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lborella (Teleostea, Cyprinidae) in North-Western Italy: Comparison
ith other machine learning techniques
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 Introduction

Freshwaters, which are rapidly deteriorating all around
e world, have been the focus of increasing attention [1–3].
is attention has inspired many ecological studies analyz-

g environmental and habitat factors affecting the distri-
tion of freshwater organisms at different spatial scales.
orldwide, freshwater habitats, due to human disturbance,
ow an extinction rate of species that is predicted to be five

es higher than that of terrestrial species and three times
at of coastal marine mammals [4]. This stimulated the
ientific community to develop practical tools for assessing
nning waters and species conditions ecologically and for
ggesting management strategies.

We used in this research project Alburnus alburnus

alborella (De Filippi, 1844), a subspecies native to northern
Italy of the widespread European small cyprinid Alburnus

alburnus. It has suffered a very sharp decrease in
population over the last 20 years, although the causes
are still unknown [5]. Because of this, it was selected for
reintroduction projects [5]. Moreover, in Piedmont (NW
Italy), a quite recent Regional Law (L.R. number 37 dated
29/12/06) lays down regulations for the management of
running water fauna, habitat, and fishing, providing
policies aimed at re-establishing consistent populations
of native species and subspecies of freshwater fish fauna.

Among the promising tools that can help us solve such
environmental challenges, like the loss of biodiversity,
there are those that ecological informatics equips us with
[6]. Ecological informatics can be seen as an interdisciplin-
ary framework that uses advanced computational tech-
nology to study ecological processes and patterns on
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A B S T R A C T

Alburnus alburnus alborella is a fish species native to northern Italy. It has suffered a very

sharp decrease in population over the last 20 years due to human impact. Therefore, it was

selected for reintroduction projects. In this research project, support vector machines

(SVM) were tested as possible tools for building reliable models of presence/absence of the

species. A system of 198 sites located along the rivers of Piedmont in North-Western Italy

was investigated. At each site, 19 physical-chemical and environmental variables were

measured. We verified that performances did not improve after feature selection but,

instead, they slightly decreased (from Correctly Classified Instances [CCI] = 84.34 and

Cohen’s k [k] = 0.69 to CCI = 82.81 and k = 0.66). However, feature selection is crucial in

identifying the relevant features for the presence/absence of the species. We then

compared SVMs performances with decision trees (DTs) and artificial neural networks

(ANNs) built using the same dataset. SVMs outperformed DTs (CCI = 81.39 and k = 0.63) but

not ANNs (CCI = 83.03 and k = 0.66), showing that SVMs and ANNs are the best performing

models, proving that their application in freshwater management is more promising than

traditional and other machine-learning techniques.
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arious levels of ecosystem complexity [7]. A rapidly
rowing area of ecological informatics is machine learning

L), a tool that identifies structures in complex, nonlinear
ata and generates accurate predictive models.

Different applications of ML methods have been used in
cology [7–12], demonstrating that ML is a powerful
lternative to traditional modelling approaches. ML
ethods consist of a range of approaches, including:

 artificial neural networks [13–18];
 classification and regression trees [17–25];
 fuzzy logic [26–28];
 genetic algorithms and programming [29];
 Bayesian belief networks [30];
 support vector machines [25,31–39].

All these methods are being used more and more. This
 due to the fact that they can model the complex,
onlinear relationships that typify ecological data, with-
ut having to satisfy the restrictive assumptions of
onventional, parametric approaches [40–43]. Further,
hey allow researchers to develop highly reliable models

].

.1. Support vector machines (SVMs)

SVMs consist of a new group of learning algorithms,
riginally developed by Vapnik [31]. They present a
hallenge for modellers because they are statistically
ased and because they guarantee performance in a
eoretical way [44]. They are inductive modelling
chniques inspired by some features of biological
formation processing. They are based on an algorithm
at finds the maximum-margin hyperplane–i.e. the

yperplane showing the greatest separation between the
lasses. The instances at the minimum distances from the
aximum-margin hyperplane constitute the support

ectors. The maximum-margin hyperplane is defined
xclusively by the set of support vectors. The support
ectors are placed on the very edge of the class
istributions inside the border region separating the
lasses. Therefore, they are elements that are critical for

e training set. All the other training instances are
relevant to the extent that they can be omitted without
hanging either the position or orientation of the hyper-
lane [36,45]. These support vectors are placed closest to
e decision boundary. Therefore, the classifier uses

xtreme cases to separate the two classes from each
ther. For detailed descriptions of SVMs [31,46].

SVMs show several advantages over other ML techni-
ues:

 unlikely reaching overfitting [31,46,47];
 producing results that are more competitive than those
of the best current accessible-classification methods
[25,39];

 yielding excellent generalisation performance while
solving numerous nonlinear regression and time-series
problems [25,31];

 requiring only a minimum of model tuning [25,32,48]
and a small training dataset [36].

Especially this last point is very important in the
ecological applications of the method because researchers
can sample only a much smaller number of sites of extreme
spectral response [36] avoiding conventional, more
expensive sampling approaches [36].

On the other hand, they show some disadvantages:
being computationally complex and slow. Even so, because
of their many advantages, SVMs have been applied
successfully to many tasks. Nevertheless, they have been
applied to ecological predictions only in the last decade
[22,32,33,35–39,44,48–51].

Because of their novelty and their potential usefulness
in ecological applications, we decided to build models of
A. a. alborella presence using the SVM approach.

The aims of the present research project are:

� to use SVMs to model the species’ presence in Piedmont;
� to compare the SVM performance with the performances

of decision trees (DTs) and artificial neural networks
(ANNs) [18];
� to compare the performance of SVMs built under two

different sets of circumstances:
� without performing feature selection,
� with the use of only those features that stem from a

previous feature selection procedure.

This last comparison is made because feature reduction
is an open question. In fact, some authors [25] deem
feature reduction unnecessary for SVM classification,
while others advocate feature reduction in order to make
the classification and performance of the models more
accurate [36,37,39]. Therefore, we aimed at understanding
whether researchers do or do not need feature selection for
the specific task of A. a. alborella modelling.

2. Materials and methods

2.1. Study area and data collection

The study system, which covers an area of 25,399 km2,
consisted of 198 sites located along the rivers of Piedmont
in North-Western Italy. A. a. alborella was present at 110 of
the sampling sites (55.56% of them).

Because generally data mining approaches are data
driven, we chose variables generally accepted by experts
according to their degree of importance for fish fauna
[13,52–54]. We chose the following set of predictive
variables: (1) altitude; (2) homogeneity in the width of the
sampled tract (classes 0–5; the larger the widths of the
sections examined, the larger the value); (3) amount of
human impact (classes 0–5; the larger the impact, the
larger the value); (4) amount of shade (classes 0–5; the
larger the shade, the larger the value); (5) shelters for fish,
visually assessed as the area consisting of undercut banks,
macrophytae cover and debris jams (classes 0–5; the larger
the cover, the larger the value); (6) percentage of bottom
vegetation (algae and macrophytae) (classes 0–5; the
larger the vegetation, the larger the value); (7–8–9)
percentages of the sampled area with waterfalls classified
according to their heights: (7) falls with heights > 1 m, (8)
0.5 m � high � 1 m, (9) < 0.5 m; (10–11–12) percentages
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 the sampled area classified according to water speed
d depth: (10) riffles (areas of quite fast water with a
oken-surface appearance), (11) pools (areas of slow,
ite deep water with a smooth surface appearance),
2) flat reaches (areas with smooth constant depth and
ater speed), each reach surveyed and estimated visually;
3–18) percentages of the sampled area classified
cording to granulometry: (13) bedrock, (14) boulders
d pebbles, (15) medium gravel (dimensions � 1 cm),
6) little gravel (1 cm < dimensions � 2 mm), (17) sand
imensions < 2 mm) and (18) silt; (19) pH.
The presence/absence data as well as the values of all 19

riables in each site were retrieved from the ‘‘Monito-
ggio della fauna ittica in Piemonte’’ (Regione Piemonte,
06).
A team of skilled ichthyologists collected data from

ring to fall 2004. They used two types single-pass
ctrofishing: (1) a battery-powered electric fishing

achine (AGK IG 200/2) operated at 150–300 V (the
ltage varying according to the water conductivity); and
) an internal-combustion-engine machine (EFKO FEG.
00). The last one was used when the water was deeper
an 1.5–2 m.
All 19 variables were submitted to the feature selection

ocedure. All inputs were comparable in terms of quality
 data set over different sampling sites. Scales were
ndardised using z-scores – all river and habitat data

ere proportionally normalized between 0 and 1, mini-
um and maximum of all river and habitat-measured data
nged between 0.05 and 0.95.

For the classification phase we used SVMs. We built
odels including both the initial set of 19 features
dicated as ‘non-feature selection’ models, henceforth
S models) and the subset features resulting from the

ature selection (indicated as ‘feature selection’ models,
 models).

. Feature selection phase

Feature selection is generally performed by searching
e space of attribute subsets. This is done by combining an
tribute-subset evaluator with a search method. In this

dy we used filter methods, which select features on the
sis of measures of feature predictability and redundancy.
supervised filter is very flexible and allows various

arch and evaluation methods to be combined. In
rticular, we chose four supervised filter evaluators (x2,
formation Gain, Gain Ratio, and Symmetrical Uncertain-
) available in WEKA [45] with one search method
anker) to find the best feature set. For more details, see
8]. Moreover, feature selection was done by cross-
lidation (10-fold cross-validation) for each of the four
ethods. The algorithms used in each evaluator were
haustively described by [45].

. Model development

SVMs use Platt’s sequential minimization algorithm
MO) for training a support vector classifier [55–57]. This
plementation replaces all missing values and transforms
minal attributes into binary ones. Platt’s sequential

minimization algorithm is also included in the machine-
learning package WEKA (http://www.cs.waikato.ac.nz/ml/
weka) [45].

We chose SMO because it is extremely easy to
implement, often faster than other algorithms, and has
better scaling properties. We applied the polynomial
Kernel. We did not modify the default values of the
parameter settings in the WEKA toolbox, except for the
exponents of the polynomial Kernel. We tested different
exponents from 1.0 to 5.0 to improve the performance of
the SVM models [25]. The model with the best-performing
exponent was chosen. Both for the FS subset as well as for
NFS, we used k-fold cross-validation.

According to [16], the best k-value can be determined
by building three different models: (1) models using a set
of combinations of k between 3 and 10; (2) models using a
set of combinations of k corresponding to the number of
cases/2; and (3) models using a set of combinations of k

corresponding to the number of cases � 1. Therefore, we
determined the optimal k value empirically by comparing
the performances of different cross-validated SVMs using
the Mann-Whitney U test.

Both for NFS SVMs and for FS SVMs, the model with the
best-performing exponent and the best-performing k

value was validated by using ten random subsets to
estimate any eventual reliable error [58]. Random subsets
were obtained using a custom syntax in IBM SPSS Statistics
for Mac.

At this point, we ran the non-parametric Mann-
Whitney U test to compare the performance of the NFS
and FS models.

There are several ways to assess the performance of
predictive models [59] each one with pros and cons. One of
them is by calculating the percentage of sites where the
presence/absence of the studied taxa is predicted correctly
[60]. However, correctly classified instances (CCI) are
affected by the frequency of occurrence of the test
organism(s) being modelled [61–63]. To compensate, we
used the following additional performance measures,
namely: (1) model sensitivity (ability to predict species
presence accurately); (2) model specificity (ability to
predict species absence accurately); (3) Cohen’s k coeffi-
cient [64]; and (4) the area under the receiver-operating-
characteristic (ROC) curve. Cohen’s k is a measure of the
proportion of all possible cases of presence or absence that
are predicted correctly after accounting for chance effects.
Thus, Cohen’s k interprets the predictive performance of
the models better than CCI alone, being negligibly affected
by prevalence [65–67]. Cohen’s k gives a rather conserva-
tive estimate of prediction accuracy because it under-
estimates agreements due to chance [68]. According to
literature [16,22,25,67], models with k > 0.4 and CCI > 70%
are to be considered reliable.

Moreover, the authors of [69] suggest that different
disciplines may show differences in k threshold values.
Hence, they assess the following k values in a freshwater
ecological context too, confirming the ranges suggested by
[70], which are classified as 0.00–0.20, poor; 0.20–0.40, fair;
0.40–0.60, moderate; 0.60–0.80, substantial; and 0.80–1.00,
almost perfect. Regarding the area under the ROC curve, a
value of 0.7 indicates satisfactory discrimination, a value of

http://dx.doi.org/10.1016/j.ecoinf.2010.11.001
http://dx.doi.org/10.1016/j.ecoinf.2010.11.001
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.8 good discrimination and a value of 0.9 very good
iscrimination [71].

Starting from the results of a previous work [18], we
sed 10-fold cross-validated pruned DTs built using,
mong the 19 inputs, only the ones resulting from feature
election (see above). The reduction of features allows for a
eduction in data-gathering and data-analyses costs, and
lso lead to better performance of DTs [18]. Similarly, we
sed ANNs built using features from the above mentioned
ature selection. In models built after feature selection,
e performance resulted significantly better than in those

sing all parameters [18]. We compared the performance
f SVM models to those of ANNs showing the best-
erforming architecture in Tirelli and Pessani [18]: 9 input
eurons, 6 hidden neurons, 1 output, and 10-fold cross-
alidated. DTs and ANNs were built using WEKA [45].
odel validation for DTs and ANNs was conducted
llowing the same procedure as for SVM models. We

an the non-parametric Mann-Whitney U test to compare
e performance of the SVM models built in the present

tudy with the performances of DTs and ANNs [18]. This
as done in order to ascertain the reliability of SVMs for
sh fauna management.

. Results and conclusions

.1. Feature selection phase

We verified that all four of the methods converge on the
election of a unique core of relevant features, which are
etermined by applying the feature selection methods
ited above as ranking methods for the overall set of
atures. The selected core is made up of the features

resent in the first 9 positions of the rankings. They are: (1)
ltitude; percentage of the sampled area showing (2) falls
ith heights < 0.5 m, (3) riffles and (4) flat reaches; the

ercentages of (5) bedrock, (6) boulders and pebbles, (7)
ttle gravel; (8) sand and (9) pH.

We acknowledge that the selection of variables is not
ecessarily independent of the modeling approach (e.g. a
ariable that can be effective with ANNs may be ineffective
ith DTs). Nevertheless, we used the same set of variables

 contrast the performances of different models.

.2. Models performances

The best-performing models were obtained using an
xponent of 1.7 for NFS models, of 1.9 for FS SVMs. The
ptimal k value was determined empirically by comparing
he performances of different cross-validated SVM models
sing the Mann-Whitney U test. Among the different k-
ld cross-validations that were tested for NFS models, the

erformances and reliability did not improve with k > 99.
 fact, there were no statistical differences according to

he results of the Mann-Whitney tests performed on the
ve parameters assessing the performances of the NFS
odels, between 99- and 197-fold cross-validated SVMs.

hus we used the 99-fold cross-validation to build our
odel. For FS models, the performances and reliability

cross-validation to build FS SVMs. Table 1 shows the mean
performances of the different machine learning techni-
ques (NFS SVMs, FS SVMs, ANNs, and DTs).

According to the performance parameters we consid-
ered, the presence/absence of A. a. alborella can be
predicted reliably by SVMs. The average CCI, sensitivity
and specificity either for NFS and FS SVMs was much
higher than the threshold-limit value for considering a
model reliable (= 70%). The same trend is followed for the
mean value of k, which is much higher than the threshold.
The values of the Cohen’s k actually reveal substantially
reliable models. In the end, also the area under the ROC
curve shows, in both the models, very good discrimination.

Moreover, we conducted Mann-Whitney U tests to
assess the statistical differences in the performances of the
two types of SVM models: (1) the 10 repeated 99-fold
cross-validated NFS models, (2) the 10 repeated 10-fold
cross-validated FS models. The tests showed that the best
predictions were obtained with NFS models, except for
sensitivity (no statistical differences) and specificity (FS
SVMs better performing, Table 2). Among the pull of 10
repeated 99-fold NFS SVMs, the best performing model had
the following performances: CCI = 85.35%; Sen = 80.30%;
Spe = 85.86; k = 0.71 and ROC = 0.86. Therefore, SVMs can
make predictions very well.

FS SVMs performed slightly worse than NFS SVMs
probably because feature selection can cause a loss of
information about the impact of environmental and
physical-chemical variables on A. a. alborella presence.
However, as FS SVMs performances are much higher than
the minimum standards of CCI = 70% and k = 0.40 and allow
for identifying the most important features for
A. a. alborella presence, they should be taken in consider-
ation to build an ecologically-relevant model.

The fact that NFS SVMs show higher performances than
FS SVMs is in contrast with what reported for other ML
methods several times [17,18,39,72]. Learning in ANNs is
sensitive to the inputs used. When choosing the appropri-
ate features through pre-processing, models perform
considerably better [72]. Without variable selection in
ANNs, irrelevant information passes through the nodes,

Table 1

Statistics of the performance of the machine learning models.

Model Value CCI k Sen Spe ROC

NFS SVMs Mean 84.34 0.69 79.70 84.14 0.85

St. Dev. 0.47 0.92 0.83 0.01 0.01

FS SVMs Mean 82.81 0.66 79.94 86.04 0.83

St. Dev. 1.18 1.17 1.83 0.02 0.01

ANNs Mean 83.03 0.66 78.57 88.03 0.86

St. Dev. 1.04 0.02 2.02 1.97 0.01

DTs Mean 81.39 0.63 77.22 86.01 0.81

St. Dev. 1.47 0.03 1.83 2.15 0.02

NFS SVMs: support vector machine models without feature selection; FS

SVMs: support vector machine models built after selecting inputs using

the four supervised-filter evaluators; ANNs: artificial neural network

models; DTs: decision tree models; CCI: percentage of correctly classified

instances; Sen: sensitivity; Spe: specificity; k: Cohen’s k; ROC: area under

the ROC curve; St. Dev.: standard deviation.
nfluences the connection weights, and affects the overall
id not improve with k > 10. Thus we used the 10-fold i
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rformance. Variable selection is fundamental because
creases ANN size, reduces computational costs,
creases speed, and uses less data to estimate connection
eights efficiently. Therefore it eliminates all but the most
levant attributes, reduces the number of input variables,
d helps models predict better [67,72,73]. Moreover, the
sult of feature selection in SVMs absolutely confirms
hat Hoang and colleagues [25] reported: using feature
lection methods in SVMs not necessarily increases the
ssification accuracy of the models significantly. But this

ct is in disagreement with Sanchez-Hernandez and co-
thors [36,37] and Favaro et al. [39]. We may explain this
 the fact that SVM models are indeed more able to deal

ith a higher number of variables than other ML
chniques. Even so, these models in certain circumstances
ll benefit from appropriate feature selection [39]. Our
dy shows that the choice of feature selection in SVM

ay not assure the best performing model but still
arantee high performances and may provide the
searcher with ecologically relevant information.

We have endeavoured to determine the predictive
odel that performs the best because such a model can be
ed to manage properly A. a. alborella. Not all the
odeling procedures we compared showed the same
rformance. NFS SVMs outperformed DTs (Table 2)
cept for specificity where DTs show better perfor-
ances. FS SVM showed better performances when
mpared to DTs for CCI, Cohen’s k and sensitivity, while

 statistical differences have been found for specificity
d area under the ROC curve (Table 2). ANNs (Table 2)
tperformed DT models [18]. Different is the situation
garding the performance comparison between ANNs and
Ms. The Mann-Whitney tests showed that the best
edictions were obtained with NFS SVMs for CCI and for
hen’s k and with ANNs for specificity and area under the
C curve (Table 2). No difference was found for

nsitivity. The comparison between FS SVMs and ANNs
owed that ANNs have significantly higher values of the
ea under the ROC curve. All other performance param-
ers did not differed significantly.

Therefore, we can assert that both SVMs and ANNs are
luable and useful tools for predicting A. a. alborella

esence/absence.
On the hand, our results are consistent with the

alyses performed by Hoang and colleagues [25] to
odel the presence of macroinvertebrates in Vietnamese
ers. These authors showed better performances of SVMs
er DTs, but unfortunately they did not compare the

performances of SVMs with those of ANNs. On the other
hand, the results of the present research are partially in
disagreement with Favaro et al. [39], who reported SVMs
as the best performing ML method to model the presence/
absence of Austropotamobius pallipes.

In conclusion, A. a. alborella, being subjected to serious
decline like most of the endemic freshwater fish species,
needs researchers choose the best way to take on this
decline by deeply understanding the relationships be-
tween species and their habitats. With this in mind,
researchers can better plan management strategies. To
improve our understanding of the ecological constraints to
which the species is subjected, we should focus on the 9
inputs extracted during feature selection in FS SVMs. Both
NFS and FS SVMs showed high performances: the former
providing slightly higher results, the latter being more
ecologically interpretable. In fact, a major disadvantage of
the best performing NFS SVM models is the need to use all
the 19 inputs, resulting in complex and less transparent
models. In this way, the detection of general trends in the
data is very difficult. Therefore, the ecological interpreta-
tion of the results may be a daunting task, as the NFS SVMs
are unable to offer information about the habitat
suitability for A. a. alborella. Feature selection is crucial
to improve the transparency of the FS SVMs by reducing
the number of inputs (from 19 to 9) and still allowing for a
deeper look into the ecologically relevant parameters.

Among the input used in FS SVMs, altitude plays an
important role because it is good integrator of the thermal
conditions [18]. In this regard, our findings are in
agreement with what reported for the fish community
in New Zealand [74]. Flow velocity and substrate are
crucial factors for the reproductive behaviour of this
cyprinid, being essential for attaching eggs, therefore
determining spawning habitat suitability [18]. Bedrock is a
key factor for A. a. alborella because it provides shelters,
which are fundamental when this species thrives. Tirelli
et al. [72] referred the same situation for Salmo marmor-

atus. Bottom reaches of boulders and pebbles, and little
gravel are also important for the presence of A. a. alborella,
in agreement with Tirelli et al. [72]. Moreover, A. a. alborella

often inhabits sandy bottom, while it is not found on silt
bottoms to avoid physical alteration and infections
(especially affecting gills) or because it interferes with
its reproductive behaviour [18,72]. Prolonged exposure to
fine suspended sediments can affect fish health and
behaviour, causing changes in blood chemistry, gill- or
skin-epithelia damage, and increasing the number of

ble 2

rformance comparisons between the different machine learning techniques.

omparison CCI k Sen Spe ROC

FS SVMs vs FS SVMs 0.002* 0.002* 0.579 0.001* 0.004*

FS SVMs vs ANNs 0.002* 0.003* 0.247 < 0.001* 0.015*

FS SVMs vs DTs < 0.001* < 0.001* 0.002* 0.043* 0.001*

S SVMs vs ANNs 0.481 0.631 0.123 0.052 < 0.001*

S SVMs vs DTs 0.043* 0.035* 0.001* 0.631 0.052

NNs vs DTs 0.007* 0.023* 0.190 0.063 < 0.001*

S SVMs: support vector machine models without feature selection; FS SVMs: support vector machine models built after selecting inputs using the four

pervised-filter evaluators; ANNs: artificial neural network models; DTs: decision tree models; CCI: percentage of correctly classified instances; Sen:

sitivity; Spe: specificity; k: Cohen’s k; ROC: area under the ROC curve; ‘*’denotes significant P values.
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fections. Moreover, it can result in higher mortality rates
f both adults and embryos and delay the emergence of fry
8].
Therefore it is evident that it is extremely important to

pply various ML techniques and contrast their perfor-
ances to find out, when possible, the best performing
odel. Our own results show the advantages of contrast-
g various approaches. In fact our methods enabled us to

redict A. a. alborella presence with reasonable accuracy
nd to identify key ecological factors. Had we used fewer
pproaches, we would have come up with a poorer model.
oreover it is to be underlined that it is not possible to

nswer to the one million dollar question: ‘‘What is the
est performing ML method, the one that applies to all
lassification problems?’’ The best performing technique

 solve one task, it is not necessary the best performing to
olve a different one, as showed by A. pallipes and
. a. alborella cases. Therefore there is still a great deal
f work to be done to improve the use of these kinds of
pproaches to ecology. However the use of multiple
chniques will help both scientists and conservation

rofessionals gaining more insight from their present and
ture data sets, both in terms of ecological relationships

nd of taxon-specific spatial distribution. This will
ontribute to improve management policies and thus
onservation of biodiversity.
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