
Bio

Ch
w
dr

Ka
a Na

Kun
b Sch
c De
d De

1. I

pop
[1–
sys
to 

the
[6],
the
ext
[8],

C. R. Biologies 335 (2012) 503–513

A R

Artic

Rece

Acce

Avai

Keyw

Prey

Loca

Bion

Stoc

Four

Cha

* 

mns

(M.A

163

http
logical modelling/Biomodélisation

aotic dynamics of a three species prey–predator competition model
ith bionomic harvesting due to delayed environmental noise as external
iving force

lyan Das a,*, M.N. Srinivas b, M.A.S. Srinivas c, N.H. Gazi d

tional Institute of Food Technology Entrepreneurship and Management, Department of Mathematics, Plot No. 97, Sector 56, HSIIDC Industrial Estate,

dli 131 028, Haryana, India

ool of Advanced Sciences, Department of Mathematics, VIT University, Vellore 632 014, Tamil Nadu, India

partment of Mathematics, Jawaharlal Nehru Technological University, Hyderabad, Andhra Pradesh, India

partment of Mathematics, Aliah University, DN-41, Salt Lake, Sector V, Kolkata 700 091, India

ntroduction

The prey–predator system is an important feature in
ulation dynamics and has been studied by many authors
4]. It is already known in the classical predator–prey
tem where each individual predator possesses the ability
attack prey. Even since research in the discipline of
oretical ecology was initiated by Lotka [5] and Volterra
 several mathematicians and ecologists contributed to

 growth of this area of knowledge and this has been
ensively reported in the treatises of Meyer [7], Cushing

 Conlinvaux [9], Freedman [10], Kapur [11,12]. Recently,

the optimal management of renewable resources which has
a direct impact on sustainable development, has been
studied extensively by Chaudhuri [13], Kar and Swarnaka-
mal [14], and Clark [15]. Now, people are facing the
problems due to shortage of resource management.
Extensive and unregulated harvesting of marine fish has
lead to the extinction of several fish species. These problems
are seen in marine reserved zones, where fishing and other
activities are prohibited. This marine reserve not only
protects species inside the reserve area, but also increases
fish abundance in adjacent areas. The model of ecological
system reflecting this has been given by Kar and Swarna-
kamal [14] and Rui Zhang et al. [16]. The ecological
interactions are broadly classified as prey-predation,
competitions, neutralism, mutualism and so on.

Harvesting has a strong impact on the dynamic
evolution of a population. We know, depending on the
nature of the applied harvesting strategy, the long-run
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A B S T R A C T

We consider a biological economic model based on prey–predator interactions to study

the dynamical behaviour of a fishery resource system consisting of one prey and two

predators surviving on the same prey. The mathematical model is a set of first order non-

linear differential equations in three variables with the population densities of one prey

and the two predators. All the possible equilibrium points of the model are identified,

where the local and global stabilities are investigated. Biological and bionomical

equilibriums of the system are also derived. We have analysed the population intensities

of fluctuations i.e., variances around the positive equilibrium due to noise with

incorporation of a constant delay leading to chaos, and lastly have investigated the

stability and chaotic phenomena with a computer simulation.
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stationary density of the population may be significantly
smaller than the long-run stationary density of a popula-
tion in the absence of harvesting [15].

Generally, a bionomic model consists of a biological or
biophysical type which describes the behaviour of a living
system, and an economic model which relates the
biological system to market prices and resources with
institutional constraints. Bio-economic models contain a
single mathematical equation to represent a biological
process. The logistic equation is the most commonly used
function to capture the essential features of population
densities in fishery and forestry management. However,
there exists an increasing trend towards simulation
models which are developed by biologists and agricultural
scientists. These types of models also model the approxi-
mate dynamical behaviour in real situations and their
complexity may preclude their use directly as part of
optimal control models.

As harvesting has a strong impact on the dynamic
evolution of a population, depending on the nature of
applied harvesting strategy, the long-run stationary
density of the population may be significantly smaller
than the long-run stationary density of a population in the
absence of harvesting. In the absence of harvesting, a
population can be free of extinction risk; however,
harvesting can lead to the incorporation of a positive
extinction probability and to potential extinction in finite
time. If a population is subject to a positive extinction rate
then harvesting can drive the population density to a
dangerous low level at which extinction becomes sure, no
matter how the harvester affects the population after-
wards. The exploitation of biological resources and
harvest of population species are commonly practiced
in fishery, forestry and wildlife management. Fishery, an
ancient human tradition, has satisfied the food needs of
mankind for thousands of years and has become
economically, socially and culturally fundamental. Now-
adays, fishes are in real trouble as their populations are
being depleted to dangerous low levels, and it is necessary
to discuss further in order to understand short- and long-
term exploitation patterns in fishery management [17].

The problems of predator–prey systems in the presence
of harvesting have been discussed by many authors; most of
them have focused attention on optimal exploitation guided
entirely by profits from harvesting. Brauer and Soudack
[18,19] studied a class of predator–prey models under a
constant rate of harvesting and under a constant quota of
harvesting of both species simultaneously. The prey–
predator model with harvesting was also studied by Dai
and Tang [20], Myerscough et al. [21], Kar and Chaudhuri
[22,23].

Recently, stability analysis of three species with
environmental fluctuations was investigated by Gazi
et al. [24]. Local stability analysis for a two-species
ecological mutualism model has been presented by Reddy
et al. [25] and stability analysis of neutral species was
carried out by Reddy et al. [26]. Also, the stability analysis
of prey, predator and super-predator was carried out by
Reddy et al. [2,27]. In 2006, Carletti [28] considered a delay
differential equations model with bacteriophage infection

with respect to stochastic perturbations of the environ-
ment using two different approaches. He investigated the
analytical estimates of the population intensities with
fluctuations by Fourier transform methods. Extensive
numerical simulation suggested that a noisy environment
for the bacteria population has much more destabilizing
behaviour on the concentrations at the equilibrium point
than a noisy environment for the phage.

The present investigation is an analytical study of three
species system comprising a Prey (S1) common to two
predators (S2) and (S3) which are in competition with each
other. Some of the equilibrium points are identified based
on the model equations and these are given in four distinct
classes:

� in the absence of all species;
� in the absence of second predator;
� in the absence of first predator;
� in the presence of all the species (the co-existent state).

This article is organized in the following way. In the
next section, we study the existence of local stability of the
equilibria and their dependence on the harvesting efforts.
We have concentrated much more on the interior
equilibrium of the system as we are interested in the
existence of the species. Next, we derived the criteria for
the global stabilities of the system. Taking simple
economic considerations into account, we have discussed
the possibilities of the existence of a bionomic equilibrium
when the system is exploited. We also computed the
population intensities of fluctuations, i.e., variances around
the positive equilibrium due to incorporation of noise
which leads to chaos in reality [29]. Some numerical
results are presented. The problem ends with a brief
description of the principal results obtained here. In
particular, our present model could be applied to fish
species like goldband fish as a prey, sharks as a first
predator and baleen whales or dolphins as second predator
in the real ecological arena.

2. Mathematical model

We consider three species multisystem model by the
following set of three non-linear ordinary differential
equations:

dx1

dt
¼ a1x1 � a11x2

1 þ a12x1x2 � a13x1x3 � q1E1x1 (1)

dx2

dt
¼ a2x2 � a22x2

2 � a21x1x2 � a23x2x3 � q2E2x2 (2)

dx3

dt
¼ a3x3 � a33x2

3 þ a31x1x3 � a32x2x3 � q3E3x3 (3)

with the following notation:

� xi(t): population density of the species Si at time t; i = 1, 2,
3;
� ai: the natural growth rates of Si, i = 1, 2, 3;
� aii: the rate of decrease of Si due to its own insufficient
and discussed the robustness of the positive equilibrium
 resources, i = 1, 2, 3;
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1n: the rate of decrease of the prey due to inhibition by
e predators, n = 2, 3;

m1: the rate of increase of the predator due to its
ccessful attacks on the prey, m = 2, 3;

i = ai/aii: carrying capacities of species, i = 1, 2, 3.

Further, the variables x1, x2 and x3 are non-negative and
 model parameters ai, Ki, aij, i = 1, 2, 3, j = 1, 2, 3.

1: catch ability coefficient of prey species;

2: catch ability coefficient of predator species;

3: catch ability coefficient of predator species;

1: effort applied to harvest the prey species (S1);

2: effort applied to harvest the predator species (S2);

3: effort applied to harvest the predator species (S3).

Throughout our analysis, we take the initial conditions

� q2E2 > 0;

� q3E3 > 0;

� q1E1 > 0

(4)

xistence of equilibrium points

The steady state equations of (1)–(3) are

1 � a11x2
1 � a12x1x2 � a13x1x3 � q1E1x1 ¼ 0

2 � a22x2
2 þ a21x1x2 � a23x2x3 � q2E2x2 ¼ 0

3 � a33x2
3 þ a31x1x3 � a32x2x3 � q3E3x3 ¼ 0

System (1)–(3) possesses the following steady states:

e trivial state G1 (0,0,0) (in the absence of all the
ecies);
e axial state G2ðx̄1; x̄2; 0Þ (in the absence of second

redator);
e boundary state G3 xf

1 ; 0; xf
3

� �
(in the absence of first

redator);
e steady state of coexistence G4 (x1

*, x2
*, x3

*) (the
terior equilibrium).

Case (i): G1 (0,0,0) i.e. the population is extinct and this
e always exists.

Case (ii): if x̄1 and x̄2 are the positive solutions of

1 � a11x2
1 � a12x1x2 � a13x1x3 � q1E1x1 ¼ 0

2 � a22x2
2 þ a21x1x2 � a23x2x3 � q2E2x2 ¼ 0

Then

¼ a22ða1 � q1E1Þ � a12ða2 � q2E2Þ
a21a12 þ a11a22

¼ a21ða1 � q1E1Þ þ a11ða2 � q2E2Þ
a21a12 þ a11a22

> 0

x̄1 is positive provided the following inequality holds:

ða1 � q1E1Þ > a12ða2 � q2E2Þ

Case (iii): if x1
f

and x3
f

are the positive solutions of

a1x1 � a11x2
1 � a12x1x2 � a13x1x3 � q1E1x1 ¼ 0

a3x3 � a33x2
3 þ a31x1x3 � a32x2x3 � q3E3x3 ¼ 0

Then

x1
f ¼ a33 a1 � q1E1ð Þ þ a13 a3 � q3E3ð Þ

a13a31 þ a11a33

x3
f ¼ a31 a1 � q1E1ð Þ þ a11 a3 � q3E3ð Þ

a13a31 þ a11a33

x1
f

is positive provided the following inequality holds:

a33ða1 � q1E1Þ > a13ða3 � q3E3Þ

Case (iv): if x1
* and x2

* are the positive solutions of

a1x1 � a11x2
1 � a12x1x2 � a13x1x3 � q1E1x1 ¼ 0

a2x2 � a22x2
2 þ a21x1x2 � a23x2x3 � q2E2x2 ¼ 0

a3x3 � a33x2
3 þ a31x1x3 � a32x2x3 � q3E3x3 ¼ 0

Then

x1
� ¼ N1

D
; x2
� ¼ N2

D
; x3
� ¼ N3

D

where

N1 ¼ a1 � q1E1ð Þ a22a33 � a23a32½ �
þ a2 � q2E2ð Þ a13a32 � a12a33½ �
þ a3 � q3E3ð Þ a12a23 � a13a22½ �

N2 ¼ a1 � q1E1ð Þ a31a23 � a21a33½ �
þ a2 � q2E2ð Þ a11a33 � a13a31½ �
þ a3 � q3E3ð Þ a11a23 � a13a21½ �

N3 ¼ a1 � q1E1ð Þ a31a22 � a21a32½ �
þ a2 � q2E2ð Þ a11a32 � a12a31½ �
þ a3 � q3E3ð Þ a11a22 � a12a21½ �

D ¼ a11 a22a33 � a23a32½ �
þ a22 a21a33 � a31a23½ �
þ a13 a31a22 � a21a32½ �

For x1
*, x2

*, x3
* to be positive, the following inequalities

hold:

a22a33 > a23a32; a13a32 > a12a33;

a31a23 > a21a33; a31a22 > a21a32;

a21a33 > a31a32; a31a22 > a21a32

a1 � q1E1ð Þ a31a23 � a21a33½ � þ a2 � q2E2ð Þ a11a33 � a13a31½ �
> a3 � q3E3ð Þ a11a23 � a13a21½ �

a1 � q1E1ð Þ a31a22 � a21a32½ � þ a3 � q3E3ð Þ a11a22 � a12a21½ �
> a2 � q2E2ð Þ a11a32 � a12a31½ �



Proof: Let us consider the following:

Vðx1; x2Þ

¼ x1 � x1
� � x1

�ln
x1

x1
�

� �� �

þ l1 x2 � x2
� � x2

�ln
x2

x2
�

� �� �

where l1 is a suitable constant.
Differentiating V with respect to time t along the

solutions of model (1)–(3) and by choosing l1 ¼ a12
a21

, a little
algebraic manipulation yields

dV

dt
< � a11 x1 � x1

�ð Þ2 � a12a22

a21
x2 � x2

�ð Þ2 < 0

This shows that dV
dt is negative definite, and hence by the

Lyapunov theorem on stability, it follows that the positive
equilibrium G2ðx̄1; x̄2; 0Þ is globally asymptotically stable
with respect to all solutions initiating in the interior of the
positive quadrant.

Theorem 2. The equilibrium point G3(x1
f

, 0, x3
f

) is globally

asymptotically stable.

Proof: Let us consider

Vðx1; x3Þ

¼ x1 � x1
� � x1

�ln
x1

x1
�

� �� �
þ l2 x3 � x3

� � x3
�ln

x3

x3
�

� �� �

where l2 is a suitable constant. Differentiating V with
respect to time t along the solutions of model (1)–(3)
and by choosing l2 ¼ a13

a31
, a little algebraic manipulation

yields

dV

dt
< � a11 x1 � x1

f
� �2

� a13a33

a31
x3 � x3

f
� �2

< 0

This shows that dV
dt is negative definite, and hence by

Lyapunov theorem on stability, it follows that the positive
equilibrium G3(x1

f
, 0, x3

f
) is globally asymptotically stable

with respect to all solutions initiating in the interior of the
positive quadrant.

Theorem 3. The equilibrium point G4(x1*, x2*, x3*) is globally

asymptotically stable.

Proof: Let us consider

Vðx1; x2; x3Þ

¼ x1 � x1
� � x1

�ln
x1

x1
�

� �� �

þ l1 x2 � x2
� � x2

�ln
x2

x2
�

� �� �

þ l2 x3 � x3
� � x3

�ln
x3

x3
�

� �� �

where l1 and l2 are suitable constants to be determined in
the subsequent steps. It can be easily verified that the
function V is zero at the equilibrium point G4(x1*, x2*, x3*).
Differentiating V with respect to time t along the solutions
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4. Stability

4.1. Local stability analysis

To compute the local stability behaviour, we have
studied the variational matrix corresponding to the
interior equilibrium. The variational matrix of the system
(1)–(3) at G4 (x1

*, x2
*, x3

*) is:

A ¼
�a11a1

� �a12a1
� �a13a1

�

�a21a2
� �a22a2

� �a23a2
�

�a31a3
� �a32a3

� �a33a3
�

2
64

3
75

We will point out here that, although (0,0,0) is defined
for the system, it cannot be linearised there. So local
stability of G1 (0,0,0) cannot be studied. At G2ðx̄1; x̄2; 0Þ, the
characteristic equation of Aðx̄1; x̄2; 0Þ is l2 þ l a11 þ a22ð Þ þ
a11a22 þ a12a21ð Þ ¼ 0 since l1 þ l2 ¼ � a11 þ a12ð Þ < 0

and l1l2 = a11a22 + a12a21> 0. Thus G2ðx̄1; x̄2; 0Þ is locally
asymptotically stable.

At G3 (x1
f

, 0, x3
f

), the characteristic equation of A

(x1
f

, x2
f

, 0) is l2 þ l a11 þ a33ð Þ þ a11a33 þ a31a13ð Þ ¼ 0,
since l1 þ l2 ¼ � a11 þ a33ð Þ< 0 and l1l2 = a11a33 +
a31a13> 0.

Thus G3 (x1
f

, 0, x3
f

) is locally asymptotically stable.
The characteristic equation A (x1

*, x2
*, x3

*) is

l3 þ a1l
2 þ a2l þ a3 ¼ 0 (5)

where

a1 ¼ a33x3
� þ a22x2

� þ a11x1
�> 0

a2 ¼ ða22a33 � a23a32Þx2
�x3
�

þ ða11a33 þ a13a31Þx1
�x3
�

þ ða12a21 þ a11a22Þx1
�x2
�> 0

a3 ¼

a11a22a33

þa13a31a22

�a13a21a32

þa12a21a33

þa12a23a31

�a11a23a32

0
BBBBBBBB@

1
CCCCCCCCA

x1
�x2
�x3
�

By the Routh-Hurwitz criterion, it follows that all eigen
values of (5) will have negative real parts, if and only if,

a1 > 0; a3 > 0; a1a2 � a3 > 0

Clearly a1> 0 and a3> 0, and after some manipulation,
it is very easy to check that a1a2� a3> 0. Hence G4(x1*, x2*,
x3*) is locally asymptotically stable.

4.2. Global stability analysis

In this section, we have considered the global stability
of the system (1)–(3) by constructing a suitable Lyapunov
function.

Theorem 1. The equilibrium point G2ðx̄1; x̄2; 0Þ is globally

asymptotically stable.

K. Das et al. / C. R. Biologies 506
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odel (1)–(3) and by choosing l1 ¼ a12
a21

, and l2 ¼ a13
a31

with
ttle algebraic manipulation, we get dV

dt < 0. Since dV
dt < 0

ome neighbourhood (x1*, x2*, x3*), therefore the interior
ilibrium point (x1*, x2*, x3*) is globally asymptotically
le.

uantitative bionomic aspect of the model

It is mainly associated with study of the dynamics of
ng resources using economic models. The bionomic
ilibrium is said to be achieved when the total revenue
ained by selling the harvested biomass equals the total
t utilized in harvesting. As we have already discussed, a
logical equilibrium is given by

dxi
dt ¼ 0, i = 1, 2, 3.

Let, c1 be the harvesting cost per unit effort for prey
cies, c2 be the harvesting cost per unit effort for first
dator species (x2), c3 be the harvesting cost per unit
rt for the second predator species (x3), p1 be the price

 unit biomass of the prey, p2 be the price per unit
mass of the first predator species (x2), p3 be the price per
t biomass of the second predator species (x3).
Therefore, net revenue or economic rent at any time
en by R = R1 + R2 + R3 where

¼ ð p1q1x1 � c1ÞE1;

¼ ð p2q2x2 � c2ÞE2;

¼ ð p3q3x3 � c3ÞE3

e R1 represents Net Revenue for the prey; R2 represents
 Revenue for first predator species (x2); R3 represents
 Revenue for second predator species (x3).
The bionomic equilibrium ðx1Þ1; ðx2Þ1; ðx3Þ1;

�
Þ1; E2ð Þ1; E3ð Þ1Þ is given by the following equations:

1 � a11x1
2 � a12x1x2 � a13x1x3 � q1E1x1 ¼ 0 (6)

2 � a22x2
2 � a21x1x2 � a23x2x3 � q2E2x2 ¼ 0 (7)

3 � a33x3
2 � a31x1x3 � a32x2x3 � q3E3x3 ¼ 0 (8)

 p1q1x1 � c1ð ÞE1 þ p2q2x2 � c2ð ÞE2

þ p3q3x3 � c3ð ÞE3 ¼ 0
(9)

In order to determine the bionomic equilibrium, we
e across the following cases.

Case (i): if c1> p1q1x1, c2> p2q2x2, c3> p3q3x3, then the
t is greater than revenue for three species and the whole
tem will be closed.
Case (ii): if c1< p1q1x1, c2< p2q2x2, c3< p3q3x3, then the
enues for all the species being positive, then the whole
tem will be in operation.

1 ¼
c1

p1q1
; x2ð Þ1 ¼

c2

p2q2
; x3ð Þ1 ¼

c3

p3q3
;

Now substitute x1ð Þ1; x2ð Þ1; x3ð Þ1 in Eqs. (6)–(9), we

Þ1 ¼
1

q1

a1 �
a11c1

p1q1

� a12c2

p2q2

� a13c3

p3q3

� �

E2ð Þ1 ¼
1

q2

a2 �
a22c2

p2q2

þ a21c1

p1q1

� a23c3

p3q3

� �

E3ð Þ1 ¼
1

q3

a3 �
a33c3

p3q3

þ a31c1

p3q3

� a32c2

p2q2

� �

Now (E1)1> 0, if

a1 >
a11c1

p1q1

þ a12c2

p2q2

þ a13c3

p3q3

(10)

(E2)1> 0, if

a2 þ
a21c1

p1q1

>
a22c2

p2q2

þ a23c3

p3q3

(11)

and (E3)1> 0, if

a3 þ
a31c1

p3q3

>
a33c3

p3q3

þ a32c2

p2q2

(12)

Thus the Non-trivial bionomic equilibrium point
ðx1Þ1; ðx2Þ1; ðx3Þ1; E1ð Þ1; E2ð Þ1; E3ð Þ1
� 	

exists, if condi-
tions (10)–(12) hold.

6. The Stochastic delayed model

Now, we have extended the above model (1)–(3)
incorporation the effect of random fluctuations. The
sensitive parameters of the system fluctuate about their
average values due to these random fluctuations. We
incorporated such randomness to the model by adding
white noise. The main assumption that leads us to extend
the deterministic model (1)–(3) to a stochastic counterpart
is that it is reasonable to conceive the open sea as a noisy
environment with chaos [30]. There are a number of ways in
which environmental noise may be incorporated in system
(1)–(3). Generally, the environmental noise is distinguished
from demographic or internal noise, for the variation over
time is due to different causes. External noise may arise
either from random fluctuations of the parameters around
some known mean values or from stochastic fluctuations of
the population densities around some constant values.

In this section, we computed the population intensities
of fluctuations, i.e., variances around the positive equilib-
rium G4 due to noise, according to the method introduced
by Nisbet and Gurney [31]. Now, we assumed the presence
of randomly fluctuating driving forces on the deterministic
growth of the prey, predator-one and predator-two
populations at time t, so that the system (1)–(3) is the
following:

dx1

dt
¼ a1x1 � a11x1

2 � a12x1x2 � a13x1x3

� q1E1x1 þ h1j1 tð Þ
(13)

dx1

dt
¼ a2x2 � a22x2

2 � a21x1 t � tð Þx2 t � tð Þ

� a23x2x3 � q2E2x2 þ h2j2 tð Þ
(14)

dx3

dt
¼ a3x3 � a33x3

2 þ a31x1 t � tð Þx3 t � tð Þ

� a32x2x3 � q3E3x3 þ h3j3 tð Þ
(15)
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where x1(t) represents prey species, x2(t) represents
predator-one species, x3(t) represents predator-two spe-
cies, a1, a2, a3 are real constants and j(t) = [j1(t), j2(t),
j3(t)] is a three-dimensional Gaussian white noise process
satisfying

E ji tð Þ½ � ¼ 0; i ¼ 1; 2; 3 (16)

E ji tð Þj j t0ð Þ
h i

¼ di jd t � t0ð Þ; i ¼ j ¼ 1; 2; 3 (17)

where dij is the Kronecker symbol; d is the d-dirac function.
Let

x1ðtÞ ¼ u1ðtÞ þ S� ;

x2ðtÞ ¼ u2ðtÞ þ P� ;

x3ðtÞ ¼ u3ðtÞ þ T� ;

(18)

dx1

dt
¼ du1ðtÞ

dt
;
dx2

dt
¼ du2ðtÞ

dt
;
dx3

dt
¼ du3ðtÞ

dt
(19)

Using (18) and (19), Eq. (13) becomes

du1 tð Þ
dt

¼ a1u1 tð Þ þ a1S� � a11u1
2 tð Þ � a11 S�ð Þ2

� 2a11u1 tð ÞS� � a12u1 tð Þu2 tð Þ þ a12u1 tð ÞP�

� a12u2 tð ÞS� � a12S�P� � a13u1 tð Þu3 tð Þ
� a13u1 tð ÞT� � a13u3 tð ÞS� þ a13S�T�

� q1E1u1 tð Þ � q1E1S� þ h1j1 tð Þ

(20)

The linear part of (20) is

du1 tð Þ
dt

¼ �a11u1 tð ÞS� � a12u2 tð ÞS�

� a13u3 tð ÞS� þ h1j1 tð Þ
(21)

Again using (18) and (19), Eq. (14) becomes

du2 tð Þ
dt

¼ a2u2 tð Þ þ a2P� � a22u2
2 tð Þ � a22 P�ð Þ2

� 2a22u2 tð ÞP� þ a21u1 t � tð Þu2 t � tð ÞP�Þ2

þ a21u1 t � tð ÞP� þ a21u2 t � tð ÞS� þ a21S�P�

� a23u2 tð Þu3 tð Þ � a23u2 tð ÞT� � a23u3 tð ÞP�

þ a23P�T� � q2E2u2 tð Þ � q2E2P� þ h2j2 tð Þ

(22)

The linear part of Eq. (22) is

du2ðtÞ
dt

¼ �a22u2ðtÞP� þ a21u1ðt � tÞP�

� a23u3ðtÞP� þ h2j2ðtÞ
(23)

Using Eqs. (18) and (19), Eq. (15) becomes

du3 tð Þ
dt

¼ a3u3 tð Þ þ a3T� � a33u3
2 tð Þ � a33 T�ð Þ2

� 2a33u3 tð ÞT� þ a31u1 t � tð Þu3 t � tð Þ
þ a31u1 t � tð ÞT� þ a31u3 t � tð ÞS� þ a31S�T�

� a32u2 tð Þu3 tð Þ � a32u2 tð ÞT� � a32u3 tð ÞP�

þ a32P�T� � q3E3u3 tð Þ � q3E3T� þ h3j3 tð Þ

(24)

The linear part of (24) is

du3ðtÞ
dt

¼ �a33u3ðtÞT� þ a31u1ðt � tÞT�

� a32u2ðtÞT� þ h3j3ðtÞ
(25)

Taking the Fourier transform on both sides of (21), (23),
(25) we get:

ivũ1ðvÞ ¼ �a11S�ũ1ðvÞ � a12S�ũ2ðvÞ
� a13S�ũ3ðvÞ þ h1j̃1ðvÞ

(or)

h1j̃1ðvÞ ¼ iv þ a11S�ð Þũ1ðvÞ þ a12S�ũ2ðvÞ
þ a13S�ũ3ðvÞ

ivũ2ðvÞ ¼ �a22P�ũ2ðvÞ þ a21P�e�ivt ũ1ðvÞ
� a23P�ũ3ðvÞ þ h2j̃2ðvÞ

(26)

(or)

h2j̃2ðvÞ ¼ �a21P�e�ivt ũ1ðvÞ þ iv þ a22P�ð Þũ2ðvÞ
þ a23P�ũ3ðvÞ

ivũ3ðvÞ ¼ �a33T�ũ3ðvÞ þ a31T�e�ivt ũ1ðvÞ
� a32T�ũ2ðvÞ þ h3j̃3ðvÞ

(27)

(or)

h3j̃3ðvÞ ¼ �a31T�e�ivt ũ1ðvÞ þ a32T�ũ2ðvÞ
þ iv þ a33T�ð Þũ3ðvÞ

(28)

The matrix form of Eqs. (26)–(28) is

M vð Þũ vð Þ ¼ j̃ vð Þ (29)

where

M vð Þ ¼
AðvÞ BðvÞ CðvÞ
DðvÞ EðvÞ FðvÞ
GðvÞ HðvÞ IðvÞ

0
@

1
A;

ũ vð Þ ¼
ũ1ðvÞ
ũ2ðvÞ
ũ3ðvÞ

2
4

3
5; j̃ vð Þ ¼

j̃1 vð Þ
j̃2 vð Þ
j̃3 vð Þ

2
64

3
75

AðvÞ ¼ iv þ a11S�; BðvÞ ¼ a12S�;

CðvÞ ¼ a13S�; DðvÞ ¼ �a21P�e�ivt ;

EðvÞ ¼ iv þ a22P�; GðvÞ ¼ �a31T�e�ivt;

HðvÞ ¼ a32T�; IðvÞ ¼ iv þ a33T�

(30)

Eq. (29) can also be written as

ũ vð Þ ¼ M vð Þ½ ��1j̃ vð Þ

Let [M(v)]�1 = K(v), therefore

ũ vð Þ ¼ KðvÞj̃ vð Þ (31)
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Þ ¼ Ad j M vð Þ
M vð Þj j (32)

he function Y(t) has a zero mean value, then the
tuation intensity (variance) of its components in the
uency interval [v, v + dv] is SY(v)dv where SY(v) is

ctral density of Y and is defined as

vÞ ¼ lim
T̃ ! 1

Ỹ vð Þ


 

2

T̃
(33)

If Y has a zero mean value, the inverse transform of
) is the autocovariance function

t Þ ¼ 1

2p

Z1
�1

SY vð Þeivtdv (34)

The corresponding variance of fluctuations in Y(t) is
en by

¼ CY 0ð Þ ¼ 1

2p

Z1
�1

SY vð Þdv (35)

 the autocorrelation function is the normalized
ocovariance

t Þ ¼ CY tð Þ
CY 0ð Þ (36)

For a Gaussian white noise process, it is

j
vð Þ ¼ lim

T̂ ! þ1

E j̃i vð Þj̃ j vð Þ
h i

T̂

lim
 ̂! þ1

1

T̂

ZT̂2

�
T̂

2

ZT̂2

�
T̂

2

E j̃i tð Þj̃ j t
0

� �h i
e�ivðt�t0Þdt dt0

i j

(37)

From (31), we have

Þ ¼
X3

j¼1

Ki j vð Þ j̃ j vð Þ ; i ¼ 1; 2; 3 (38)

From (33) we have

v Þ ¼
X3

j¼1

h j Ki j vð Þ


 

2 ; i ¼ 1; 2; 3 (39)

Hence by (35) and (39), the intensities of fluctuations in
 variable ui; i = 1, 2, 3 are given by

2 ¼ 1

2p

X3

j¼1

Z1
�1

h j Ki j vð Þ


 

2dv; i ¼ 1; 2; 3 (40)

 by (31) and (32), we obtain three variances of ui (i = 1,
) of the model system (13)–(15) as follows:

su1

2 ¼

1

2p

Z1
�1

h1

Ad jð1Þ
MðvÞj j











2

þ h2

Ad jð2Þ
MðvÞj j











2

þ h3

Ad jð3Þ
MðvÞj j











2

" #
dv

su2

2 ¼

1

2p

Z1
�1

h1

Ad jð4Þ
MðvÞj j











2

þ h2

Ad jð5Þ
MðvÞj j











2

þ h3

Ad jð6Þ
MðvÞj j











2

" #
dv

su3

2 ¼

1

2p

Z1
�1

h1

Ad jð7Þ
MðvÞj j











2

þ h2

Ad jð8Þ
MðvÞj j











2

þ h3

Ad jð9Þ
MðvÞj j











2

" #
dv

(41)

where jM(v)j = jR(v)j + ijI(v)j.
The real part:

MðvÞj j ¼ R2 vð Þ ¼ �a33v
2T� � v2a22P� � v2a11S�

þ a11a22a33S�P� � a11a23a32S�T�P�

þ a12a21a33S�P�T�cosvt þ va12a21S�P�sinvt
� a12a31a23S�T�P�cosvt � a13a21a32S�T�P�cosvt
þ va13a31S�T�sinvt þ a13a31a22S�P�T�

(42)

The imaginary part:

MðvÞj j ¼ I2 vð Þ ¼ �v3 þ va22a33P�T� þ va11a33S�T�

þ va11a22S�P� � va23a32T�P�

þ va12a21S�P�cosvt � a12a21a33S�P�T�sinvt
þ a12a31a23S�T�P�sinvt þ a13a21a32S�T�P�sinvt
þ va13a31S�T�cosvt � a22a13a31S�P�T�sinvt

(43)

and

Ad jð1Þj j2 ¼ X1
2 þ Y1

2; Ad jð2Þj j2 ¼ X2
2 þ Y2

2;

Ad jð3Þj j2 ¼ X3
2 þ Y3

2; Ad jð4Þj j2 ¼ X4
2 þ Y4

2;

Ad jð5Þj j2 ¼ X5
2 þ Y5

2; Ad jð6Þj j2 ¼ X6
2 þ Y6

2;

Ad jð7Þj j2 ¼ X7
2 þ Y7

2; Ad jð8Þj j2 ¼ X8
2 þ Y8

2;

Ad jð9Þj j2 ¼ X9
2 þ Y9

2

where

X1 ¼ �v2 þ a22a23P�T� � a23a32T�P�

Y1 ¼ va33T� þ va22P�

X2 ¼ a21a33P�T�cosvt � a23a31T�P�cosvt
þ va21P�sinvt

Y2 ¼ va21P�cosvt � va21a33P�T�sinvt
þ a23a31T�P�

X3 ¼ �a21a32P�T�cosvt þ a31a22T�P�cosvt
þ va31T�sinvt

Y3 ¼ va31T�cosvt þ a21a32P�T�sinvt
� a31a22T�P�sinvt

K. Das et al. / C. R. Biologies 335 (2012) 503–513 509



X4 ¼ a12a13S�T� � a32a13S�T�; Y4 ¼ va12S�

X5 ¼ �v2 þ a11a33S�T� þ a31a13S�T�cosvt

Y5 ¼ va33T� þ va11S� � a31a13S�T�sinvt

X6 ¼ a11a32S�T� þ a31a12S�T�cosvt

Y6 ¼ va32T� � a31a12S�T�sinvt

X7 ¼ a12a23S�P� � a22a13S�P�; Y7 ¼ �va13S�

X8 ¼ a12a23S�P� þ a21a13S�P�cosvt

Y8 ¼ va23P� � a21a13S�P�

X9 ¼ v2 þ a11a22S�P� þ a12a21S�P�cosvt

Y9 ¼ va22P� þ va11S� � a12a21S�P�sinvt

Thus Eq. (41) becomes

su1

2 ¼ 1

2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ

h1 X1
2 þ Y1

2
� �

þh2 X4
2 þ Y4

2
� �

þh3 X7
2 þ Y7

2
� �

2
6664

3
7775dv

8>>><
>>>:

9>>>=
>>>;

su1

2 ¼ 1

2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ

h1 X2
2 þ Y2

2
� �

þ

h2 X5
2 þ Y5

2
� �

þ

h3 X8
2 þ Y8

2
� �

2
6664

3
7775dv

8>>><
>>>:

9>>>=
>>>;

su1

2 ¼ 1

2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ

h1 X3
2 þ Y3

2
� �

þh2 X6
2 þ Y6

2
� �

þh3 X9
2 þ Y9

2
� �

2
6664

3
7775dv

8>>><
>>>:

9>>>=
>>>;

If we are interested in the dynamics of system (13)–(15)
with either h1 = 0 or h2 = 0 or h3 = 0, then the population
variances are the following:

(i) if h1 = 0, h2 = 0, then

su1

2 ¼
h3 X7

2 þ Y7
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su2

2 ¼
h3 X8

2 þ Y8
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su3

2 ¼
h3 X9

2 þ Y9
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

(ii) if h2 = 0, h3 = 0, then

su1

2 ¼
h1 X1

2 þ Y1
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su2

2 ¼
h1 X2

2 þ Y2
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su3

2 ¼
h1 X3

2 þ Y3
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

(iii) if h3 = 0, h1 = 0, then

su1

2 ¼
h2 X4

2 þ Y4
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su2

2 ¼
h2 X5

2 þ Y5
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

su3

2 ¼
h2 X6

2 þ Y6
2

� �
2p

Z1
�1

1

R2ðvÞ þ I2ðvÞ
dv

The expressions in (41) gives three variances of the
populations. The integrations over the real line can be
evaluated which gives the variances of the populations.

7. Numerical simulation results

In this section, we substantiate as well as augment our
analytical findings through numerical simulations consid-
ering the following examples.

7.1. Example 1

We take the following parameters:

x1 ¼ 10; x2 ¼ 10; x3 ¼ 20;

a1 ¼ 8; a11 ¼ 0:05; a12 ¼ 0:6; a13 ¼ 0:7; q1 ¼ 0:15;

E1 ¼ 10; a2 ¼ 2; a22 ¼ 0:7;

a21 ¼ 0:17; a23 ¼ 0:13; q2 ¼ 0:01; E2 ¼ 15;

a3 ¼ 1; a33 ¼ 0:4; a31 ¼ 0:15; a32 ¼ 0:18;

q3 ¼ 0:03; E3 ¼ 5;

Fig. 1 shows that the variation of population against
time, initially with x1 = 10; x2 = 10; x3 = 20; in three
different graphs.
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 Example 2

We take the following parameters:

¼ 10; x2 ¼ 10; x3 ¼ 20; a1 ¼ 8; a11 ¼ 0:05;

¼ 0:6; a13 ¼ 0:7; q1 ¼ 0:15; E1 ¼ 10;

¼ 2; a22 ¼ 0:7; a21 ¼ 0:17; a23 ¼ 0:13;

¼ 0:01; E2 ¼ 15; a3 ¼ 1; a33 ¼ 0:4;

¼ 0:15; a32 ¼ 0:18; q3 ¼ 0:03; E3 ¼ 5;

Fig. 2 shows that the variation of population against
e, initially with x1 = 10; x2 = 10; x3 = 20; in a single
ph.

 Example 3

We take the following parameters:

¼ 10; x2 ¼ 15; x3 ¼ 20; a1 ¼ 8; a11 ¼ 0:05;

¼ 0:6; a13 ¼ 0:7; q1 ¼ 0:15; E1 ¼ 10;

¼ 2; a22 ¼ 0:7; a21 ¼ 0:17; a23 ¼ 0:13;

¼ 0:01; E2 ¼ 15; a3 ¼ 1; a33 ¼ 0:4;

¼ 0:15; a32 ¼ 0:18;

¼ 0:03; E3 ¼ 5;

Fig. 3 shows that the variation of population amongst
ee species prey, predator-one, and predator-two
ially with x1 = 10; x2 = 15; x3 = 20; in three dimensions.
Fig. 4 shows that the population oscillation gives chaos
inst time under random environmental noise of three
cies prey, predator-one, and predator-two with initial
ulation sizes x1 = 10; x2 = 15; x3 = 20.

Fig. 5 shows that the variation of population against
e under random environmental noise of species prey,
dator-one and predator-two and the fourth is the phase
trait of the same initially with x1 = 10; x2 = 15; x3 = 20.

oncluding remarks

In this article, a mathematical model has been proposed
 analysed to study the dynamics of fishery resources. It
ssumed that fish populations are growing logistically in

reality. Using the stability theory of ordinary differential
equations [32], it is known that the interior equilibrium
should exist under certain conditions and it is globally
asymptotically stable.

From Figs. 1–3, we may conclude that the given
biological system is stable and in the case of fish (in
particular fish species like goldband fish as a prey, shark as
a first predator and baleen whale or dolphin as second
predator), Eqs. (10)–(12) are satisfied, then the fishermen
will get profit and further, they can run fisheries. Usually
fishermen may harvest the predator population to increase

Fig. 2. Results of Example 2.

Fig. 3. Results of Example 3.
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profit even though harvesting of predator species is very
costly and sometimes difficult [33–35]. However, in the
case of prey species fishermen will not get that much
profit when compared to predators. Even though, some
fishermen will concentrate on the harvesting of prey
species, since prey fishes (like goldband small fishes)
play a major vital role while curing of the diseases
related to eye. Also from the Figs. 4 and 5, we have seen
that the system (13)–(15) is chaotic [29,30], in nature as
it is a-periodic along with high sensitivity to the initial
conditions for solution trajectories in bounded region.
Recently, ratio-dependent system interactions have
attracted many researchers, as these models produce
richer dynamics in real media. The dynamics of ratio-
dependent fishery models are also an important area of
research which is left for future investigations for good
innovative researcher.
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Appendix A. Proof of Theorem 3

Let us consider the Lyapunov function

Vðx1; x2; x3Þ

¼ x1 � x1
� � x1

�ln
x1

x1
�

� �� �

þ l1 x2 � x2
� � x2

�ln
x2

x2
�

� �� �

þ l2 x3 � x3
� � x3

�ln
x3

x3
�

� �� �

where l1 and l2 are suitable constants to be determined in
the subsequent steps. It can be easily verified that the
function V is zero at the equilibrium point G4(x1*, x2*, x3*).
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Fig. 5. Example 3, variation of population against time under random environmental noise.
The time derivative of V along the trajectories of (1)–(3) is
interest concerning this article.
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dx1
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x3 � x3

�

x3

� �
dx3

dt

Choosing l1 ¼ a12
a21

, l2 ¼ a13
a31

after a little algebraic manipu-

on, we get,

¼ �a11 x1 � x1
�ð Þ2

� a12a22

a21
x2 � x2

�ð Þ2 � a33a13

a31
x3 � x3
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Now it is very clear that dV
dt < 0.

Since dV
dt < 0 in some neighbourhood (x1*, x2*, x3*)

refore the interior equilibrium point (x1*, x2*, x3*) is

bally asymptotically stable.
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