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liptical Fourier descriptors for contours in three dimensions:
new tool for morphometrical analysis in biology
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FS CNRS FRE 3240, Preclinical Imaging Lab, biophysique et médecine nucléaire, hôpitaux universitaires de Strasbourg, 1, avenue Molière,
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A B S T R A C T

Elliptical Fourier descriptor analysis is a method for the morphometric study of curves. It

has been used in the two-dimensional plane for closed contours, but rarely for lines in the

three-dimensional space. The method consists of an expansion of a contour as a sum of

ellipses. In this article, we study three-dimensional contours, i.e. lines embedded in the

three-dimensional space. We compute for the first time the relations between the Fourier

coefficients and its geometric parameters. We then use these relations for normalization

and reorientation of three-dimensional contours. Such an algorithm can be used to

perform inter-individual comparisons between contours, regardless of differences in

viewpoint or global size. Human and small animal illustrative examples using biomedical

X-ray CT imaging data of open bone structures demonstrate the interest and potential of

the method for morphological analysis.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Les descripteurs elliptiques de Fourier permettent l’analyse morphométrique des courbes.

Ils ont été essentiellement employés en biologie pour l’analyse de lignes fermées dans

l’espace à deux dimensions mais rarement pour des lignes inscrites dans l’espace à trois

dimensions. La méthode consiste en la décomposition d’un contour en somme d’ellipses,

appelées « harmoniques elliptiques ». Dans cet article, nous étudions des contours inscrits

dans l’espace à trois dimensions et déterminons, pour la première fois, les relations

existant entre les coefficients elliptiques de Fourier et les paramètres géométriques

correspondant. Ces relations sont alors utilisées pour la normalisation et la réorientation

des contours tri-dimensionnels. L’algorithme est ainsi adapté à la comparaison inter-

individu du contour d’une même structure, indépendamment des différences de

dimensions ou de point de vue. Des exemples biologiques illustrant le potentiel de la

méthode pour l’analyse morphométrique sont exposés à partir de données clinique et

préclinique d’imagerie tomodensitométrique de structures osseuses ouvertes.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Elliptic Fourier descriptor analysis is a methodfor contour
description. A closed curve is a continuous periodic function
of a parameter, so it can be alternatively representedas a sum
of cosine and sine functions of growing frequencies, affected
by coefficients referred to as ‘Fourier descriptors’ (FDs). The
sum of these cosine and sine functions converges towards
the initial contour, as the number of harmonics increases.
Each harmonic is actually an ellipse, completely defined by
its period and its FDs.

Elliptical Fourier descriptors were first described in the
two-dimensional space [1–4] with some variety regarding
the variable used for parametrization (arc length, angle,
etc.). A plane, closed contour is expressed as a sum of two-
dimensional ellipses of decreasing areas. The FDs can be
used as morphometric variables in multivariate analysis,
allowing for the distinction of groups within a set of shapes.
Most applications in two dimensions are related to
biological issues [5], for anthropology [6–8], anatomy [9],
evaluation of the response to orthodontics treatment [10],
etc. Hand-written character recognition [2,11,12] or aircraft
recognition algorithms [3,13] are other areas of use. The FDs
allow for the computation of invariants of the contour,
independent under translation, rotation or change in the
starting point on the contour [2,4]. In addition to providing
interesting information compression, FDs can be used for
smoothing contours, by keeping only the first harmonics.

In three dimensions, two different problems may be
addressed. One is the study of bounding surfaces [14–19]
where shapes are described as sum of ellipsoids. The other is
the study of closed lines embedded in the three-dimensional
space. Few papers have been published on the subject.
Numerical invariants of three-dimensional contours are
computed in reference [20] to study the influence of noise
and distortion for shape recognition purposes. In reference
[21], lines are simplified as ‘chaincodes’, reducing the
complexity of the initial contour. FDs are computed using
this formalism, and normalized to make them independent
of scale change and orientation of the global contour. In
reference [22], the author makes the FDs independent of the
starting point and uses them in the cardiology field to
identify supraventricular beats by analyzing the 3D curves
formed by the electrocardiogram vector (QRS loop). In
reference [23], the authors used 3D FDs to optimize the
fitting of protection harnesses to body shape. Some works
make use of the results in two dimensions for studying
surfaces, either by ‘slicing’ the initial 3D surface [24–26], by
combining projections [27] or using invariants [28]. None of
these papers give an explicit correspondance between FDs
and their geometric parameters.

In this article, we study lines embedded in three-
dimensional space. Real world objects, more particularly,
anatomical structures, tend to be three-dimensional rather
than two-dimensional. Tomographic imaging such as
scanner and MRI, followed by appropriate image processing,
may be used to create three-dimensional objects. We
focused on lines rather than surfaces for several reasons.
First, mathematical simplicity: Lines may be parametrized
by one-variable functions while surfaces require the
handling of multiple variable functions. Secondly, many

anatomical structures (such as skull or heart) are not closed
surfaces, making irrelevant the use of global surface

descriptors in the vicinity of the boundary. Unlike reference
[21], we did not restrict ourselves to chaincodes, but rather
dealt with arbitrary 3D lines.

We start from two 3D lines. Each line represents a
contour and has a set of coordinates (sampling) describing
it. The aim of this article is to address the following
question: how can we compare the two contours? When
the sampling of the points on the contours is done in two
different Cartesian coordinate systems, we cannot com-
pare directly the lines but we need a transformation step.
Our approach is to use the decomposition as elliptical
Fourier descriptors to find, for each object, an intrinsic
Cartesian coordinate system to perform this transforma-
tion. This system will be specific to each contour. As stated
earlier, each harmonic of the decomposition of a contour is
an ellipse defined by its period and FDs. The first harmonic
is an ellipse roughly approximating the contour. We use it
as the reference plane of the new Cartesian coordinate
system, its symmetry axes being the two axis lines X, Y. We
also use the area of this first harmonic to account for the
potential scale difference in the two coordinate systems.
Making ue of these results, we compute an algorithm for
rescaling and reorientation of 3D objects, by normalizing
their FDs or their coordinates on the first harmonic.

An ellipse can be described in two ways: either by
giving the coefficients of its parametric equation (six
numbers in three dimensions), or by giving the geometrical
parameters: semi-axis lengths, angles for the orientation
(three numbers in three dimensions), starting point on the
contour and direction of motion when the parameter
increases. In order to perform the normalization-reorien-
tation steps described above, we must know the equations
linking the geometrical parameters of a given ellipse (here,
the first elliptical descriptor) to the coefficients of its
parametric equation (the FDs of the first harmonic). This
has been addressed by reference [3] in two dimensions, but
not in three dimensions. This is the subject of the Section 2.

To introduce the formalism later used in this article, let us
consider a closed curve M(t) of coordinates (x(t), y(t), z(t)). It
can be described as a sum of ellipses using the Fourier series
expansion of its coordinates:

xðtÞ ¼ x0 þ
X1
n¼1

xnðtÞ

with

x0 ¼
1

T

Z T

0
xðtÞdt

where T is the period of x(t),and

xnðtÞ ¼ xcn cos ð2npt=TÞ þ xsn sin ð2npt=TÞ; n 2 N�

with

xcn ¼
2

T

Z T

0
xðtÞcos ð2npt

T
Þdt

xsn ¼
2

T

Z T

0
xðtÞsin ð2npt

T
Þdt
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 xsn are the Fourier coefficients of the n-th ellipse. The
e relations hold true for y and z. For the experimental

rk, x(t) will typically be obtained by sampling a contour
p points xm, m = 1,. . ., p. The direction of motion when
 parameter t increases is the direction of sampling on
 contour. The FD’s computed here will depend on the
nt chosen to be x1 and the direction of sampling on the
tour.
So

 tð Þ ¼ OC
!
þ CM
!
¼ OC
!
þ
X1
n¼1

CMn tð Þ
!

ere C (x0,y0, z0) and CMn tð Þ
!

(xn(t), yn(t), zn(t)). Mn(t)
cribes an ellipse En centered at C. Let a, b be the lengths
ts semi-axis, a, b, g three angles that define its three-
ensional orientation, and w the phase shift for t = 0. The
pose of the next section is to find the equations relating

 xsn ; ycn
; ysn

; zcn ; zsn and a, b, a, b, g, and w.

elations between Fourier coefficients and
metrical parameters for ellipses in the
ee-dimensional space

To determine the relations between the coefficients
 xs, yc, zc, zs) and the geometrical parameters a, b, a, b, g,

e start from an ellipse in the two-dimensional plane,

ned by its axes O; i
!� �

and O; j
!� �

, its period T, a phase

ft w (corresponding to the position of M at t = 0).

parametric equation is given by:

ðtÞ
ðtÞ
ðtÞ

1
A ¼ a cos ð2pt=T þ ’Þ

b sin ð2pt=T þ ’Þ
0

0
@

1
A

Let us define now the rotation of this ellipse in the
ee-dimensional space for any given orientation. For this
pose, we use Euler angles a, b, g, illustrated in Fig. 1.

 orientation can be achieved by composing three
ental rotations ra, rb, rg.

Here, ra is a rotation of angle a about the ðO; ~kÞ axis,
ose matrix Ra is written in the basis ð~i;~j; ~kÞ; rb is a
tion of angle b about the ðO;~iaÞ axis, with ~ia ¼ rað~iÞ,

ose matrix is Rb; rg is a rotation of angle g about the
~kbÞ axis, with ~kb ¼ rbð~kÞ, whose matrix is Rg.
The matrix V of this transformation v, written in the
is ð~i;~j; ~kÞ, is:

The (Vij)i, j = 1,. . ., 3 satisfy:

V12 þ V21V22 þ V31V32 ¼ 0 (1)

þ V
2
21 þ V

2
31 ¼ 1 (2)

þ V
2
22 þ V

2
32 ¼ 1 (3)

So any ellipse whose parametric equation is (X(t), Y(t),
Z(t)), can be written as

XðtÞ
YðtÞ
ZðtÞ

0
@

1
A ¼ V

xðtÞ
yðtÞ
zðtÞ

0
@

1
A ¼ xccosð2pt=TÞ þ xssinð2pt=TÞ

yccosð2pt=TÞ þ yssinð2pt=TÞ
zccosð2pt=TÞ þ zssinð2pt=TÞ

0
@

1
A

The problem is equivalent to finding a, b, a, b, g, w, given
xc, xs, yc, ys, zc, zs, bound by the following equations:

Sx
xc ¼ aV11cos’ þ bV12sin’
xs ¼ �aV11sin’ þ bV12cos’

�
;

and the same for Sy and Sz by replacing V1i by V2i and V3i,
respectively.

Using Sx, Sy and Sz in Eqs. (1) to (3), we get:

tan2’ ¼ 2
xcxs þ ycys þ zczs

x2
s þ y2

s þ z2
s � x2

c � y2
c � z2

c

(4)

a2 ¼ ðx2
c þ y2

c þ z2
c Þcos2’ þ ðx2

s þ y2
s þ z2

s Þsin2’

� ðxcxs þ ycys þ zczsÞsin2’ (5)

b2 ¼ ðx2
c þ y2

c þ z2
c Þsin2’ þ ðx2

s þ y2
s þ z2

s Þcos2’

þ ðxcxs þ ycys þ zczsÞsin2’ (6)

Eq. (4) has four solutions w1,. . .,w4:

’n ¼ ’0 þ
np
2
; n 2 0; 1; 2; 3f g with

’0 ¼ ð1=2Þarctan
2ðxcxs þ ycys þ zczsÞ

x2
s þ y2

s þ z2
s � x2

c � y2
c � z2

c

Figure 1. Illustration of the Euler angles used in this study.

 RgRbRa

cos a cos g � sin a cos b sin g �cos a sin g � sin a cos b cos g sin a sin b
sin a cos g þ cos a cos b sin g �sin a sin g � cos a cos b cos g �cos a sin b
sin b sin g sin b cos g cos b

0
@

1
A
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Each wi gives two different solutions for a and b, one
positive and one negative.

From the definition of V,

�V11V31 þ V12V32

V21V32 � V22V31
¼ cosb (7)

V21V31 þ V22V32

V11V32 � V12V31
¼ cosb (8)

V21V32 þ V22V31

V11V32 � V12V31
¼ tana (9)

V
2
31 þ V

2
32

V11V32 � V12V31
¼ sinb

cosa
(10)

V31 ¼ sinbsing (11)

V31 ¼ sinbsing (12)

Using Eqs. (1) to (3), Eqs. (7) and (8) are redundant. Sx,
Sy and Sz give Vij as functions of w, a, b. So:

tana ¼ yczs � yszc

xczs � xszc

cosb ¼ wðV21V31 þ V22V32Þ

sinb
cosa

¼ wðV2
31 þ V

2
32Þ

with

V11V32 � V12V31 ¼
xczs � xszc

ab
¼de f

1=w

Let us define:

a� ¼ arctan
yczs � yszc

xczs � xszc

b� ¼ arccos wðV21V31 þ V22V32Þ
� �

� If w > 0, the solutions for (a, b) are:

(a*, b*)
and (a* + p, �b*)

� If w < 0, solutions are:

ða� þ p; b�Þ

and ða�; �b�Þ

Eqs. (11) and (12) unambiguously define g, knowing a,
b, w, a, b.

Any given value for w gives two possible values for a and
for b. Any given value of the triplet (w, a, b) gives two
possible values for the triplet (a, b, g). The set of solutions
has then 32 elements, which reflects the symmetry of the
problem. For computer programming purposes, one can
impose conditions to get a unique solution:

1. w 2] � p/4, p/4[
2. a; bf g 2 ðRþÞ2

3. b 2 0; p½ �
which gives:

’ ¼ ð1=2Þarctan
2ðxcxs þ ycys þ zczsÞ

x2
s þ y2

s þ z2
s � x2

c � y2
c � z2

c

a ¼ arctan
yczs � yszc

xczs � xszc
ðresp:arctan

yczs � yszc

xczs � xszc
þ pÞ

if xczs � xszc > 0ðresp: < 0Þ

b ¼ arccos wðV21V31 þ V22V32Þ
� �

g ¼ arccos
V32

sinb
ðresp: � arccos

V32

sinb
Þ if V31 > 0 ðresp: < 0Þ

with

w ¼ ab

xczs � xszc

V21 ¼
yccos’ � yssin’

a
; V31 ¼

zccos’ � zssin’
a

V22 ¼
ycsin’ þ yscos’

b
; V32 ¼

zcsin’ þ zscos’
b

3. Normalization of Fourier descriptors and coordinates

In order to address our initial problem of contour
comparison, we make use of the preceding results. For two
contours, we can compare either their Fourier descriptors,
or their coordinates. In either case, we want to transform
these numbers, to write them in a new system of
coordinates, intrinsic to the contour. As stated earlier, this
is achieved by using the first harmonic. This lets us create a
rescaling – reorientation algorithm, a required step before
contour comparison.

3.1. Normalization of Fourier descriptors

The equations stated earlier give the necessary tools to
transform the Fourier coefficients of the k-th harmonic
xck
; xsk

; yck
; ysk

; zck
; zsk

, (or equally a, b, g, wk, ak, bk, ak, bk, gk)
to make them independent of the global size of the contour
(normalization), of the orientation (reorientation), of the
starting point on the contour (phase shift correction) and

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

c þ y2
c þ z2

c Þcos2’ þ ðx2
s þ y2

s þ z2
s Þsin2’ � ðxcxs þ ycys þ zczsÞsin2’

q

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

c þ y2
c þ z2

c Þsin2’ þ ðx2
s þ y2

s þ z2
s Þcos2’ þ ðxcxs þ ycys þ zczsÞsin2’

q
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he direction of motion on it. We use the first harmonic,
 similar approach to [21].

1. Rescaling

We normalize the coefficients so that the area of the
t harmonic will be equal to 1. The area of the first
monic is given by:

¼ pa1b1

our normalization process consists in changing all
 xsk

; yck
; ysk

; zck
; zsk

by xck
=
ffiffiffiffiffiffi
A1

p
; . . ., which implies a

tch from (wk, ak, bk, ak, bk, gk) to

 ak=
ffiffiffiffiffiffi
A1

p
; bk=

ffiffiffiffiffiffi
A1

p
; ak; bk; gk; 8 k 2 N�

2. Reorientation

We change the orientation of the contour so that the axes
he first harmonic be aligned with X and Y. It can be easily
ieved through inverting the transformation v described
ection2.For thefirstharmonic, theanglesa1,b1,g1 define

 Letx0ck
; x0sk

; y0ck
; y0sk

; z0ck
; z0sk

bethe Fouriercoefficients ofthe
 ellipse, after the reorientation step. We have:

0
ck

x0sk0
ck

y0sk0
ck

z0sk

1
CA ¼ V

�1
1

xck
xsk

yck
ysk

zck
zsk

0
@

1
A:

3. Phase shift correction

The departure point on the ellipse has no morphologic
vance. What operation needs to be done to the first
monic to have a zero phase shift at t = 0? Let
x�1ðtÞ; y�1ðtÞ; z�1ðtÞÞ be the mobile point describing the
t harmonic after correction of the phase shift.

�
1ðtÞ
�
1ðtÞ
�
1ðtÞ

1
A ¼ V1

a1cost
b1sint

0

0
@

1
A ¼

x�c1
cost þ x�s1

sint
y�c1

cost þ y�s1
sint

z�c1
cost þ z�s1

sint

0
@

1
A

so

�
c1

x�s1�
c1

y�s1�
c1

z�s1

1
A ¼

xc1
xs1

yc1
ys1

zc1
zc1

0
@

1
A cos’1 sin’1
�sin’1 cos’1

� �

The same transformation will hold true for each
monic, 8 k 2 N�:

�
ck

x�sk�
ck

y�sk�
ck

z�sk

1
A ¼

xck
xsk

yck
ysk

zck
zck

0
@

1
A cos’1 sin’1
�sin’1 cos’1

� �
:

4. Direction of motion

Fourier coefficients of two similar ellipses with opposite
ction of motion of the point M (t) across time will be
nd by the following equations:

 xc�
 �xs�
¼ yc�

 �ys�
 zc�

We must impose the same change in the direction of
motion to all harmonics. For instance, one can test the sign
of y0s1

(which is the coefficient after reorientation); if
negative, replace all the xck

; xsk
; yck

; ysk
; zck

; zsk
by

xck� ; xsk� ; yck�
; ysk�

; zck� ; zsk� . Imposing y0s1
> 0 is equivalent

to a direct sense of motion of the first harmonic (after the
reorientation step described above).

Combining all the preceding steps, we obtain a global
formula for the new Fourier coefficients Xck

; Xsk
; Yck

;

Ysk
; Zck

; Zsk
:

Xck
Xsk

Yck
Ysk

Zck
Zsk

0
@

1
A ¼ 1ffiffiffiffiffiffi

A1

p V
�1
1

xck
xsk

yck
ysk

zck
zsk

0
@

1
A cos’1 sin’1

�sin’1 cos’1

� �

If Ys1
is negative, the new coefficients will be:

Xck
�Xsk

Yck
�Ysk

Zck
�Zsk

0
@

1
A:

3.2. Rescaling and reorientation of the initial coordinates

For comparison purposes, the only relevant steps are
normalization and/or reorientation. We also subtract the
coordinates of M0, the center of gravity, to correct the
translation of the origin of the Cartesian coordinate
system. Neither the shift of the starting point nor the
direction in which the points are sampled are of interest.
Let (xp, yp, zp) be the coordinates of the p-th point on the
initial contour. After normalization, reorientation and
translation to the origin of the system, the final coordinates
ðx f

p; y f
p; z f

pÞ will be:

x f
p

y f
p

z f
p

0
B@

1
CA ¼ 1ffiffiffiffiffiffi

A1

p V
�1
1

x p � x0

y p � y0

z p � z0

0
@

1
A: (13)

4. Application examples

4.1. An overview of the use of the proposed algorithm for

re-orientation and re-scaling applied to a patient X-ray CT

Fig. 2 shows an example of how our algorithm can be
used for a three-dimensional re-scaling and re-orientation
of two CT imaging exams obtained in different size and
position. Such a technique could be used for precise and
automated comparison, for a given patient, of images
between several investigations (e.g., assessment of tumor
size response to treatment). A patient abdominal CT scan
was performed (Toshiba 64 slices, American Medical
System, Tustin, CA, USA) and the axial slices were
processed using a volume rendering software to display
the pelvic bone structures (workstation ADW, GE Health-
care, Waukesha, USA). The three-dimensional line of the
pelvic outlet contour was manually sampled leading to 43
points which coordinates were given by the imaging
software (Figs. 2a, c). We then simulated a different
ition and a size reduction of the patient pelvis by
 �zs� pos
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mathematically changing the coordinates of the initial
points by a rotation and scale matrix (Fig. 2b) of which a
new set of coordinates of the pelvic outlet was obtained as
illustrated in Fig. 2d. We then applied our algorithm to
normalize and reorient the two different pelvic outlets,
their corresponding first harmonic being the reference
(X, Y) plane. Re-orientation and normalization steps of the
algorithm give the same contour illustrated in Fig. 2e,
whatever set of coordinates is used as an input. We then
represented the new pelvic outlet within the initial bone
structure (Fig. 2f). This example shows how the algorithm
presented here can be used to reorient and normalize
three-dimensional contours from different CT imaging
acquisitions to perform a comparison between them.

4.2. Morphometrical analysis of the foramen magnum

contour in a murine model of X-linked hypohidrotic

ectodermal dysplasia

X-linked hypohidrotic ectodermal dysplasia (XLHED) is
a genetic disorder due to a mutation of Eda gene [29]. The
clinical phenotype of individuals affected by HED is
complex and associates hypotrichosis, dental agenesis
and morphological defects, onychodysplasia and eccrine
glands aplasia or hypoplasia, being the main cardinal
features [30]. Craniofacial and anthropometric changes are
also described in XLHED and consist in reduced and
retrognatic maxilla, frontal prominence, cranial base
modifications, reduced facial convexity and facial height
with deficiencies in skeletal sagittal and transversal

growth [31–33]. Although the tooth abnormalities in
Tabby mutant mice (the murine model of XLHED) have
been extensively studied, the characterization of the
craniofacial complex has received less attention. Therefore
from 3D microCT reconstructions of the skull, the contour
of the foramen magnum (a 3D line) was quantified using 3D
Elliptical Fourier analysis, allowing quantitative compari-
sons between Tabby specimens and their wild type
controls.

EdaTa mice were generated from the inbred Ta strain
B6CBACa Aw-J/A-EdaTa/J-XO (Jackson Laboratory, USA).
Mice phenotype was identified according to external
morphological criteria: bald patches behind ears and
deformities in the distal portion of the tail for hemizygous
males (EdaTa/Y), striping of the coat for heterozygous
females (EdaTa/ + ). WT mice were generated by inbreeding
wild-type animals derived from the B6129PF2/J strain
considered as control for strains designated by B6. WT
mice and Tabby heterozygous females and homozygous
males were genotyped according to previously published
protocols [34] through PCR amplification using specific
forward and reverse oligonucleotides (3F-7R, 6F-8R and
5F-6R), derived from �3 kb to +1.9 kb murine genomic
sequence surrounding exon 1 of the WT Eda gene. The
presence of a deletion in Eda gene exon 1 was observed in
Ta specimens, as the 6F-8R primers allowed for amplifica-
tion only in Ta heterozygous females and WT. The expected
genotype of each Ta mice was confirmed by the absence of
the 5F-6R primed fragments in Ta males. Mice population
sample included 24 specimens, seven hemizygous males

Figure 2. Overview of the algorithm. (a) and (b) show two CT scan bone volume rendering on which the pelvic outlet has been outlined (black line). (b) is a

mathematically rotated and rescaled image of (a). Corresponding pelvic outlets alone and first elliptical Fourier descriptor are shown respectively in (c) and (d).

Notice that orientation and area of these ellipses are different for the two images. The normalization-reorientation steps of the algorithm are then performed on

the two contours, by making the first harmonic the reference plane of the contour and by normalizing the distances in order to set the area of the first harmonic

equal to 1. The same contour, illustrated in (e), is obtained after the normalization-reorientation steps of the algorithm, whether starting from the (c) or (d)

contours. Finally, the new pelvic outlet is represented in (f) superimposed to the initial bone structures.
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aTa/Y), six heterozygous females (EdaTa/ + ), six control
 females and five control WT males. All the specimens
died were adults (3-month-old mice). Mice were killed
intraperitoneal lethal injection of pentobarbital. The
erimental protocol was designed in compliance with

ommendations of the EEC (86/609/CEE) for the care and
 of laboratory animals. The animals were fixed in 1:10

 formol, 3:4 100% ethanol, and 3:20 distilled water
tion for 15 days. Imaging of full heads was performed

ng a microCT system (eXplore CT 120, GE Healthcare,
ukesha, WI, USA). The protocol used acquired 360 views
3608, at 100 kV, 50.0 mA, with an exposure time of

ms. The duration of one acquisition was less than 4 min.
Feldkamp algorithm of backprojection led to the
onstruction of a volume made of cubic voxels of
mm � 50 mm � 50 mm. Steps of the image analysis
cedure were performed using MicroWiew (GE Health-
e, Waukesha, WI, USA). A 3D virtual reconstruction of

 skull was computed using the isosurface volume
dering module with a threshold value set at 600 HU
. 3). Each foramen magnum outline was then manually

orded as a series of 20 sampling points represented by

their 3D Cartesian coordinates (Fig. 3). The degree of
distinction among mouse strains was then assessed and
displayed graphically using discriminant analysis per-
formed with Statistica 7.1 software package (Statsoft Inc.,
Tulsa, OK, USA). Correlations between 3D elliptical Fourier
descriptors and discriminant axes were calculated. The
unbiased Mahalanobis D2 distances, corrected for unequal
sample sizes between the centroids of each group were
also calculated to express inter-mouse strains variability.
The discriminant analysis of the elliptical descriptors was
limited to the first four harmonics because the multivariate
analysis was no more significant after these harmonics
(WilksLamda values p � 0.05). The first two discriminant
functions (DF1, DF2) described 86.3% of the total variance,
the first accounting for 80.9% of the total variance, the
second DF for the remaining 5.4%. Illustrated in Fig. 3,
hemizygous Ta males and heterozygous Ta females clearly
departed from the corresponding WT groups as shown
by the significant distances separating the EdaTa/Y and
EdaTa/+ specimens from the other mice groups (Table 1).
The greatest difference occurred between WT males and
females illustrating the sexual dysmorphism. The lower

re 3. Isosurface 3D microCT reconstructions of wild type and Tabby mice skull. (a) posterior view and (b) postero-lateral view showing also the

pling points of the three-dimensional contour of the foramen magnum outlined in red. (c) discriminant analysis of the 4 first elliptical descriptors of the

men magnum of the four mice groups (M-WT: wild type males, F-WT: wild type females, M-Ta: Tabby hemizygous males, F-Ta: Tabby heterozygous

ales).
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difference occured between Ta females and corresponding
WT as demonstrated by the inter-group distances illus-
trated in Fig. 3 and Table 1.

5. Discussion

The algorithm presented in this article makes use of the
elliptical Fourier descriptors to reorient, rescale and
compare three-dimensional curves. It makes use of the
first harmonic to define an intrinsic Cartesian coordinate
system in which Fourier descriptors, or alternatively
coordinates, are computed. Potential applications of this
algorithm are numerous but we focus the discussion to
biological and medical examples. Our first application
example demonstrates how the algorithm can be used to
reorient and normalize 3D lines of the same pelvic bone
anatomical structures after simulation of two different
patient size and position from an X-ray CT exam. In
biomedical imaging, comparison of sequential three-
dimensional contours across time for the follow-up of a
particular patient needs such steps of normalization and
reorientation. In clinical practice, the algorithm can also be
used to rescale, reorient, and compare two exams acquired
in two different conditions, such as stress vs. rest in
myocardial perfusion single photon emission computed
tomography (compared to clinical existing nuclear medi-
cine softwares where this step of reorientation is obtained
manually). Alternatively, one may want to describe 3D
anatomical lines to assess the feasibility of a certain
procedure. For instance, in obstetrics, pelvimetry evaluates
the size of pelvic inlet and outlet to know if a vaginal
delivery is possible, or if a cesarean section is required.
Once clinical, this assessment is now helped with CT-
measurements but does not take into account the whole
3D contour information. It is well-known that these
measurements have poor predictive value (see for example
[35]). Extraction of the 3D line and its subsequent analysis
with our algorighm may lead to precious information
regarding the possiblity of vaginal delivery. More broadly,
compared to manual anatomical landmarks and distances
analysis, elliptical Fourier descriptors of bi-dimensional
contours of anatomical structures (obtained for instance
by X-ray planar projection) have demonstrated a great
potential for shape comparison purposes [5–9]. However,
elliptical Fourier descriptors of three-dimensional con-
tours are more anatomically relevant, since most anatom-
ical structures are three-dimensional. It can be used to sort
animals for taxonomic purposes, or to study gene influence
on phenotype as shown in our second example about

cranial dysmorphoses in a murine model of XLHED. In this
case, the 3D elliptical Fourier descriptors algorithm was
applied to a particular 3D line of an open bone structure of
the skull (the foramen magnum), allowing for a clear
distinction between homozygous and heterozygous Ta
mice and their WT controls. This particular example
illustrates the interest of the proposed method for open
anatomical structures like the foramen magnum whose
three-dimensional morphology are generally difficult to
analyze. Elliptical Fourier descriptors analysis applied to
three-dimensional contours treats the shape as a single
entity and allows retrieval of the entire anatomical profile.
For better data reproducibility, automated three-dimen-
sional contour detection from biomedical isotropic tomo-
graphic images should be preferred to manual extraction.
Entire outlines of biological objects contours can be
obtained from sets of non invasive digital isotropic
tomographic images sources (CT or MRI images for
instance). Based on differences in contrasts, many filtering
and tresholding data processing softwares are able to trace
automatically the 3D boundaries of particular anatomical
structures. It avoids the difficulties of localizing specific
landmarks, especially for open structures [36,37]. A whole
automated and efficient shape analysis procedure could be
then achieved starting with an extraction of 3D surface by
volume rendering image processing software followed by a
selection of singular aligned points on the surface as an
input to the algorithm presented in this paper. This
procedure could be of particular interest for automated
screening in large scale mouse phenotyping programs.
Finally, computational time is not a major concern given
the speed of the algorithm.

6. Conclusion

The algorithm presented in this article computes, for
the first time, the relations between the Fourier coeffi-
cients of a contour embedded in the three-dimensional
space as a sum of ellipses and its corresponding geometric
parameters. These relations are then used to create an
algorithm for the rescaling and reorientation of 3D objects,
and contour comparison. The usefulness of this algorithm
is demonstrated for morphometrical comparison purposes
using 3D anatomical profiles obtained from biomedical
clinical and preclinical X-ray computed tomography.
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