found in scientific literature
[15].

3. Main features of living systems

Living systems possess features that are either essential
or accessory. Essential features present in all living
organisms can be used to define the concept of living
system. These features are defined now:
� li
ving systems are able to reproduce thus giving birth to
systems identical, or similar, to themselves;

� a
 living system is an entity that should be considered a

coherent whole possessing an identity specific for both
its organization and functional properties. Today, this
identity is defined from the structure of some macro-
molecules namely DNA and RNA;

� li
ving systems are associated with a history. This means

they can distinguish in a sequence of events the one that
is occurring first. Put in other words, they can realise
whether the intensity of a signal increase, or decrease.
Hence they are sensitive to some kind of a time-arrow;

� li
ving systems can evolve by selection of random

alterations of their structure.

In the following, I would like to demonstrate that
simple systems, viz. encapsulated networks of catalysed
chemical reactions, may possess these properties and can
therefore be considered models of prebiotic systems.

4. Prebiotic systems should be able to reproduce

It is well known that DNA and RNA are able to replicate
in the presence of a suitable replicase. The problem of
anteriority of RNAs over proteins displays a logical
circularity as we need RNAs to make proteins but also
proteins to make RNAs. A possibility to avoid circularity
between proteins and RNAs at the origins of life is to
assume that some kind of an encapsulated network of
catalysed chemical reactions can display some kind of
spontaneous ‘‘duplication’’ and self-organization. Let us
assume an encapsulated network of catalysed chemical
reactions. Even though the protein catalysts are neither
very efficient nor very specific for a given chemical process,
the overall network may possess surprising properties if
some of the individual reactions display autocatalysis
[3,16].

Autocatalysis is the process where a chemical reaction
becomes activated when a reaction product appears. For
instance, in a process S1! S2, S2 stimulates its own
production by activating the proteinoid E1 that catalyses
the conversion of S1 into S2. The idea that autocatalysis may
have played an important role in the emergence of life on
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Earth [5] is not a gratuitous assumption for we know
numerous autocatalytic processes that take place in living
systems today. Thus, in vertebrates, the protein pepsin is
formed by specific cleavage of another protein pepsinogen.
This process is activated by pepsin itself.

If inserted in a catalysed chemical network, an
autocatalytic process may give rise to some special kind
of self-organization, namely the duplication of the
network. This situation is linked to the fact that for a
certain period of time, the system cannot be in steady state.
This lack of steady state is due to a large difference of
velocities of two successive steps of which one is
autocatalytic and the other is not. Let us assume we have
two successive steps S1! S2! S3 in a reaction network,
the first step being catalysed by proteinoid E1 and the
second step by proteinoid E2. If one postulates that the first
process is autocatalytic whereas the second is not, this
means that the rate of the first process increases as S2

accumulates. In this model, E1 is a poor catalyst in the
absence of its reaction product S2. Hence the catalytic
reaction is very slow during the induction phase (Step 1 of
Fig. 1). After a while, however, a reaction sequence is
initiated (Step 2 of Fig. 1). Owing to the fact that one of the
two reaction processes is autocatalytic S2 accumulates
(Step 3 of Fig. 1) and this situation has three effects: S2

activates by autocatalysis its own production; as the local
concentration of S2 increases, it tends to diffuse away and
activates another E1 molecule; the consumption of S1,
which is being converted into S2, results in the pumping of
S1 from the outside. It then appears that the activation by
S2 of two molecules of E1 results in the duplication of the
metabolic network. A new metabolic pathway is thus
formed. One can then imagine that, in a next step, the
protocell increases its volume and divides into two halves
each containing a reaction network (Step 3 of Fig. 1). This
[()TD$FIG]

S(1)      

S(1)            S(1)                          S(1)   

    E(1)                       E(1)             E(1)     

                                                                S(2)      

    E(2)                       E(2)             E(2)     

                                                                 S(3)     

              Step 1                                             Step

                                                                 S(3)     

Fig. 1. Tentative mechanism for the duplication of a biochemical network. Prote

and S(3), respectively (see main text).
purely speculative event is plausible for it is based on the
physical process of autocatalysis.

5. Prebiotic systems should possess an identity

This Section can be omitted on a first reading.
An essential feature of living systems is the fact they

possess an identity. Today the concept of identity is
defined by a specific sequence of base pairs in DNA, or a
sequence of bases in RNA molecules. In the case of
networks of catalysed chemical reactions that do not
possess any DNA, or RNA, one may wonder whether they
can possess an identity. As a matter of fact, the concept
of identity has been defined and discussed in ancient
Greek civilization. Thus Aristotle [17] coined the terms of
form and essence (oussia) to express this concept of
identity. Information, in its Aristotelian meaning, is the
ontological principle that represents the very basis of
identity. From a practical viewpoint information is both
what makes a material entity different from its
neighbours and the ability we have to identify this
entity. If, for instance, we face material entities that
display slight differences, the ability we have to identify
one of these entities, viz. its information, will depend
upon its probability of occurrence. The smaller the
probability and the larger is the information of this
entity. More precisely, the amount of information of an
entity will be an increasing function of the reciprocal of
its probability of occurrence.

If we consider a network of proteinoid-catalysed
chemical reactions and if a node is bearing ligand xi, or
ligand yj, or both ligands xi and yj, one has

hðxiÞ ¼ f
1

pðxiÞ

� �
(1a)
                                    S(1)          S(1) 

    S(1)                         S(1)          S(1) 

          E(1)         E(1)                         E(1) 

                                    S(2)           S(2)

          E(2)         E(2)                         E(2) 

                                     S(3)           S(3)

 2                                      Step 3 

                                     S(3)           S(3)

noids E1 and E2 are represented by E(1) and E(2), S1, S2 and S3 by S(1), S(2)
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hðy jÞ ¼ f
1

pðy jÞ

( )
(1b)

hðxi; y jÞ ¼ f
1

pðxi; y jÞ

( )
(1c)

where the functions h express the information associated
with the binding of xi, yj or both xi and yj to a proteinoid of
the network (1a)–(1c). In order to do so, the point is now to
define the expression of f. To answer this point, one can
consider the situation where the two ligands xi and yj do
not interact upon binding to the same proteinoid. Then one
should have

hðxi; y jÞ ¼ hðxiÞ þ hðy jÞ (2)

It is then obvious that the simplest function f that meets
this requirement is a logarithmic one, for one should have

hðxi; y jÞ ¼ �log pðxi; y jÞ ¼ �log pðxiÞ � log pðy jÞ (3)

If now there exists an interaction between xi and yj

during their binding to a node of the network, Bayes
theorem requires that

pðxi; y jÞ ¼ pðxiÞpðy j xij Þ ¼ pðy jÞ pðxi y jÞ
�� (4)

In this expression, pðy j xij Þ and pðxi y jÞ
�� are conditional

probabilities that the proteinoid binds yj given it has
already bound xi and that it binds xi given it has already
bound yj. Making use of the h functions, expression (4)
allows one to write

hðxi; y jÞ ¼ hðxiÞ þ hðy j xij Þ ¼ hðy jÞ þ hðxi y jÞ
�� (5)

In order to determine whether the interaction between
xi and yj increases or decreases the amount of information
of the node bearing both xi and yj one can define the
function

iðxi : y jÞ ¼ hðxiÞ þ hðy jÞ � hðxi; y jÞ (6)

and taking advantage of expressions (5) one finds

iðxi : y jÞ ¼ hðxiÞ � hðxi y jÞ ¼ hðy jÞ � hðy j

�� xiÞj (7)

It then appears that if hðxiÞ>hðxi y jÞ
�� information is

taken up upon the interaction between xi and yj. If,
alternatively, hðxi y jÞ>hðxiÞ

�� then information is generated
by the interaction of the two ligands. In the first case the
process is integrated and in the second case it is emergent. It
then appears that the function i(xi : yj) is a measure of the
information taken up, or generated, by the interaction
between xi and yj.

This reasoning can be extended to a set of proteinoids.
Let us consider for instance a proteinoid edifice that can
bind n molecules of ligand x and n molecules of ligand y.
The network can be depicted by a square lattice VN defined
as [18]

VN ¼ pðNk;lÞ; k;l2 Zþ;k;l � n
� �

(8)

Here, p(Nk,l) is the probability that a proteinoid of the
lattice has bound k molecules of x and l molecules of y.
One can distinguish three subsets in the VN set: VO, VNx

and VNy. VO collects the probabilities of occurrence of the
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proteinoids that have bound neither x nor y. VNx assembles
the probabilities that the proteinoids of the lattice have
bound x and possibly y. VNy gathers the probabilities of the
proteins that have bound y and possibly x. One can define
these subsets as

VNx ¼ pðNi;lÞ; i2N;l2 Zþ; i;l � n
� �

(9a)

VNy ¼ pðNk; j; k2 Zþ; j2N;k; j � n
� �

(9b)

One can define the probability that the proteinoid
lattice has bound i molecules of x whether or not it has
bound molecules of y as

pðxiÞ ¼
Xn

l¼0

pðNi;lÞ (10)

Similarly the probability that the proteinoid lattice has
bound j molecules of y whether or not it has also bound
molecules of x is

pðy jÞ ¼
Xn

k¼0

pðNk; jÞ (11)

From the values of p(xi) and p(yj) generated by
expressions (10) and (11) one can define two sets VX

and VY as

VX ¼ pðxiÞ; i2Nf g (12a)

VY ¼
�

pðy jÞ; j2Ng (12b)

The states xi and yj allow one o define two sets X and Y

whose Cartesian product is XY. Its corresponding proba-
bility space is then

VXY ¼
�

pðxi; y jÞ; i; j2Ng (13)

One can define from relations (10) and (11) the
corresponding h functions as

hðxiÞ ¼ �log pðxiÞ (14a)

hðy jÞ ¼ �log pðy jÞ (14b)

hðxi; y jÞ ¼ �log pðxi; y jÞ (14c)

Also from the h values one can define two sets

QX ¼ hðxiÞ; i2Nf g (15a)

QY ¼
�

hðy jÞ; j2Ng (15b)

that allow one to define in turn two functions, H(X)N and
H(Y)N, as

HðXÞN ¼
X

i

X
j

pðxi; y jÞhðxiÞ (16a)

HðYÞN ¼
X

i

X
j

pðxi; y jÞhðy jÞ (16b)

These functions are generalisations of h functions for
lattices of xi and yj states. By convention these relation-
ships are expressed per node having bound both x and y.

Even though these relationships are reminiscent of
Shannon entropies [19–21] they are usually different from
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classical entropies. In the case of a communication channel
one should have

pðxiÞ ¼
Xn

j¼1

pðxi; y jÞ (17a)

pðy jÞ ¼
Xn

i¼1

pðxi; y jÞ (17b)

whereas for a proteinoid lattice some proteinoid molecules
may have bound either x or y but not both of them, this is
impossible for a communication channel where x is always
associated to y. As we shall see, the consequence of this
difference is of major importance.

We can define conditional H functions for a protein
lattice and we have

HðX Yj ÞN ¼
X

i

X
j

pðxi; y jÞhðxi y jÞ
�� (18a)

HðY jXÞN ¼
X

i

X
j

pðxi; y jÞhðy j

��xiÞ (18b)

As outlined above, these functions possess
values conventionally expressed per node bearing both
ligands x and y. We can now generalize Eq. (7), obtained
for a node, to a proteinoid lattice by defining, for the
whole system, the so-called mutual information of
integration as

IðX : YÞN ¼ HðXÞ � HðX YÞ ¼ HðYÞ � HðY XÞjj (19)

The function I(X : Y)N may take, for a proteinoid lattice,
positive or negative values. In the first case, the whole
system is integrated, whereas in the second it is emergent.
In the case of a communication channel, however, I(X : Y)N

is of necessity positive. This is the well known subadditivity

principle of classical communication theory [19–21]. The
reason for this difference relies upon the lack of identity
between Eqs. (10) and (11) on one hand, (17a) and (17b) on
the other hand. In the perspective of the problem of the
origins of life the interesting idea is the possibility of the
spontaneous emergence or consumption of information in a
system that could be considered a quantitative expression
of its identity.

6. Prebiotic systems should be able to sense chemical
signals

This Section can be omitted on a first reading.
A fundamental property of living systems is their ability

to sense whether the intensity of a signal is increasing, or
decreasing. They are sensitive to some kind of a time-
arrow. This is remarkable for most ‘‘simple’’ physical
systems do not possess this property. Thus, for instance,
the fundamental relation of dynamics F = m @ 2x/@ t2

remains unchanged whether t increases, or decreases.
We shall see in the following that the ability to be sensitive
to time- arrow is also a property of networks of catalysed
chemical reactions. Let us consider an ideal and simple
chemical transformation, S! S’. If this process is catalysed
by a proteinoid, which can be considered as a primitive
enzyme E, one has
K k
E + S              ES E + S′

In this ideally simple scheme K is the ratio of two rate
constants and k the rate constant for catalysis and product
desorption from the enzyme surface. Now let us consider
the same process inserted in a sequence of enzyme-
catalysed reactions

1−iE

iE

 +     1−iK 1−ik

D
ik 1−        + iK

1−iS 11 −− ii SE '
1−iS

iS iiSE

    + 
1−iE

Of particular interest in this scheme is the fact
that reactant Si�1 is being converted into a reaction
product, S

0
i�1, that diffuses, with a diffusion constant

kD
i�1 up to the point it binds to the enzyme Ei. S

0
i�1 and Si are

thus two different concentrations of the same substance. If
the concentrations of the two enzymes are Xi�1 and Xi

one has

Xi�1 ¼ Ei�1 þ Ei�1Si�1 (20a)

Xi ¼ Ei þ EiSi (20b)

From a formal point of view, Xi�1 and Xi are the total
(free plus substrate-bound) concentrations of enzymes.
The segment of reaction network above can thus be
described in compact form as

D
iii kfk 111 −−−

1−iX iX

Here fi�1 is the so-called fractionation factor viz.

f i�1 ¼
Ei�1Si�1

Ei�1 þ Ei�1Si�1
(21)

One realizes at once that the fractionation factor, fi�1, is
equivalent to the probability, p(Si�1), that substrate Si�1

has bound to enzyme Ei�1. As previously mentioned, kD
i�1 is

the diffusion constant of the chemical reactant, from the
immediate vicinity of enzyme Ei�1 to the enzyme Ei. The
time constant, ti�1, of the transition from enzyme Ei�1 to
enzyme Ei is then

ti�1 ¼ ki�1kD
i�1 pðSi�1Þ (22)

The interesting idea that emerges from this reasoning is
that the transition from an enzyme reaction to another one
involves both the release of a reactant from an enzyme (Ei�1)
and its diffusion to another enzyme (Ei). Under steady state
conditions, these two processes should possess the same



J. Ricard / C. R. Biologies 333 (2010) 761–768766
reaction rate vi. One has thus for the diffusion process

vi ¼ kD
i�1ðS

0

i�1 � SiÞ (23)

It must be pointed out again that, in expression (23),
S
0
i�1 and Si represent different concentrations of the same

substance.
Let assume now that the enzyme reaction, which uses

this substance as a substrate be inhibited by an excess
substrate. The corresponding reaction scheme will be

D
ik 1− iK iS

'
1−iS iS iiSE ii ES +'

+ iKS

iE 2
iiSE

and the corresponding enzyme reaction rate assumes the
form

vi ¼
ViKiSi

1þ KiSi þ KiKS2
i

(24)

In order to simplify the expression of Eqs. (23) and (24)
one can define dimensionless variables and parameters as

si ¼ KiSi s
0

i�1 ¼ KiS
0

i�1 (25a)

lK ¼
K

Ki
kD�

i�1 ¼
kD

i�1

KiVi
(25b)

and the equation of diffusion becomes

vi

Vi
¼ kD�

i�1ðs
0

i�1 � siÞ (26)

Similarly, the enzyme reaction assumes the form

vi

Vi
¼ si

1þ si þ lK s2
i

(27)

Hence under steady state one has

kD�
i�1ðs

0

i�1 � siÞ �
si

1þ si þ lK s2
i

¼ 0 (28)

which can be rearranged to

s3
i �

lK s
0

i�1 � 1

lK
s2

i þ
kD�

i�1ð1� s
0

i�1Þ þ 1

kD�
i�1lK

si �
s
0

i�1

lK
¼ 0 (29)

The resulting equation is third-degree in si. According to
the Descartes rule of signs, this equation can, possibly,
display three changes of signs of its coefficients. Hence it
can possibly display three positive real roots. In order to
demonstrate this situation to be effective one has to
demonstrate that expression (29) can be expressed as
s3
i � ðl1 þ l2 þ l3Þs2

i þ ðl1l2 þ l1l3 þ l2l3Þsi

� l1l2l3 ¼ 0 (30)

where the roots l1, l2 and l3 should be positive real
numbers. If we compare Eqs. (29) and (30) it appears that
the coefficients of Eq. (30) are based upon physical
parameters and substrate concentrations (lK ; k

D�
i�1; s

0
i�1)

of Eq. (29) that cannot adopt negative values. Hence there
might exist some constraints between the coefficients of
Eq. (29) that would lead to the conclusion that it possesses
one real and two imaginary roots. Alternatively, if Eqs. (29)
and (30) are compatible one can conclude that polynomial
(29) possesses, for a definite domain of concentrations s

0
i�1,

three positive real roots. In that case it should be possible
to express lK ; k

D�
i�1 and s

0
i�1 in terms of mathematical

expressions involving the three positive roots l1, l2 and l3.
Moreover these mathematical expressions should always
be positive.

If we intend to express s
0
i�1;lK and kD�

i�1 in terms of the
positive roots l1, l2 and l3 of Eq. (30) this can be done only
in the interval 1=lK < s

0
i�1 <1. Under these conditions, the

coefficient of the s2
i term of Eq. (29) can be expressed as

s
0

i�1 �
1

lK
¼ l1 þ l2 þ l3 (31)

Moreover, one has

s
0

i�1 ¼ lKl1l2l3 (32)

It then follows that

1

lK
¼ lK

l1l2l3

l1 þ l2 þ l3
(33)

and

lK ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2 þ l3

l1l2l3

s
(34)

Combining expressions (32) and (34) one finds

s
0

i�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1 þ l2 þ l3

p
(35)

In the same way, the coefficient of the term in si in
Eq. (29), assumes the form

1

lK
�

s
0

i�1

lK
þ 1

kD�
i�1lK

¼ l1l2 þ l1l3 þ l2l3 (36)

that can be rearranged toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

l1 þ l2 þ l3

s
� l1l2l3 þ

1

kD�
i�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

l1 þ l2 þ l3

s

¼ l1l2 þ l1l3 þ l2l3 (37)

and to

kD�
i�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

l1þl2þl3

q
l1l2l3 þ l1l2 þ l1l3 þ l2l3 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l1l2l3

l1þl2þl3

q (38)

Hence it is clear that positive values of the roots can
generate positive values of lK ; s

0
i�1 and kD�

i�1.
It appears from the above reasoning that Eqs. (29) and

(30) have three positive real roots. Such a situation takes
place in the interval 1=lK < s

0
i�1 <1. Below the limit s

0
i�1 ¼

1=lK and above s
0
i�1 ¼ 1, Eq. (29) has one positive and two

imaginary roots. The existence of three real positive roots
in the interval 1=lK < s

0
i�1 <1 is depicted in Fig. 2. Owing to

the existence of these three real roots the system displays
some kind of chemical hysteresis. This means that within a
limited range of concentration defined by the limits 1/lK

and 1, the system follows two different routes depending
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Fig. 2. Multiple steady states and hysteresis for the coupling of diffusion

and catalysed chemical reaction (see main text). In the interval 1=lK ;1½ �
the system has three steady states of which two are stable and one is

unstable. The lower stable steady state is occupied only when s
0
i�1

increases. The upper stable steady state is occupied only when s
0
i�1

decreases. The unstable steady state is never occupied.
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on the concentration s
0
i�1 increases or decreases (Fig. 2).

This situation is due to the coupling between diffusion and
non-linear catalytic reaction. The magnitude of this non-
linearity is expressed by the magnitude of the constant lK.
If this constant is very small one cannot expect Eq. (29) to
display three real positive roots and no hysteresis is to be
expected.

The situation, depicted in Fig. 2, mimics, in a way, the
fact that living systems are perfectly able to sense whether
the intensity of a signal increases, or decreases, and are
able to react accordingly. What this theoretical study
shows is that a network of catalysed reactions possess a
typical property of the living systems viz. the property of
sensing, not only the intensity of a signal, but also whether
this intensity increases or decreases. This property is
directly related to the perception of a time-arrow which
is a property considered typical of living systems. Last but
not least, the property of chemical hysteresis, which has
been discussed above, has been experimentally found to
occur with artificially bound enzyme systems [22].

7. Discussion

In this Note, we have outlined three well-known
general properties of living systems, namely their ability
to self-reproduce, their identity, and their ability to
perceive signals or, put in other words, their ability to
be sensitive to a time-arrow. We have tackled the problem
of the origins of life by raising the question to know
whether some physico-chemical systems could precisely
possess these properties. These physico-chemical systems
are encapsulated networks of chemical reactions. Such an
idea has been proposed some time ago by Kauffman [5,6].
The main difference between the present model and that of
Kauffman is that it is assumed in the latter that chemical
reactions are uncatalysed and that the whole system is
closed, viz. it has no input and output of matter.
Alternatively, we are assuming that the system is open
with both an input and output of matter and that the
chemical reactions are catalysed by poorly specific
membrane-bound protein catalysts. These electrostatical-
ly-bound proteins are randomly distributed over the
membrane surface. When a substrate S1 enters the
protocell and diffuses within the available space it
undergoes chemical transformation when it comes into
contact with the nearest catalyst molecule. If this reaction
is autocatalytic whereas the next one is not, the system
should derive from a steady state and reaction inter-
mediates such as S2 (Fig. 1) accumulates then diffuses
within the protocell thus generating another reaction
pathway. In such a system, there is no increase of the
number of proteinoids but, progressively, all of them
become involved in network activity. As a consequence
there is an increase of the number of encapsulated
networks, which is not associated with a parallel increase
of the number of proteinoids involved in these networks. In
such a process one implicitly postulates that synthesis of
new proteinoids takes place through simple polymeriza-
tion of aminoacids, as suggested by some authors [5–7].
One cannot expect that catalysts synthesized under these
conditions to be highly specific of one chemical process
only.

Perhaps the most difficult question to solve is that of the
identity of such a system. In the case of present day living
organisms, their identity is defined from the sequence of
bases, or of base pairs, in RNAs, or DNAs. This criterion of
identity is related to two others, namely that of an internal
organization of the system and that of the communication
of a message. In the case of present day living organisms,
their identity, organization and ability to communicate are
partly defined from the sequence of bases, or of base pairs,
in RNAs, or DNAs. It is evident that today identity of a living
system is defined from the sequence of base pairs in DNA.
Moreover this identity is reflected in the internal
organization of the system. Gene expression is in fact a
communication process between DNA and proteins. It is
striking that these functions, identity, organization and
communication are related and can be expressed in the
same mathematical language based on the concept of
information, viz. a function of the reciprocal of the
probability of occurrence of a given feature. The physical
nature of this feature does not matter, it is only its low
probability of occurrence that is important. As already
outlined, the identity of a material entity relies upon some
features specifically borne by this entity. For present day
living organisms, it is the sequence of DNA base pairs that
is important for the definition of their identity. We propose
that for encapsulated biochemical networks it is the
nature, the sequence and the probability of occurrence of
the connected nodes that allow to define the identity of the
network. Last but not least, from the interaction that may
possibly occur between two ligands that bind to the same
node emerges a new specific function, or property, out of
the interaction between two events, viz. the binding of two
different ligands to the same protein state. The emergence

of this novel property is important for it gives the system a
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global behaviour that cannot be reduced to that of its
constitutive elements. This property is characteristic of
systems and in particular of biological systems. This matter
will be discussed more thoroughly in the accompanying
article [23].

If, as it has been already suggested [6], it is true that the
first living systems did not possess any nucleic acids, the
appearance of these types of molecules in living organisms
may have represented a major step in the evolutionary
process. It is therefore of interest to discuss briefly what
could have given rise to the appearance of nucleic acids in
prebiotic systems. Even though it is probably impossible to
formulate a definitive answer to this question, it is sensible
to assume that the appearance of different enzymes that,
after a mutation for instance, could possess, respectively, a
polymerase and a replicase activity, would give the system
an advantage in the ‘‘struggle for life’’.

Physicists have often discussed the question of the reality
of time-arrow for simple physical systems [24]. With the
notable exception of Prigogine, most of them are convinced
that simple physical systems remain unchanged when the
variable t is replaced by –t. It is obvious, on the other hand,
that biological systems are sensitive to a time-arrow. For
instance they are perfectly able to ‘‘distinguish’’ whether the
intensity of a signal has been reached after an increase, or a
decrease, of intensity. Such a property, however, is not
specific for biological systems as physical systems can also
display this property. The mathematical requirement for
obtaining a different response of a system to the same signal
intensity reached after either an increase, or a decrease, of
intensity is that the system displays multiple steady states.
This requires that the curve describing the response of the
system as a function of the signal intensity to be, at least, of
the third degree. As we have seen, this condition is necessary
but, by no means, sufficient. The sufficient condition is that,
within a given range of signal intensity, the system displays
three real roots, viz. three different steady states. Two of
them should be stable and one should be unstable. This
means that if a signal intensity decreases, the upper branch
of the curve is populated and if a critical value is reached the
system falls from the upper branch to the lower one.
Alternatively, if the signal intensity is increased the system
jumps from the lower branch to the upper branch of the
curve. This is illustrated in Fig. 2. If the concentration s

0
i�1

increases in the interval 1=lK ;1½ �, the corresponding value, si,
will vary along the lower steady state. Upon reaching the
critical point, the value of si will jump from the lower to the
upper branch of the curve. Alternatively, if the concentration
s
0
i�1 decreases in the same interval as above, viz. 1=lK ;1½ �, the

value of the concentration si will decrease along the upper
branch of the curve and then falls from the upper to the
lower steady state. It then appears that depending on
whether the same concentration, s

0
i�1, is reached after an

increase, or a decrease, the corresponding si concentration
will be low, or high, exactly as our eye, connected to our
brain, is able to sense whether a given light intensity is
reached after an increase, or a decrease, of intensity. Such a
physical system can be considered biomimetic. The proper-
ties that generate this behaviour are neither the properties
of the enzyme reaction nor the properties of diffusion but
the collective properties of the global system. The conditions
required for obtaining such a behaviour is that the system be
away from thermodynamic equilibrium and that the
resulting equation be non-linear. Hence non- linearity of
the system is essential for obtaining the remarkable
properties that have been described.

The reader may be struck by the fact that the results
presented in this article are speculative. However, one has
to remember that knowledge about the origins of life can
only, by essence, be speculative. The main question is to
know whether these speculations are physically sound.

Conflict of interest statement

Nothing declared.

References

[1] T.R. Cech, A model for the RNA-catalyzed replication of RNA, Proc. Natl.
Acad. Sci. USA 83 (1986) 4360–4363.

[2] T.R. Cech, D. Herschlag, J.A. Piccirilli, A.M. Pyle, RNA catalysis by a group
I ribozyme: developing a model for transition state stabilization, J. Biol.
Chem. 267 (1992) 17479–17482.

[3] J.A. Doudna, J.W. Szostak, RNA catalyzed synthesis of complementary
strand RNA, Nature 339 (1989) 519–522.

[4] M.C. Maurel, La Naissance de la Vie, Diderot Editeur, Paris, 1997.
[5] S. Kauffman, At Home in the Universe. The Search for Laws of

Complexity, Penguin Books, London, 1995.
[6] S. Kauffman, The Origins of Order, Oxford University Press, New York

Oxford, 1993.
[7] S.W. Fox, Proteinoids experiments and evolutionary theory, in : M.W.

Ho, P.T. Saunders (Eds.), Beyond Neo-Darwinism, Academic Press, New
York, 1984, pp. 15–60.

[8] S.W. Fox, K. Dose, Molecular Evolution and the Origin of Life, Marcel
Dekker, New York, 1977.

[9] R. Callagher, T. Appenzeller, Beyond Reductionism, Science 284 (1999)
79.

[10] J. Ricard, Biological Complexity and the Dynamics of Life Processes,
Elsevier, Amsterdam New York, 1999.
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