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 Introduction

The dynamical analysis of the predator–prey model
ays an important role in mathematical biology. Though
any biologists believe that if the unique positive
uilibrium point of a predator–prey system is locally
ymptotically stable, then it is globally asymptotically
ble, it is not always true however. It is proved that a
ique positive locally asymptotically stable equilibrium
int has at least one limit cycle surrounding the
uilibrium point under suitable conditions. Thus many
athematicians try to use some well-known methods to

find the conditions for global stability for the equilibrium
point of predator–prey system [1–8]. Stage-structured
population models also have received great attention in
recent years. Aiello and Freedman [9] studied a stage-
structured model of one species growth consisting of
immature and mature members. Cui et al. [10] analyzed
the effect of dispersal on the permanence of a stage-
structured single-species population model without time
delay. A significant amount of research has been carried
out based on different kinds of predator–prey systems with
division of the predators into immature and mature
individuals like Kar and Pahari [11], Magnusson [12],
Wang et al. [13], Xu et al. [14], Gao et al. [15], Xu and Ma
[16], Chakraborty et al. [17] etc. and references therein.

Ton and Hieu [18] constructed a prey–predator model
consisting of one prey and two predators system with
Beddington–DeAngelis functional responses. They studied
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A B S T R A C T

In this paper, we propose a prey–predator system with stage structure for predator. The

proposed system incorporates cannibalism for predator populations in a competitive

environment. The combined fishing effort is considered as control used to harvest the

populations. The steady states of the system are determined and the dynamical behavior of

the system is discussed. Local stability of the system is analyzed and sufficient conditions

are derived for the global stability of the system at the positive equilibrium point. The

existence of the Hopf bifurcation phenomenon is examined at the positive equilibrium

point of the proposed system. We consider harvesting effort as a control parameter and

subsequently, characterize the optimal control parameter in order to formulate the

optimal control problem under the dynamic framework towards optimal utilization of the

resource. Moreover, the optimal system is solved numerically to investigate the

sustainability of the ecosystem using an iterative method with a Runge–Kutta fourth-

order scheme. Simulation results show that the optimal control scheme can achieve

sustainable ecosystem. Results are analyzed with the help of graphical illustrations.

� 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

 Corresponding author.

E-mail addresses: kunal.c@incois.gov.in, kc.mckv@gmail.com

 Chakraborty), kunal.papu87@gmail.com (K. Das),

r1117@gmail.com (T.K. Kar).

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Biologies

w ww.s c ien ced i rec t . c o m
31-0691/$ – see front matter � 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

p://dx.doi.org/10.1016/j.crvi.2013.01.002

http://dx.doi.org/10.1016/j.crvi.2013.01.002
mailto:kunal.c@incois.gov.in
mailto:kc.mckv@gmail.com
mailto:kunal.papu87@gmail.com
mailto:tkar1117@gmail.com
http://www.sciencedirect.com/science/journal/16310691
http://dx.doi.org/10.1016/j.crvi.2013.01.002


th
e
e
r
a
s
fu
e
w
d
c
a
a
s
s
d
o
r
s
C

a
c
io
c
a
a
in
h
e
c
la
K
s

2

fo
c
s
m
p
r
lo
p
o
ti
m
o
in
p
r
r
p
p
r
a
c
im
ti

K. Chakraborty et al. / C. R. Biologies 336 (2013) 34–45 35
e permanence and extinction of the species and
stablished sufficient conditions for the permanence and
xtinction. Kar and Chattopadhyay [19] studied the long-
un dynamics of a prey–predator model in the presence of
n alternative prey. Tian and Xu [20] investigated a stage-
tructured predator–prey system with Holling type-II
nctional response. They proved that the predator

xtinction equilibrium is globally asymptotically stable
hen the coexistence equilibrium is not feasible and

erived sufficient conditions for the global stability of the
oexistence equilibrium. Chakraborty et al. [21] described

 stage structured prey–predator fishery model where
dult prey and predator populations are harvested in the
ystem. They discussed the dynamic behavior of the
ystem and used the fishing effort as a control to develop a
ynamic framework to investigate the optimal utilization
f the resource. The optimal management of renewable
esources as fishery, which has a direct relationship with
ustainable development, has been extensively studied by
lark [22,23] and Kot [24] and references therein [25–28].

In the present paper, we have discussed the dynamics of
 stage-structured prey–predator fishery system in a
ompetitive environment [29,30]. The asymptotic behav-
r of the proposed system is analyzed and the sufficient

onditions are derived for the global stability of the system
t the interior equilibrium point using a geometrical
pproach. The competitive parameters are used to exam-
e the system transitions at the critical points. Attempt

as made to interpret the obtained results in terms of
cology to the extent possible. The control parameter is
haracterized and the optimal control problem is formu-
ted to it solve using an iterative method with a Runge–
utta fourth-order scheme. The numerical results provide
everal realistic features of the model system.

. Model formulation

We consider a prey–predator model with stage structure
r predator and non-selective harvesting is taken into

onsideration. Let us assume x, y and z are respectively the
ize of prey population, immature predator population and
ature predator population at time t. It is assumed that the

opulations are growing in a closed homogeneous envi-
onment. The growth of prey population is assumed to be
gistic and the birth rate of the immature predator

opulation is assumed to be proportional to the density
f the existing mature predator population with a propor-
onality constantb. It is to be noted that cannibalism (which
eans the act of any population consuming members of its

wn type or kind, including the consumption of mates)
troduces trophic structure and feedback loops within

opulations. We have assumed the cannibalism or cyclic
ecruitment pattern of the predator population. In this
egard, we have considered that the mature predator
opulation catches the prey population and the immature
redator population according to Holling type-II functional
esponse, i.e., respectively, axz/(a + x) and vyz/(b + y), where

 and v are the respective maximal predator per capita
onsumption rate, i.e. the maximum number of prey and

mature predator that can be eaten by a predator in each
me unit and a, b are the half-capturing saturation constant,

i.e. the number of prey and immature predators necessary to
achieve one-half of the maximum rates a and v [31]. It is
also assumed that there exist density-dependent factors,
competition, between prey population and immature
predator population for their survival. The growth of mature
predator population is assumed to be of the Leslie-Gower
type, with an intrinsic growth rate s and carrying capacity
proportional to the sum of the prey and immature predator
population size [17,32,33].

In this context, it is to be noted that a study in a
Canadian lake showed how the introduced red shiners
decreased the rainbow trout population by competition
with young trout, even if large trout benefited from the
introduction by eating the shiners [34]. Differences in the
dynamics, growth, survivorship, and resource use within
age classes of interacting populations are often produced
by the combined effect of competition and predation [34].
This shows that there is often the need at the present age to
study the population dynamics, since very complex
interactions work at different levels in populations.

Keeping these aspects in view, the dynamics of the
system may be governed by the following system of
differential equations:

dx

dt
¼ rx 1 � x

K

� �
� axz

a þ x
�sxy

dy

dt
¼ bz � vyz

b þ y
�rxy

dz

dt
¼ sz 1 � gz

x þ y

� � (2.1)

where r is the intrinsic growth rate of the prey population,
K is the environmental carrying capacity of prey popula-
tion.s and r are the constant coefficients of competition. g
is the equilibrium ratio of predator–prey populations.

Harvesting has a strong impact on the dynamic
evaluation of a population subjected to it. First of all,
depending on the nature of the applied harvesting strategy,
the long-run stationary density of population may be
significantly smaller than the long-run stationary density of
a population in the absence of harvesting. Therefore, while a
population can in the absence of harvesting be free of
extinction risk, harvesting can lead to the incorporation of a
positive extinction probability and, therefore, to potential
extinction in a finite time. Secondly, if a population is
subjected to a positive extinction rate, then harvesting can
drive the population density to a dangerously low level at
which extinction becomes sure, no matter how the
harvester affects the population afterwards.

The functional form of the harvest is generally
considered using the phrase catch-per-unit-effort (CPUE)
hypothesis [23] to describe an assumption that catch per
unit effort is proportional to the stock level. Therefore,
harvesting function h1(t), h2(t) and h3(t) can be written in
the following form:

h1ðtÞ ¼ q1Ex;
h2ðtÞ ¼ q2Ey;
h3ðtÞ ¼ q3Ez:

(2.2)

where q1, q2, q3 are catchability coefficients, E is taken as
combined harvesting effort used to harvest the popula-
tions.
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Finally, using equation (2.2) in (2.1), the system
comes,

¼ rx 1 � x

K

� �
� axz

a þ x
�sxy � q1Ex

¼ bz � vyz

b þ y
�rxy � q2Ey

¼ sz 1 � gz

x þ y

� �
� q3Ez

(2.3)

ith the initial conditions x(0) � 0, y(0) � 0, z(0) � 0.

 Boundedness of the system

In this section, we intend to establish the conditions to
t positive as well as bounded solutions of the system (2.3).

eorem 3.1. If y(t) is always non-negative, then all possible

lutions of the system (2.3) are positive.

oof. From the first set of equation (2.3) system we can
rite,

¼ x r 1 � x

K

� �
� az

a þ x
�q1E � sy

� �� �

¼ r 1 � x

K

� �
� az

a þ x
�q1E � sy

� �� �
dt

¼ f x; y; zð Þdt

here f x; y; zð Þ ¼ r 1 � x
K

� 	
� az

aþx� q1E � sy
� �h i

Taking integration in the region [0,t], we get,

t Þ ¼ x 0ð Þe
R

f x;y;zð Þdt > 0 8 t

 x(0) � 0.

Again, from the third equation of the system (2.3) we
t,

dz

dt
¼ z s 1 � gz

x þ y

� �
� q3E

� �

;
dz

z
¼ s 1 � gz

x þ y

� �
� q3E

� �
dt

¼ c x; y; zð Þdt

where

 x; y; zð Þ ¼ s 1 � gz
xþy

� �
� q3E.

By integration in the region [0,t], we get,

t Þ ¼ zð0Þe
R

c x;y;zð Þdt > 0 8 t.

Hence, according to our assumption, if we consider
tÞ > 0 8 t, then it may be concluded that all the solutions
 the system (2.3) are always positive.

In the remaining part of our analysis, we assume that
t) is always non-negative, so that the solutions of the
stem (2.3) are always positive. In the next theorem, we

 to find some sufficient conditions for which the
lutions of the system (2.3) are bounded.

eorem 3.2. If E < b/q2g, then the solution of the system

.3) are bounded above.

Proof. From the first equation of the system (2.3), we may
conclude that xðtÞ < K 8 t.

Again, from the third equation of the system (2.3) we
may write:

gz tð Þ � x tð Þ þ y tð Þð Þ; 8 t

or;z tð Þ � x tð Þ þ y tð Þð Þ
g

; 8 t

Using the above expression in the second equation of
the system (2.3), we obtain dy

dt �
b
g K þ y tð Þð Þ � q2E.

¼ � q2E � b
g

� �
y tð Þ þ Kb

g

¼ �jy þ Kb
g

where j ¼ q2E � b
g

or
dy

dt
þ jy � Kb

g
:

Now, if q2E � b
g

� �
> 0 then, j > 0 and then, integrating

the above equation, we get:

y tð Þ �
jy 0ð Þ � Kb

g

j � 0
e�jt þ Kb

g
i:e:; y tð Þ � Kb

g
8 t

Thus, we may write z tð Þ �
Kþkb

g

� �
g 8 t:

Hence, all the solutions of the system (2.3) are bounded
if E < b

q2g.

Hence, the theorem is proved.

4. Equilibrium points: existence and stability

To analyze the system (2.3) at its equilibria, we first try
to find all possible non-negative equilibria. Clearly, the
system has three feasible non-negative equilibria, namely:

� the boundary equilibrium at P1
K
r r � q1Eð Þ; 0; 0
� 	

provid-
ed E < r

q1
;

� the prey-free equilibria at P2 (0, y1, z1) where

y1 ¼
b s q2E�bð Þþq3Eb½ �

bs�bq3E�vsþvq3E�sq2E
and z1 ¼

b s�q3Eð Þ s q2E�bð Þþq3Eb½ �
s b�vð Þ s�q3Eð Þ�sq2E½ �

provided b > v and b
q2
< E < s

q3
;

� the interior equilibrium P*(x*, y*, z*) where (x*, y*, z*) are
the positive solution of the system ẋ ¼ ẏ ¼ ż ¼ 0.

The third equation of the system (2.3) gives,

z� ¼ s � q3Eð Þ x� þ y�ð Þ
sg

: (4.1)

Again, eliminating z* from the first and third equation of
the system (2.3), we get:

A1x�2 þ A2x�y� þ A3x� þ A4y� þ A5 ¼ 0
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here A1 ¼ rgs
K ;

2 ¼ �sgs; A3 ¼ a s � q3Eð Þ þ rgsa

K
� r � q1Eð Þ;

4 ¼ a s � q3Eð Þ þ sgs; A5 ¼ �ags r � q1Eð Þ

onsequently; we have y� ¼ �A5 þ A3x� þ A1x�2

A2x� þ A4
: (4.2)

Now eliminating z* from the second and third equation
f the system (2.3), we get

sy� b þ y�ð Þ rx� þ q2Eð Þ
¼ bb þ by� � vy�ð Þ x� þ y�ð Þ s � q3Eð Þ

Substituting y* in the above expression we get,

5x�5 þ G4x�4 þ G3x�3 þ G2x�2 þ G1x� þ G0 ¼ 0 (4.3)

here, G0 ¼ q2EgsA5 bA4 � A5ð Þ � A5
2 b � vð Þ s � q3Eð Þ þ

s � q2E ÞbbA4A5;

1 ¼ rgsA5 bA4 � A5ð Þ þ q2Egs b A2A5 þ A4A3ð Þ � 2A3A5ð Þ
þ s � q3Eð Þ A5A2bb � A3A5 b � vð Þð
� A4 � A3ð Þ bb A4 � A5ð Þð þvA5ÞÞ;

2 ¼ rgs b A2A5 þ A4A3ð Þ � 2A3A5ð Þ
� q2Egs A1A5 � A3 bA2 � A3

2
� �

þ A1 bA4 � A5ð Þ
� �

 s � q3Eð Þ A1 � A2ð Þ bbA4 � A5 b � vð Þð Þ � b � vð ÞA1A5ð Þ;

3 ¼ �rgsðA1A5 � A3ðbA2 � A3
2Þ

þ A1 bA4 � A5ð Þ þ q2EgsA1 bA2 � 2A3ð ÞÞ
 s � q3Eð ÞðA1 b � vð ÞtðA4 � A3Þ

� A2 � A1ð Þ bb A2 � b � vð ÞA5ð Þð ÞÞ;

4 ¼ rgs A1 bA2 � 2A3ð Þð Þ � q2EgsA1
2

þ s � q3Eð Þ b � vð Þ A2A1 � A1
2

� �
;

5 ¼ �rgsA1
2:

Therefore, after getting the positive solution of x* from
quation (4.3), it is easy to get the interior positive
olution of y*and z* from equations (4.1) and (4.2)
rovided E < s

q3
.

heorem 4.1. The boundary equilibrium P1
K
r r � q1Eð Þ; 0; 0
� 	

 locally asymptotically stable if the fishing effort used to

arvest lies between the biotechnical productivity of the

ature predator and the prey population, i.e., s
q3
< E < r

q1
.

roof. The characteristic equation of the system (2.3) at

1
K
r r � q1Eð Þ; 0; 0
� 	

; can be written as:

l þ r � q1Eð Þ Þ l þ r
K

r
r � q1Eð Þ þ Eq2

� �� �
l � s þ q3Eð Þ

¼ 0
The roots are � r � q1Eð Þ; � r K

r r � q1Eð Þ þ Eq2

� 	
and

s � q3E Þ.
Consequently, P1

K
r r � q1Eð Þ; 0; 0
� 	

; is asymptotically
table if s

q3
< E < r

q1
.

Theorem 4.2. The prey free equilibrium P2 (0, y1, z1) is

unstable if

sg þ bð Þ <
y1

2v

b þ y1ð Þ2
and E <

s

q3
:

Proof. The characteristic equation of the system (2.3) at
P2 (0, y1, z1) is:

l l2 þ a1l þ a2

� �
¼ 0

where a1 ¼ 1 � q3E
s

� �
b þ gsð Þ � y1

2v

bþy1ð Þ2
� �

;

a2 ¼
s � q3Eð Þ2

s b þ y1ð Þ2

  !
2 y1 þ b þv

4

� �� �2

� v b þv
9

� �� �

Suppose that the three roots are 0, l1, l2.

Then, l1 þ l2 ¼ � 1 � q3E
s

� �
b þ gsð Þ � y1

2v

bþy1ð Þ2
� �

and

l1l2 ¼
s � q3Eð Þ2

s b þ y1ð Þ2

  !
2 y1 þ b þv

4

� �� �2

� v b þv
9

� �� �
:

Therefore, l1, l2 both are negative if sg þ bð Þ <
y1

2v

bþy1ð Þ2
and E < s

q3
.

It is to be noted that the saddle-node equilibrium occurs
in non-linear systems with one zero eigenvalue when the
system undergoes the saddle-node bifurcation, where a
saddle and a node approach each other, coalesce into a
single equilibrium and then disappear.

It is also evident that saddle-nodes are always unstable.

Now the characteristic equation of the system around
its interior equilibrium point P*(x*, y*, z*) is given by:

l3 þ b1l
2 þ b2l þ b3 ¼ 0 (4.4)

where b1 = c1–c2, b2 = –(x*y*r)s – d1 + d2, b3 = –se1 – e2 + e3,

c1 ¼
rx�

K
þ sgz�

x� þ y�ð Þ ; c2 ¼
ax�z�

a þ x�ð Þ2
þ bz�

y�
þ vy�z�

b þ y�ð Þ2
;

d1 ¼
rx�z�b

Ky�

� �
þ asgx�z�2

a þ x�ð Þ2 x� þ y�ð Þ

  !
þ bsgz�2

y� x� þ y�ð Þ

� �

þ rx�y�z�v

K b þ y�ð Þ2

  !
þ vgsy�z�2

b þ y�ð Þ2 x� þ y�ð Þ

  !
;

d2 ¼ þ abx�z�2

a þ x�ð Þ2y�

  !
þ rsgx�z�

K x� þ y�ð Þ

� �
þ asgx�z�2

a þ x�ð Þ x� þ y�ð Þ2

  !

þ bsgz�2

x� þ y�ð Þ2

  !

þ avx�y�z�2

a þ x�ð Þ2 b þ y�ð Þ2

  !
þ vgsy�z�2

b þ y�ð Þ x� þ y�ð Þ2

  !
;



e1

e2

e3

s 

e3

b3

w

g2

g3

+ g
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¼ sx�y�z�rg
x� þ y�ð Þ

� �
þ sx�y�z�2gv

b þ y�ð Þ x� þ y�ð Þ2

  !
;

¼ sx�z�3abg

a þ x�ð Þ2 x� þ y�ð Þ2

  !
þ sx�z�3abg

a þ x�ð Þ2y� x� þ y�ð Þ2

  !

þ sx�y�z�2agr

a þ x�ð Þ2 x� þ y�ð Þ2

  !
þ sx�z�2bga

x� þ y�ð Þ2

  !

þ rsx�y�z�2gv

K b þ y�ð Þ2 x� þ y�ð Þ

  !
þ sx�y�z�3agv

a þ x�ð Þ2 b þ y�ð Þ2 x� þ y�ð Þ2

  !

þ sx�y�z�3agv

a þ x�ð Þ2 b þ y�ð Þ x� þ y�ð Þ2

  !
;

¼ rsx�z�2bg

K x� þ y�ð Þ2

  !
þ rsx�z�2bg

x� þ y�ð ÞKy�

� �

þ sx�z�3abg

a þ x�ð Þ2y� x� þ y�ð Þ

  !
þ rsx�y�z�2gv

K b þ y�ð Þ x� þ y�ð Þ2

  !

þ sx�y�z�3agv

a þ x�ð Þ2 b þ y�ð Þ2 x� þ y�ð Þ

  !
:

It is to be noted that b1> 0 if c1> c2. Again, b3> 0 if
<

e3�e2
e1

.

Now; b1b2 � b3 ¼ �s f 1 þ f 2

where f1 = (c1 – c2) x*y*r – e1, f2 = (c1 – c2) (d2 – d3) + e2 –
. It may also be noted that b3 can be expressed as,

¼ �rg1 � g2 þ g3

here g1 ¼
sx�y�z�2ag

a þ x�ð Þ x� þ y�ð Þ2

  !
þ sx�y�z�rgs

x� þ y�ð Þ

� �
;

¼ sx�z�3abg

a þ x�ð Þ2 x� þ y�ð Þ2

  !
þ sx�z�3abg

a þ x�ð Þy� x� þ y�ð Þ2

  !

þ sx�z�2bga
x� þ y�ð Þ

� �
þ rsx�y�x�2gv

K b þ y�ð Þ2 x� þ y�ð Þ

  !

þ sx�y�z�3agb

a þ x�ð Þ b þ y�ð Þ2 x� þ y�ð Þ2

  !

þ sx�y�z�3agv

a þ x�ð Þ2 b þ y�ð Þ x� þ y�ð Þ2

  !
þ sx�y�z�2gsv

b þ y�ð Þ x� þ y�ð Þ2

  !
;

¼ rsx�z�bg

K x�y�ð Þ2

  !
þ rsx�z�bg

x� þ y�ð ÞKy�

� �

þ sx�z�3abg

a þ x�ð Þ2y� x� þ y�ð Þ

  !
þ rsx�y�z�2gv

K b þ y�ð Þ x� þ y�ð Þ2

  !

þ sx�y�z�agv

a þ x�ð Þ2 b þ y�ð Þ2 x� þ y�ð Þ

  !
:

Therefore, b3> 0 if r <
g3�g2

g1

Again; b1b2 � b3 ¼ �rh1 þ h2

where h1 = (c1 – c2) x*y*s – g1, h2 = (c1 – c2) (d2 – d3)

2 – g3.

Now, we state and prove the theorem for the local
stability of the system around its interior equilibrium
point.

Theorem 4.3. The sufficient conditions for the system (2.3) is

locally asymptotically stable around its interior equilibrium

point P* (x*, y*, z*) are c1> c2, s <
e3�e2

e1
or r <

g3�g2
g1

� �
and

s <
f 2
f 1

or r <
h2
h1

� �
.

Proof. If the interior equilibrium point P* (x*, y*, z*) of the
system (2.3) exists, then its characteristic equation at the
interior equilibrium point is given by equation (4.4).

The condition c1> c2 implies that b1> 0.

Again, b3> 0 if s <
e3�e2

e1
or r <

g3�g2
g1

� �
.

Finally, s <
f 2
f 1

or r <
h2
h1

� �
implies that b1b2> b3.

Hence, by the Routh–Hurwitz criterion, the theorem
follows.

5. Bifurcation analysis

We now analyze the bifurcation phenomenon of the
proposed system considering competitive parameters, s
and r, as the bifurcation parameters. It is easy to show,
using Liu’s criterion [35], that the system (2.3) undergoes a
Hopf bifurcation at its interior equilibrium for the critical
value of the competitive parameters s = s* and r = r*.

Theorem 5.1. Let us assume that the positive equilibrium is

locally asymptotically stable with e1> (c1 – c2) x*y*r (or

g1> (c1 – c2) x*y*s); then a simple Hopf bifurcation occurs

at the unique real value s ¼ s� ¼ f 2
f 1

or r ¼ r� ¼ h2
h1

� �
.

Proof. The characteristic equation of the model system
(2.3) at the interior equilibrium P* (x*, y*, z*) is given by
l3 + b1l

2 + b2l + b3 = 0.

As it is assumed that the positive equilibrium point
P* (x*, y*, z*) is locally asymptotically stable, therefore it is
evident from Theorem 4.4 that b1> 0 and b3> 0 for all
positive values of s and r.

Now, D sð Þ ¼ b1 sð Þb2 sð Þ � b3 sð Þ ¼ �s f 1 þ f 2

or we can write D rð Þ¼ b1 rð Þb2 rð Þ � b3 rð Þ ¼ �rh1 þ h2.

Consequently, we have D(s*) = 0 or D(r*) = 0.

Furthermore, dD
ds

� 	
s¼s� ¼ � f 1 6¼ 0ð Þ if e1 > c1 � c2ð Þ

x�y�r,

Again, dD
dr

� �
r¼r�

¼ �h1 6¼ 0ð Þ if g1 > c1 � c2ð Þx�y�s.

Hence, by Liu’s criterion, the theorem follows.

6. Global stability

In this section, we will use geometric approach
to derive the sufficient conditions for the global stability
of the system at the positive equilibrium. For detailed
calculations, one can see Chakraborty et al. [17],
Li and Muldowney [36], Bunomo et al. [37], Martin
[38] etc.
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The autonomous system (2.3) can be written as dx
dt ¼

xð Þ; where

 xð Þ ¼

dx

dt
¼ rx 1 � x

K

� �
� axz

a þ x
�q1Ex � sxy

dy

dt
¼ bz � vyz

b þ y
�rxy � q2Ey

dz

dt
¼ sz 1 � gz

x þ y

� �
� q3Ez

0
BBBBBB@

1
CCCCCCA
; ¼

x
y
z

0
@

1
A

If V(x) be the variation matrix of the system, then it can
e written as:

 ¼ @ f

@x
¼

� rx

K
þ ax

a þ xð Þ2
�sx � ax

a þ x

�ry
bz

y
þ vzy

b þ yð Þ2
�b � vy

b þ y

sgz2

x þ yð Þ2
sgz2

x þ yð Þ2
� sgz

x þ y

2
66666664

3
77777775

If V 2j j is the second additive compound matrix of V due
 Bunomo et al. [37]; we can write:

We consider M(x) in C1 (D) in a way that
 ¼ diag x

z ;
x
z ;

x
z


 �
. Then we can write: M�1 ¼ diag z

x ;
z
x ;

z
x


 �
nd

f ¼
dM

dx
¼ diag

ẋ

z
� x

z2

� �
ż;

ẋ

z
� x

z2

� �
ż;

ẋ

z
� x

z2

� �
ż

� 

Thus, easily we can show that,

f M�1 ¼ diag
ẋ

x
� ż

z
;
ẋ

x
� ż

z
;
ẋ

x
� ż

z

� 

and MV 2j jM�1 ¼ V 2j j

So by calculating we get:

 ¼ M f M�1 þ MV 2j jM�1 ¼ B11 B12

B21 B22

� �
;

here B11 ¼ ẋ
x� ż

z� rx
K þ axz

aþxð Þ2
� bz

y þ
vyz

bþyð Þ2

� �

12 ¼ �b � vy ax
� �

B21 ¼
sgz2

x þ yð Þ2
� sgz2

x þ yð Þ2

  !t

B22¼

ẋ

x
� ż

z
� rx

K
þ axz

a þ xð Þ2
� gsz

x þ y
�sx

�ry
ẋ

x
� ż

z
�bz

y
þ vyz

b þ yð Þ2
� gsz

x þ y

0
BBB@

1
CCCA

Now let us define the following vector norm in
R3 < u; v; w >j j ¼ max uj j; vj j þ wj jf g where (u, v, w) is the
vector norm in R3 and it is denoted by G:

G Bð Þ � p1; p2f g; pi ¼ G 1 Biið Þ þ Bi j

�� ��
G 1 B11ð Þ ¼ ẋ

x
� ż

z
� rx

K
þ axz

a þ xð Þ2
� bz

y
þ vyz

b þ yð Þ2
:

B12 ¼ max �b � vy

b þ y

����
����; ax

a þ x

� 
:

B21 ¼ max
sgz2

x þ yð Þ2
; � sgz2

x þ yð Þ2

( )
¼ sgz2

x þ yð Þ2

�����
�����:

G 2 B22ð Þ ¼ ẋ

x
� ż

z
� gsz

x þ y

þ max � rx

K
þ axz

a þ xð Þ2
;
bz

y
þ vyz

b þ yð Þ2

( )

; p1 ¼ G 1 B11ð Þ þ B12

¼ ẋ

x
� ż

z
� rx

K
þ axz

a þ xð Þ2
� bz

y
þ vyz

b þ yð Þ2

þ max �b � vy

b þ y

� �
;

ax

a þ x

� 

¼ ẋ

x
� s 1 � gz

x þ y

� �
þ q3E þ axz

a þ xð Þ2
� rx

K
� bz

y
þ vyz

b þ yð Þ2

þ max b þ vy
����

����; ax
� 

2j j ¼

� rx

K
þ ax

a þ xð Þ2
þbz

y
þ vzy

b þ yð Þ2
�b � vy

b þ y

ax

a þ x

sgz2

x þ yð Þ2
� rx

K
þ ax

a þ xð Þ2
� sgz

x þ y
�sx

� sgz2

x þ yð Þ2
�ry

bz

y
þ vzy

b þ yð Þ2
� sgz

x þ y

2
666666664

3
777777775
b þ y a þ x
b þ y a þ x
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¼ G 2 B22ð Þ þ B21

ẋ

x
� ż

z
� gsz

x þ y
þ max � rx

K
þ axz

a þ xð Þ2
;
bz

y
þ vyz

b þ yð Þ2

( )

þ sgz2

x þ yð Þ2

ẋ

x
� s þ q3E þ sgz2

x þ yð Þ2

þ max � rx

K
þ axz

a þ xð Þ2
;
bz

y
þ vyz

b þ yð Þ2

( )

Now we assume that there exists a positive m1 2 R and
> 0 such that:
m1 ¼ inf xðtÞ; yðtÞ; zðtÞf g where t > t1.

Also, we take m2 ¼ max b þ vm1
bþm1

��� ���; am1
aþm1

n o
;

ẋ

x
þ q3E � s � m3

:; G Bð Þ � ẋ

x
� s � q3E þ m3ð Þ

:;
1

t

Zt
0

G Bð Þds � 1

t
ln

x tð Þ
x 0ð Þ

����
����� s � q3E þ m3ð Þ

 1
supsup

1

t

Zt
0

G B s; x0ð Þð Þds < � s � q3E þ m3ð Þ < 0

Now, we are asserting the following theorem to the
istence of a global stability around its interior equilibri-

Theorem 6.1. The system (2.1) is globally asymptotically

stable around its interior equilibrium if s þ m3 > q3E, where:

m3 ¼ min

(
rm1

K
þ bm1

m1

� am1
2

a þ m1ð Þ2

� vm1

b þ m1ð Þ2
� sgm1

2m1

� m2;
rm1

K
� sg

4

� am1
2

a þ m1ð Þ2
; �b � vm1

b þ m1ð Þ2
þ sg

4

�����
�����
)

with m1 2 R such that for t1> 0, we have m1 ¼
inf xðtÞ; yðtÞ; zðtÞf g whenever t > t1.

7. Optimal control problem

In commercial exploitation of renewable resources, the
fundamental problem from the economic point of view is
to determine the optimal trade off between present and
future harvests. The emphasis of this section is on the
profit making aspect of fisheries. It is an elaborate study of
the optimal harvesting policy and the profit earned by
harvesting, focusing on the quadratic cost and conserva-
tion of fish population by constraining the letter to always
study above a critical threshold. The main reasoning for the
quadratic cost is that it allows us to derive an analytical
expression for the optimal harvest; the resulting solution is
different from the bang-bang solution, which is usually
obtained in the case of a linear cost function.

In this section, our objective is to optimize (maximize)

Bð Þ ¼ ẋ

x
� s þ q3E � min

rx

K
þbz

y
� axz

a þ xð Þ2
� vyz

b þ yð Þ2
� sgz

x þ y
�max b þ vy

b þ y

����
����; ax

a þ x

� 
;

rx

K
þ sgz2

x þ yð Þ2
� axz

a þ xð Þ2
; �bz

y
� vyz

b þ yð Þ2
þ sgz

x þ yð Þ2

�����
�����

( )
8>>><
>>>:

9>>>=
>>>;

¼ min
rm1

K
þ bm1

m1

� am1
2

a þ m1ð Þ2
� vm1

b þ m1ð Þ2
� sgm1

2m1

� m2;
rm1

K
� sg

4
� am1

2

a þ m1ð Þ2
; �b � vm1

b þ m1ð Þ2
þ sg

4

�����
�����

( )

Then, we can write:

ðBÞ � ẋ

x
� s þ q3E � min

rm1

K
þb � am1

2

a þ m1ð Þ2
� vm1

2

b þ m1ð Þ2
� sg

2
�m2;

rm1

K
þ sg

4
� am1

2

a þ m1ð Þ2
;

�b � vm1
2

b þ m1ð Þ2
þ sg

4

8>>><
>>>:

9>>>=
>>>;
e total discount net revenue earned from the fishery.
. th
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ymbolically, our strategy is to maximize the present value
 which is to be formulated as:

EÞ ¼
Zt f

t0

e�dt
�

p1 � v1q1Exð Þq1Ex

þ p2 � v2q2Eyð Þq2Ey p3 � v3q3Ezð Þq3Ez � cE� dt

here vt,i = 1, 2, 3 are the economic constants and d is the
stantaneous annual discount rate. c is the constant

shing cost per unit effort, pi,i = 1, 2, 3 are the constant
rice per unit biomass of landed fish respectively for prey,

mature and mature predator populations.
The problem subjected to the population equation (2.3)

nd control constraints 0 � E � EMax; can be solved by
ointagrin’s Maximum Principle.

The convexity of the objective function with respect to
, the linearity of the differential equations in the control
nd the compactness of the range values of the state
ariables can be combined to give the existence of the
ptimal control.

Suppose Ed is an optimal control with the corresponding
tates xd, yd and zd. We are seeking to derive the optimal
ontrol Ed such that:

EdÞ ¼ max JðEÞ : E 2 Uf g;

here U is the control set defined by:

 ¼ fE : ½t0; tf � ! ½0; Emax�jE is Lebesgue measurableg:

The Hamiltonian of this control problem is:

here l1(t), l2(t) and l3(t) are the adjacent variables.
The transversality conditions give li(tf) = 0, i = 1, 2, 3.
Now, it is possible to find the characterization of the

ptimal control Ed.
On the set ftj0 < Ed tð Þ < Emaxg, we have:

H

E
¼ x �l1 þ p1ð Þq1 þ y �l2 þ p2ð Þq2 þ z �l3 þ p3ð Þq3

� 2E x2q1
2v1 þ y2q2

2v2 þ z2q3
2v3

� 	
� c

¼ 0

t Ed(t).
This implies that:

d ¼
xd p1q1 þ yd p2q2 þ zd p3q3 � xdl1q1 � ydl2q2 � zdl3q3 � c

2 xd
2q1

2v1 þ yd
2q2

2v2 þ zd
2q3

2v3ð Þ :

Now, the adjacent equations are

dl1

dt
¼ dl1 �

@H

@x
¼ dl1

� r 1 � 2x

K

� �
� az

a þ x
þ axz

a þ xð Þ2
�q1E � sy

" #
l1 þ ryl2

� gz

x þ yð Þ2
l3 � p1 � 2v1q1Exð Þq1Ex;

(8.3)

dl2

dt
¼ dl2 �

@H

@y

¼ dl2 þ l1sx

þ vz

b þ y
� vyz

b þ yð Þ2
þ rx þ q2E

" #
l2

þ sgz2

x þ yð Þ2
l3; (8.4)

dl3

dt
¼ dl3 �

@H

@z

¼ dl3 þ
ax

a þ x
l1 � l2b þ vz

b þ y
l2

� s 1 � 2gz

x þ y

� �
� q3

� �
l3: (8.5)

Therefore, we summarize the above analysis by the
following theorem:

Theorem 8.1. There exist an optimal control Ed and corre-

sponding solutions xd, yd and zd and that maximizes J(E) over

U. Furthermore, there exists adjoint functions l1, l2 and l3

satisfying equations (8.3)–(8.5) with transversality condi-

tions li(tf) = 0, i = 1, 2, 3. Moreover, the optimal control is

given by:

Ed ¼
xd p1q1 þ yd p2q2 þ zd p3q3 � xdl1q1 � ydl2q2 � zdl3q3 � c

2 xd
2q1

2v1 þ yd
2q2

2v2 þ zd
2q3

2v3ð Þ :

8. Numerical simulation

As the problem is not a case study, the real world data
are not available for this model. We, therefore, take here
some hypothetical data with the sole purpose of
illustrating the analytical results that we have established
in the previous sections. Moreover, it may be noted that as
the parameters of the model are not based on real world

 ¼ p1 � v1q1Exð Þq1Ex þ p2 � v2q2Eyð Þq2Ey þ p3 � v3q3Ezð Þq3Ez � cE½ � þ l1 rx 1 � x

K

� �h
axz

a þ x
�q1Ex � sxy

�
þ l2 bz � vyz

b þ y
�rxy � q2Ey

� �
þ l3 sz 1 � gz

x þ y

� �
� q3Ez

� �
bservations, the main features described by the
(8.2) o
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ulations presented in this section should be consid-
ed from a qualitative, rather than a quantitative point of
ew. However, numerous scenarios covering the breadth
 the biological feasible parameter space were conducted
d the results shown above display the gamut of
namical results collected from all the scenarios tested.

. Numerical simulation to study the bifurcation

enomenon

In order to ensure the existence of bifurcation, let us
nsider the following parameter set:

 1:5; K ¼ 100; a ¼ 0:5; a ¼ 5; q1 ¼ 0:5;

¼ 0:8; q3 ¼ 0:2; b ¼ 2:0; v ¼ 0:5; g ¼ 0:6; r ¼ 0:08

 ¼ 0:4; s ¼ 0:5; E ¼ 0:2

It is to be noted that if we consider the value of,
= 0.13591, then it is observed from Fig. 1 that P*(x*, y*, z*)
locally asymptotically stable and the populations x, y and
onverge to their steady states in finite time. Now if we

adually increase the value of r, keeping other parameters
ed, then by Theorem 5.1, it is easy to get a critical value

 r as r* = 0.14591 such that P*(x*, y*, z*) loses its stability
 r passes through r*. Figs. 2 and 3 clearly show the result.
may also be noted that if we consider the value of

= 0.15591, then it is evident from Fig. 4 that the positive
uilibrium P*(x*, y*, z*) is unstable. Moreover, a periodic
bit may be observed near P*(x*, y*, z*).

. Numerical simulation to study the optimal control

oblem

The numerical simulation of optimal control [39] under
rious parameters set can be done using the fourth-order
nge–Kutta forward-backward sweep method; the sys-

m state equations (2.3) and their corresponding adjoint
uations (8.3)–(8.5) are simultaneously solved. Initially,
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e make a guess for optimal control and then solved the
ystem of state equations (2.3) forward in time using the
unge–Kutta method with the initial conditions x0, y0 and

0. Then, using state values, the adjoined equations (8.3)–
.5) are solved backward in time using the Runge–Kutta
ethod with the transversality condition. At this point, the

ptimal control is updated using the values for the state
nd adjoint variables. The updated control replaces the
itial control and the process is repeated until the

uccessive iterations of the control values are sufficiently
lose. The convergence of such an iterative method is based
n work of Hackbush [40].

At first, we discretize the interval [t0, tn] at the points

i ¼ t0 þ ih i ¼ 0; 1; 2; :::; nð Þ where h is the time step such
at tn = tf. Now a combination of forward and backward

ifference approximation is considered to solve the system.
he time derivative of state variables can be expressed by
eir first-order forward difference as follows:

iþ1 � xi

h
¼ rxiþ1 1 � xiþ1

K

� �
� axiþ1zi

a þ xiþ1
� q1Exiþ1 � sxiþ1yi;

iþ1 � yi

h
¼ bzi �

vziyiþ1

b þ yiþ1
� dxiþ1yiþ1 � q2Eyiþ1;

iþ1 � zi

h
¼ sziþ1 1 � gziþ1

xiþ1 þ yiþ1

� �
� q3Eziþ1:

By using a similar technique, we approximate the time
erivative of the adjoint variables by their first-order
ackward difference and we use the approximate scheme
s follows:

The sensitivity of the biological as well as economic
arameters of the system on the optimal prey population,

mature and mature predator population and also on the
shing effort can be studied using the numerical solution
f the optimal control problem.

9. Conclusion

This paper deals with a prey–predator type fishery
system which incorporates cannibalism in competitive
environment with stage structured for the predator. The
interactions among immature and mature species are
based on the assumptions as follows: (i) the recruitment
of the immature species depend on the size of the mature
species; (ii) two substocks interact via cannibalism; (iii)
immature predator population which are the product of
the mature predator also become mature and (iv) prey
population and immature predator population compete
with each other for their survival. Though our paper is not
based on a case study, Canadian lake fishery may be a good
example for our model as red shiners population of
Canadian lake fishery decreased the rainbow trout
population by competition with young trout, even if large
trout benefited from the introduction by eating the
shiners.

The dynamics of the proposed system is analyzed in the
presence of combined harvesting. Though cannibalism
plays an important role towards achieving a sustainable
ecosystem, however, it may be noted that so far very few
research articles incorporate the effects of cannibalism in
the growth of a species in a prey–predator system. It is
evident from our study that the cannibalism can be
considered as an important structural force in population
dynamics. Moreover, our results depict that cannibalism
can be considered as an essential biotic process for the
populations life in environments characterized by large
fluctuations in food resources. The cannibalism in the

predator population creates different behavior in the the
prey–predator system and thus alters the impact of a
predator on prey population dynamics. It may also be
concluded that cannibalism decreases the probability of
extinction of the species of an ecosystem.

1
n�i � l1

n�i�1

h
¼ dl1

n�i�1 � r 1 � 2xiþ1

K

� �
� aziþ1

a þ xiþ1
þ axiþ1ziþ1
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It is observed that for the boundedness of the system, it
necessary to control the fishing effort used to harvest the
pulations. The criterion for the existence of several
uilibria, stabilities and bifurcations of the system are
rived. It is further noted that the saddle-node equilibri-

 occurs to the non-linear systems at the prey free
uilibrium. Our results suggest that the density-depen-
nt competitive coefficients may lead a stable equilibri-

 to become unstable through a simple Hopf bifurcation
 the density-dependent competitive coefficients for the
ecies passes through its critical value. It is also clear that
hen density-dependent competitive coefficients for the
ecies are large, both prey and predator populations reach
riodic oscillations around the equilibrium in finite time
en converge to their equilibrium values. However, as the
nsity-dependent competitive coefficients for the species
creases, oscillations also increase and the positive steady
te disappears; then the consumer population dies out.
It may also be pointed out that in this paper, several
portant parameters such as ecological fluctuations,

fuge, interaction with other species etc. are disregarded.
nce, further research is necessary to accomplish the
eds in this field.
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