
De

Ul
ce
Et

Ul

Ap

Zd
a W.
b De
c Lab

Avin
d Ins
e De

C. R. Biologies 335 (2012) 573–584

A R

Artic

Rece

Acce

Avai

Keyw

Apo

Apo

Tryp

Vite

Vite

Ultr

* 

163

http
velopment and reproduction biology/Biologie du développement et de la reproduction
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A B S T R A C T

This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a

parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied

trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two

important functions in the developmental biology of cestodes: (1) their shell-globules

serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids

represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist

of cells at various stages of development, from peripheral, immature cells of the gonial

type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II)

early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes

involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in

cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated

formation and accumulation of both unsaturated and saturated lipid droplets, along with

their continuous enlargement and fusion; (3) the formation of individual b-glycogen

particles and their accumulation in the form of glycogen islands scattered among lipid

droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation

of large, moderately saturated lipid droplets accompanied by dense accumulations of b-

glycogen along with proteinaceous shell-globules or shell-globule clusters in the

peripheral layer during the advanced stage of maturation; (5) the development of

cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-

globules; (6) the development of Golgi complexes engaged in the packaging of this

material; and (7) the progressive and continuous enlargement of shell-globules into very

large clusters in the peripheral layer during the advanced stage of maturation.

Vitellogenesis in A. menezesi, only to some extent, resembles that previously described

for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in

the differentiating vitellocytes, namely the accumulation of large lipid droplets
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1. Introduction

The order Trypanorhyncha Diesing, 1863 is a large
group of common marine polyzoic cestode parasites, the
unique feature of which is the presence of a rhyncheal
apparatus and whose adult stages are typically found in
the stomach and spiral valve of elasmobranch fishes
(sharks and rays); their larval forms infect a wide variety of
marine invertebrates and fishes [1]. In trypanorhynchs, the

bothria [2] and a rhyncheal apparatus consisting of four
retractile tentacles armed with a complex array of hooks,
which are linked via tentacle sheaths to four bulbs [3]. The
rhyncheal apparatus forms a robust synapomorphy that
supports the monophyly of this order. The Aporhynchidae
Poche, 1926 is unique in the order in that species of its only
genus, Aporhynchus Nybelin, 1918, have secondarily lost
their rhyncheal apparatus [4,5].

The two important functions of cestode vitellocytes,

accompanied by glycogenesis or b-glycogen formation during early differentiation (stage

II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-

globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during

the final stage of cytodifferentiation (stage IV); and (iii) the small number of b-glycogen

particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for

glycogen proved positive for a small number of b-glycogen particles in differentiating and

mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of

vitellogenesis, possible modes of egg formation, embryonic development and life-cycles,

are commented upon.

� 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Cette étude décrit pour la première fois, au microscope électronique à transmission, la

vitellogénèse chez le cestode Aporhynchus menezesi, un trypanorhynque membre de la

famille peu étudiée des Aporhynchidae, parasite du requin Etmopterus spinax, ou sagre

commun. L’activité synthétique des vitellocytes joue deux rôles importants dans la

biologie du développement des cestodes : (1) leurs globules coquilliers (appelés aussi

parfois globules protéiques) servent à la formation de la coquille de l’œuf ; et (2) leurs

réserves accumulées de glycogène et de lipides constituent une source de nourriture pour

l’embryon en développement. Chez A. menezesi, les follicules vitellins sont constitués de

cellules à différents stades de développement, avec les cellules immatures de type gonial à

la périphérie et les mûres au centre. Ces stades de développement sont : (I) immature ; (II)

début de différenciation ; (III) maturation avancée ; et (IV) mûr. Des changements

progressifs impliqués dans ce processus interviennent à l’intérieur de chaque stade. La

vitellogénèse implique : (1) une augmentation de volume cellulaire ; (2) le développement

d’un réticulum endoplasmique lisse, une formation accélérée et accumulation des

gouttelettes de lipides non-saturés et saturés, ainsi que leur croissance continue et leur

fusion ; (3) la formation de particules individuelles de b-glycogène et leur accumulation

sous forme d’ı̂lots de glycogène dispersés parmi les gouttelettes lipidiques dans le

cytoplasme du vitellocyte en maturation et du vitellocyte mûr ; (4) l’accumulation rapide

de grandes gouttelettes de lipides modérément saturés, accompagnées d’accumulations

opaques aux électrons de b-glycogène ainsi que de globules coquilliers protéiques ou de

groupes de globules coquilliers dans la couche périphérique durant le stade avancé de la

maturation ; (5) le développement de citernes de réticulum endoplasmique qui produit des

globules coquilliers protéiques opaques aux électrons ; (6) le développement de complexes

de Golgi engagés dans l’emballage de ce matériel ; et (7) l’accroissement progressif et

continu des globules coquilliers en de très grands amas au sein de la couche périphérique

durant le stade avancé de la maturation. La vitellogénèse chez A. menezesi, d’une certaine

façon, ressemble à celle décrite antérieurement chez quatre autres trypanorhynques. Elle

en diffère par : (i) l’ordre inversé des activités sécrétrices lors de la différentiation des

vitellocytes, à savoir l’accumulation de grandes gouttelettes lipidiques, accompagnées par

la glycogenèse ou la formation du b-glycogène, durant le stade initial de la différentiation

(stade II), c’est-à-dire avant l’activité sécrétrice, prédominée par la synthèse protéique pour

la formation de globules coquilliers (stage III) ; (ii) la très forte accumulation de grandes

gouttelettes lipidiques durant le stade final de la cytodifférentiation (stage IV) ; et (ii) le

nombre réduit de particules de b-glycogène présentes dans les vitellocytes mûrs. Le test

ultracytochimique pour le glycogène avec PA-TCH-SP est positif pour les particules de b-

glycogène dans les vitellocytes en différentiation ou mûrs. Les hypothèses concernant les

relations entre les modèles de vitellogénèse, le mode de formation des œufs, le

développement embryonnaire et les cycles de vie sont commentées.

� 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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eggshell formation and nourishment of the embryo [6], can
attachment organ is a scolex which bears two or four
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ntensified or reduced, depending on the characteristics
ach species in terms of its degree of ovoviviparity and

-cycle. Several TEM studies are available on the
cture and differentiation of vitellocytes in the Cestoda

 Among the trypanorhynch cestodes, only four species
e been examined in this respect: Grillotia erinaceus

cistorhynchidae), Dollfusiella spinulifera, Parachristia-

a trygonis (Eutetrarhynchidae) and Progrillotia pastina-

 (Progrillotiidae) [8–11].
Using a member of a previously unstudied group, i.e.

 aporhynchid Aporhynchus menezesi Noever, Caira,
hta and Desjardins, 2010, a parasite of the lantern-
rk Etmopterus spinax, the aims of the present study
:

 describe the ultrastructural and cytochemical aspects
f vitellogenesis and the functional ultrastructure of
ature vitellocytes;
 compare the results with those of previous reports on
e four trypanorhynch species examined previously;

 discuss any possible functional, developmental, life-
cle or phylogenetic implications of the results

btained.

aterials and methods

Live adult specimens of A. menezesi were collected by
f. Janine Caira and her co-workers from the spiral valve

 naturally infected velvet belly lanternshark E. spinax

 (Elasmobranchii: Etmopteridae) captured off Faial
nd (388310N, 288370W) (Azores Archipelago, Portugal).
Live cestodes were first placed in a 0.9% NaCl solution

 then mature proglottids were fixed in cold (4 8C) 2.5%
taraldehyde in a 0.1 M sodium cacodylate buffer at pH

 for a minimum of 2 h, rinsed in a 0.1 M sodium
odylate buffer at pH 7.4, postfixed in cold (4 8C) 1%
ium tetroxide with K4FeCn6 in the same buffer for 1 h,
ed in a 0.1 M sodium cacodylate buffer at pH 7.4,
ydrated in an ethanol series and propylene oxide, and
lly embedded in Spurr’s resin. Ultrathin sections were
ained using a Reichert-Jung Ultracut E ultramicrotome,
ced on copper grids and double-stained with uranyl
tate and lead citrate. Ultrathin sections were examined
ng a JEOL 1010 TEM operated at an accelerating voltage
0 kV.

The Thiéry technique [12] was used for highlighting the
sence of glycogen particles. Gold grids were treated in
iodic acid, thiocarbohydrazide and silver proteinate
-TCH-SP) as follows: 30 min in 10% PA, rinsed in milliQ
ter, 24 h in TCH, rinsed in acetic solutions and milliQ
ter, 30 min in 1% SP in the dark, and rinsed in milliQ
ter.

esults

 General topography of the vitellarium

In the trypanorhynch cestode A. menezesi, the follicular
llarium is composed of oval follicles, which are circum-

dullary and extend almost the entire length of the

ovary. Each vitelline follicle consists of cells in various
stages of development, from immature cells of the gonial
type close to the periphery to mature cells towards the
centre of the follicle. Although vitellocyte cytodifferentia-
tion represents a continuous process, in order to facilitate
its description, it was subdivided into four discrete stages.
These stages are:

� immature;
� early differentiation;
� advanced maturation;
� mature.

In fact, the gradual and continuous changes involved in
this process occur clearly within each of the stages
delineated herein (compare, for example, Fig. 1A and B,
illustrating changes in the volume of the cytoplasmic layer
and the number of its cell organelles which are already
present at the gonial stem cell stage [I] and indicate the
very beginning of the early maturation stage [II]). The
interstitial cells were not examined in detail, but their
elongate cytoplasmic processes surround the periphery of
the vitelline follicles and penetrate deeply between the
differentiating vitellocytes (Figs. 1B and 3B). The long,
ramified cytoplasmic processes of interstitial cells of
A. menezesi (Figs. 1B and 3B) contain heavy accumulations
of glycogen particles and several lipid droplets and
mitochondria.

3.2. Stage I. Immature stem cells of the gonial type

The undifferentiated cells of the gonial type (Fig. 1A),
situated at the periphery of the vitelline follicles,
represent the precursors of vitellocytes. They have a
high nucleo-cytoplasmic ratio. Their large nuclei mea-
sure �5 mm in diameter, whereas the diameter of the
entire cell is �6.5 mm. At the end of this stage, however,
some increase in cell size takes place (compare Fig. 1A
and B), reaching �7–8 mm in diameter, especially in the
volume of cytoplasm (Fig. 1B). The cell nucleus exhibits
the presence of several electron-dense islands of
heterochromatin in addition to the nucleolus and
numerous pores in its nuclear envelope (compare
Fig. 1A and B). The much thicker layer of granular
cytoplasm contains numerous mitochondria and free
ribosomes, a few Golgi complexes and a very few short
profiles of granular endoplasmic reticulum (GER) (com-
pare Fig. 1A and B).

3.3. Stage II. Early differentiation: glycogenesis, lipid

accumulation, shell-globule formation

Early cytodifferentiation of vitellocytes (Fig. 2A–C) is
characterized by:

� a distinct increase in cell size;
� an increase in the number of mitochondria and both GER

and smooth endoplasmic reticulum (SER) cisternae;
� the formation of the first b-glycogen particles, which are

progressively grouped into small glycogen islands

ig. 2B).
glottid but are less dense in the region of the uterus and (F



Fig. 1. A-B. Undifferentiated stem cells of the gonial type or stage I. A. Undifferentiated stem cells of the gonial type (stage I) situated at the periphery of the

vitelline follicles. Note: (1) the high nucleo-cytoplasmic ratio of these precursor cells with a large nucleus containing a prominent, electron-dense nucleolus

(n); and (2) a thin layer of granular cytoplasm surrounding the nucleus (N), which contains a very few small mitochondria (m). L: lipid droplets; sgc: shell-

globule clusters. B. A distinct increase in cell size observed at the end of stage 1 (compare with Fig. 1A). Note: (1) a much larger volume of cytoplasm

containing numerous mitochondria (m), a few short profiles of GER and Golgi complexes (G); and (2) a large nucleus (N) with an electron-dense nucleolus

(n) and several islands of heterochromatin (Hch). gl: glycogen; IS: interstitial syncytium; L: lipid droplet; np: nuclear pore; sgc: shell-globule cluster.

Z. Świderski et al. / C. R. Biologies 335 (2012) 573–584576



Fig. 2. A–C. An early differentiation stage: stage II and the beginning of stage III. A. Details of two vitellocytes at an early stage (stage II) situated in the left

and right side corners, separated by a cell at a more advanced stage of differentiation (stage III). Note: (1) numerous parallel cisternae of smooth

endoplasmic reticulum (SER) in the perinuclear cytoplasm of the two cells at stage II, and (2) mitochondria (m), granular endoplasmic reticulum (GER),

Golgi vesicles (G) and a large, irregularly shaped lipid droplet (L) apparently undergoing fusion in the middle cell at stage III. b-gl: beta-glycogen; N: nucleus.

B. Details of vitellocytes at the early differentiation stage (stage II) after Thiéry’s cytochemical test for glycogen. Note: (1) a few heterochromatin islands

(Hch) in the nucleoplasm; and (2) in the cytoplasm: (a) several accumulations of b-glycogen particles (b-gl); (b) numerous mitochondria (m); and (c)

electron-dense lipid droplets (L). G: Golgi complexes; N: nucleus; v: vacuole. C. Details of the vitellocyte cytoplasm (stage III). Note: (1) the development of

parallel, concentrically arranged cisternae of the GER surrounded by a Golgi complex (G) and dilated Golgi vesicles that produce dense, proteinaceous shell-

globule clusters (sgc) situated in the central part of the cell; (2) several lipid droplets (L), mitochondria (m) and two shell-globule clusters closely adjacent to

the cell plasma membrane. Inset: higher-power detail of the shell-globule clusters and b-glycogen particles (b-gl) adjacent to cell plasma membrane.

Z. Świderski et al. / C. R. Biologies 335 (2012) 573–584 577



Fig. 3. A-B. Advanced maturation of the vitellocyte or stage III. A. The peripheral region of the vitellocyte cytoplasm showing concentrically arranged Golgi

complexes (G) composed of numerous vesicles at various degrees of dilation; adjacent to them are shell-globule clusters (sgc), large lipid droplets (L), one

with a closely adjacent shell-globule cluster, and several b-glycogen particles (b-gl) in the upper right corner of the micrograph. B. Details of the vitellocyte

cytoplasm (stage III). Note several shell-globule clusters (sgc), lipid droplets (L) and b-glycogen particles (b-gl). The elongate cytoplasmic process of the

interstitial cell (IS), with a few mitochondria (m), is shown in the lower right corner of the micrograph.

Z. Świderski et al. / C. R. Biologies 335 (2012) 573–584578



Fig. 4. A-B. Mature vitellocyte or stage IV. A. A mature vitellocyte. Note: (1) the nucleus (N) with a semi-lunar shape and prominent nucleolus (n); (2) the

highly vacuolated cytoplasm with a few parallel cisternae of granular endoplasmic reticulum (GER) in the perinuclear region, and numerous lipid droplets

(L) and shell-globule clusters (sgc) grouped mainly in the peripheral cytoplasm. v: vacuole. B. High-power micrograph of the peripheral cytoplasm of two

mature vitellocytes. Note: (1) numerous very large, moderately saturated lipid droplets (L); (2) a few large mitochondria (m); and (3) numerous membrane-

bound shell-globule clusters (sgc) grouped mainly in the peripheral region; each cluster is composed of numerous electron-dense but rather small

individual shell-globules, and all are embedded in an electron lucent phenolase component.

Z. Świderski et al. / C. R. Biologies 335 (2012) 573–584 579
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Initiation of secretory activity by both the GER and SER
results in:

� the appearance of lipid droplets associated with SER
cisternae;
� the formation of shell-globules within membrane-

bound vesicles of Golgi origin within the numerous
concentrically arranged Golgi complexes (Fig. 3A) which
are in turn surrounded by concentric GER cisternae
(Figs. 2C and 3A).

Fusion of small shell-globules into much larger shell-
globule clusters starts very rapidly and has already begun
by this stage (Fig. 2C). The glycogen islands are frequently
situated around and between the lipid droplets (Figs. 2B
and 3A, B).

3.4. Stage III. Advanced maturation: rapid formation of shell-

globule clusters and accumulation of lipid droplets

During the advanced phase of vitellocyte maturation
(Fig. 3A, B), the cell doubles in size due to a great
accumulation of large lipid droplets and numerous shell-
globule clusters, accompanied by a progressive vacuoliza-
tion of its cytoplasm. Adjacent shell-globule clusters
frequently become fused into much larger clusters
(Figs. 2C and inset, and 3A, B). At the same time, the
nucleus begins to change in form to the semi-lunar shape
characteristic of the mature vitellocytes of A. menezesi.
Vitellocyte maturation is characterized as a period of a very
high secretory activity, resulting in shell-globules and their
rapid fusion into shell-globule clusters (Fig. 3A, B).

3.5. Stage IV. Mature vitellocyte

The mature vitelline cells (Fig. 4A) are ovoid or spherical
in shape and measure �12–14 mm in diameter. Their
nuclei are semi-lunar or reniform and measure
�7 � 3.5 mm in diameter (Fig. 4A). The karyoplasm
contains an elongate nucleolus and a few irregularly
shaped heterochromatin islands of moderate electron
density. The highly vacuolated cytoplasm contains
numerous large lipid droplets of moderate electron
density, being moderately osmiophilic, and great amounts
of large, membrane-bound shell-globule clusters com-
posed of numerous shell-globules separated by a lucent
phenolase component. Both of these cell inclusions
(Fig. 4A, B) accumulate mainly in the peripheral layer of
the cytoplasm of mature vitellocytes.

4. Discussion

Early TEM studies on cestode vitellogenesis, pub-
lished during the 20th Century, were reviewed and
analysed in relation to egg production, different types of
embryonic development and a variety of parasite life-
cycles [7]. TEM results in more recent studies on this
subject have been dealt with in both the ‘‘Discussion’’
and ‘‘Table I’’ of a paper on vitellogenesis of the
bothriocephalidean cestode Clestobothrium crassiceps

[13].
A. menezesi has been attributed to the trypanorhynch

family Gilquiniidae [1,4,14] and, more recently, the
Aporhynchidae [15–17]. The general pattern of vitellogen-
esis in this species is essentially similar to that reported for

Table 1

Comparison of the ultrastructural characters of vitelline material in five trypanorhynch species.

Trypanorhynch

families and

species

Host species

and families

Host locality Glycogen: amount

and type

Membrane-bound

glycoproteins

Lipid droplets: amount

and chemical nature

Reference

Aporhynchidae

Aporhynchus menezesi

Noever et al., 2010

Etmopterus

spinax

(Etmopteridae)

Horta, Faial,

Azores Islands

(Atlantic Ocean)

Moderate amount

of b particles,

mainly in immature

vitellocytes

Not studied High amount;

moderately

saturated character

Present

paper

Lacystorhynchidae

Grillotia erinaceus

(van Beneden, 1858)

Raja clavata

(Rajidae)

Irish Sea High amount; both

a-rosettes and

b particles

Not studied Moderate amount;

moderately

saturated character

[8]

Eutetrarhynchidae

Dollfusiella spinulifera

(Beveridge

and Jones, 2000)

Rhinobatos

typus

(Rhinobatidae)

Heron Island,

Australia

(Coral Sea)

Only very few b
particles, mainly in

immature

vitellocytes

Attached to all

membraneous

structures such as

GER, Golgi,

mitochondria,

nuclear and cell

plasma membrane

Very large amount

and large size of

unsaturated, highly

osmiophilic droplets

[9]

Parachristianella

trygonis

Dollfus, 1946

Dasyatis

pastinaca

(Dasyatidae)

Sidi Mansour and

Zarzis, Tunisia

(Mediterranean Sea)

High accumulation

of a-rosettes and

b particles

Not studied High amount;

moderately

saturated character

[11]

Progrillotiidae

Progrillotia

pastinacae

Dollfus, 1946

Dasyatis

pastinaca

(Dasyatidae)

Sidi Mansour, Tunisia

(Mediterranean Sea)

Only few traces of

b particles adjacent

to lipid droplets

Not studied Very high

acumulation; highly

saturated,

osmiophobic droplets

[10]
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er species of lower cestodes, i.e. gyrocotylideans [18],
philinideans [19], spathebothriideans [20–22], caryo-
llideans [23–27], diphyllideans [28], trypanorhynchs
11], rhinebothriideans [29] and bothriocephalideans
–32].
During vitellogenesis in all of these cestode taxa, the
thetic activities of differentiating vitellocytes involve
ee processes:

rotein synthesis, producing important material for
ggshell formation;
lycogenesis, which assures glycogen storage and nutri-
ve reserves for the developing embryos;
pid accumulation in the form of large lipid droplets of a
ore or less saturated chemical nature, which are
nsidered to be another source of nutritive reserves
r the embryo.

There is, however, evident variation in the chronology
hese three types of synthetic activity, as it is only very
om that they take place simultaneously.

Protein synthesis is the predominant synthetic activity,
ich usually occurs in the very early stages of vitellogenesis
he great majority of tapeworms; however, in A. menezesi

s evidently delayed. Proteinaceous globules, which are
gressively grouped together into larger subunits, such as
ll-globules and then small globule clusters, are synthe-
d in the GER and packaged into small globules via the
gi complex; this is a general feature of platyhelminth
llocytes [7] and also of other cell types involved in
tein synthesis for external utilization [33].
However, variation in the formation and storage of
bryonic nutritive reserves in the various cestode groups

 been observed in relation to differences in the
portion and amounts of glycogen and lipids
3,28,34]. There are extreme cases, such as the

yophyllideans, where glycogen only is accumulated in
h the vitellocyte cytoplasm and its nucleus
,24,26,27]; another such extreme example occurs in
ebothriidean vitellocytes [29], where generally lipids

y are accumulated in both the cytoplasm and the
leus. A recent comparison of both types of embryonic
ritive reserves in the vitellocytes of lower cestodes has
n presented [13].
In the present study, particular attention was paid to

paring the ultrastructural and cytochemical aspects of
llogenesis and the functional ultrastructure of the

ture vitellocytes of A. menezesi with those of the four
er studied species of the Trypanorhyncha [8–11], which
ong to three other families of this order. It appears that
astructural details of vitellogenesis, and in particular
ails of the mature vitellocytes, exhibit a great diversity
ll five of these trypanorhynch species (Table 1). Great

iation was observed in the sequence of the two main
thetic activities, namely shell formation and the
elopment and storage of nutritive reserves for the
eloping embryos; the latter occur in the form of

cogen and lipids, and are usually represented in
erent proportions in the five species. Both types of
thetic activity can take place at both the early and the
anced stages of vitellocyte differentiation, although

they do not coincide in Parachristianella trygonis [11],
slightly overlap in D. spinulifera [9] and occur simulta-
neously in Progrillotia pastinacae [10]. Nevertheless,
regardless of the group, proteinaceous globules (shell-
globules) are evidently synthesized in the GER and
packaged as small globules via the Golgi complex, as
occurs in all studied platyhelminth species [7].

The most important differences observed in the mature
vitellocyte of D. spinulifera, Para. trygonis and Pro.

pastinacae [9–11] relate to glycogenesis (Table 1). Of these
three species, only Para. trygonis has large amounts of
glycogen. In D. spinulifera, cytochemical overstaining with
periodic acid-thiocarbohydrazide-silver proteinate for
polysaccharides indicated a strongly positive reaction for
membrane-bound glycoproteins in all membranous struc-
tures, such as GER, mitochondria, Golgi complexes, nuclear
and cell plasma membranes, where there were only
membrane-bound polysaccharides and very few granules
of b-glycogen. Similar staining in A. menezesi revealed b-
glycogen particles scattered in the cytoplasm of maturing
vitellocytes. Typical cytoplasmic b-glycogen particles
appeared only seldom during early vitellocyte maturation
and were rarely visible in mature vitelline cells of
D. spinulifera [9] and Pro. pastinacae [10]. Another
important difference between the four species is the lipid
content and the chemical nature of the lipid droplets
(Table 1). In Para. trygonis, there are massive concentra-
tions of lipids which are, like those in Grillotia erinaceus and
Pro. pastinacae, of the saturated type. In all five of the
trypanorhynch species, lipid droplets were localised only
in the vitellocyte cytoplasm, never inside the cell nucleus
as reported for the tetraphyllidean Echeneibothrium

beauchampi [29] or the spathebothriidean Didymobothrium

rudolphii [22]. Studies by Smirnov and Bogdan [35] have
shown that the differences in the level of lipid saturation
between the former pseudophyllideans Eubothrium cras-

sum (Bothriocephalidea) and Diphyllobothrium dendriticum

(Diphyllobothriidea) are related to the body temperature
of their definitive hosts. Although the temperature
difference among the hosts in the present study is not
as great as between these two cestodes, it is of interest that
highly unsaturated lipids were present only in
D. spinulifera (Table 1), which is from a warm, semi-
tropical marine environment. The ultrastructural exami-
nation of the early cytodifferentiation of the vitellocytes
(Fig. 2A) in A. menezesi exhibits numerous largely dilate
cisternae of SER, which are usually associated with
metabolism and the transport of lipids [33]. Lipids
represent a highly diverse and heterogeneous group of
chemical compounds, with a great variety of cellular
functions. They are generally considered as important
energy reserves, although this may not be always the case
in cestodes [36]. In relation to the function of large lipid
deposits, two theories prevail, i.e. they represent either an
energy source or a waste product of metabolism. Studies
on the ultrastructure of the free-swimming coracidial larva
of Bothriocephalus clavibothrium [37] provide strong
arguments for their function as important energy reserves.
The significance of such unusually high accumulations of
lipids and the wide variety of their chemical nature
in cestode vitellocytes appears somewhat difficult to
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ascertain. In TEM studies, however, lipid droplets in
cestode vitellocytes exhibit different degrees of saturation,
which are manifest as differences in their affinity for
osmium in ultrathin sections, e.g. unsaturated lipids are
highly osmiophilic and appear black in the ultrathin
sections, whereas saturated lipids are highly osmiophobic
and appear white in these sections. The studies of Buteau
et al. [38] and Beach et al. [39] on lipids of tetraphyllidean
and trypanorhynch cestodes from sharks may offer some
insights into the origin, metabolism and role of the lipids in
these parasites. Since cestodes are incapable of de novo
synthesis of non-volatile saturated and unsaturated fatty
acids, the biosynthesis of lipids depends on the host for the
fatty acids [38,40]. The fatty acid composition of cestodes
is, therefore, similar to that of their immediate environ-
ment in the host [39] and the origin of these fatty acids in
the host is the host’s food chain. It can be concluded that
the fatty acid patterns in all trypanorhynch lipids is host-
related. According to these data, it is therefore not

surprising that there is so much variation in the qualitative
and quantitative aspects of lipids in the vitellocytes of
trypanorhynchs (Table 1), because those cestodes exam-
ined came from five different hosts and from four different
marine environments, the Irish Sea, the Atlantic Ocean off
the Azores, the Mediterranean Sea and the Coral Sea.

Lack of data on the life-cycles and developmental
biology of the Trypanorhyncha [8,15,41] makes it difficult
to speculate on the functional ultrastructure of their
vitellogenesis and mature vitellocytes. No doubt, there is a
close interrelationship between the pattern of vitellogen-
esis in parasitic platyhelminths and the type of embryonic
development, the poly- or oligolecithality of their eggs and
the different degrees of ovoviviparity [7,24,42–44]. Very
little is known about trypanorhynch life-cycles due to
difficulties in maintaining them alive and creating effective
exposure conditions in the laboratory. In general, their life-
cycles are heteroxenous, involving several different
invertebrate or vertebrate intermediate hosts and an
elasmobranch definitive host [8,15,41]. The gravid seg-
ments may remain attached to the rest of strobila or may
detach progressively from the mature proglottids. Two
developmental pathways have been reported:

� hexacanth larval development within the egg is arrested
in the uterus after the first few cell divisions, i.e. at an
early embryo stage, representing different degrees of
ovoviviparity; development resumes almost immediate-
ly on contact with seawater and infective hexacanths,
surrounded by a ciliated envelope, are produced within
5–8 days;
� intrauterine eggs contain fully-formed oncospheres

[8,15,41,45]. Further studies may show a greater variety
of trypanorhynch egg types than are known at present.

According to Noever et al. [46], the eggs of A. menezesi

differ conspicuously from those of Aporhynchus norvegicus.
In their opinion, the illustration of eggs published by
Dollfus [3], which he attributed to A. norvegicus, closely
resembles the eggs of A. menezesi, which they examined. In
their view, Dollfus’ material consisted of a mixture of
specimens of both A. norvegicus and A. menezesi, and that
he in fact illustrated the eggs of A. menezesi rather than
A. norvegicus. Our diagram of the egg of A. menezesi (Fig. 5)
is a modification of Dollfus’ illustration [3]. As described by
Dollfus [3], the fusiform eggs of this species are very
unusual. They are so delicate that they were only
successfully examined and measured by him when
observed directly in seawater. Any kind of fixation,
dehydration or embedding resulted in their complete
deformation and numerous artefacts. The fusiform eggs,
measuring 155–165 mm in length by 45–55 mm in width,
are surrounded by a very thin outer envelope, which is
prolonged at one pole to form a short filament. Inside each
egg (Fig. 5), there appear to be five or six compartments in
line, and the embryo occupies only one, apparently any
single one, of these compartments. Such an early embryo is
composed of several blastomeres surrounded by a cluster
of three or four entities, interpreted as being vitelline cells,
arranged usually in tandem on either side of the embryo.
The presence of such eggs with early embryos may suggest

Fig. 5. Diagram of the egg of Aporhynchus menezesi. Modified after Dollfus

[3]. Bl: blastomeres; C: capsule; EC: egg compartment.
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microscopie électronique, J. Microsc. 6 (1967) 987–1018.
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[20] M. Bruňanská, L.G. Poddubnaya, B.S. Dezfuli, Vitellogenesis in two
spathebothriidean cestodes, Parasitol. Res. 96 (2005) 390–397.

[21] L.G. Poddubnaya, J.S. Mackiewicz, Z. Świderski, M. Bruňanská, T. Scholz,
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