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In this paper, we propose a prey—predator system with stage structure for predator. The
proposed system incorporates cannibalism for predator populations in a competitive
environment. The combined fishing effort is considered as control used to harvest the
populations. The steady states of the system are determined and the dynamical behavior of
the system is discussed. Local stability of the system is analyzed and sufficient conditions
are derived for the global stability of the system at the positive equilibrium point. The
existence of the Hopf bifurcation phenomenon is examined at the positive equilibrium
point of the proposed system. We consider harvesting effort as a control parameter and
subsequently, characterize the optimal control parameter in order to formulate the
optimal control problem under the dynamic framework towards optimal utilization of the
resource. Moreover, the optimal system is solved numerically to investigate the
sustainability of the ecosystem using an iterative method with a Runge-Kutta fourth-
order scheme. Simulation results show that the optimal control scheme can achieve
sustainable ecosystem. Results are analyzed with the help of graphical illustrations.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Keywords:
Prey-predator system
Stage structure
Cannibalism
Competitive species
Hopf bifurcation
Global stability
Optimal control

1. Introduction find the conditions for global stability for the equilibrium

point of predator-prey system [1-8]. Stage-structured

The dynamical analysis of the predator-prey model
plays an important role in mathematical biology. Though
many biologists believe that if the unique positive
equilibrium point of a predator-prey system is locally
asymptotically stable, then it is globally asymptotically
stable, it is not always true however. It is proved that a
unique positive locally asymptotically stable equilibrium
point has at least one limit cycle surrounding the
equilibrium point under suitable conditions. Thus many
mathematicians try to use some well-known methods to
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population models also have received great attention in
recent years. Aiello and Freedman [9] studied a stage-
structured model of one species growth consisting of
immature and mature members. Cui et al. [10] analyzed
the effect of dispersal on the permanence of a stage-
structured single-species population model without time
delay. A significant amount of research has been carried
out based on different kinds of predator-prey systems with
division of the predators into immature and mature
individuals like Kar and Pahari [11], Magnusson [12],
Wang et al. [13], Xu et al. [14], Gao et al. [15], Xu and Ma
[16], Chakraborty et al. [17] etc. and references therein.
Ton and Hieu [18] constructed a prey-predator model
consisting of one prey and two predators system with
Beddington-DeAngelis functional responses. They studied
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the permanence and extinction of the species and
established sufficient conditions for the permanence and
extinction. Kar and Chattopadhyay [19] studied the long-
run dynamics of a prey-predator model in the presence of
an alternative prey. Tian and Xu [20] investigated a stage-
structured predator-prey system with Holling type-II
functional response. They proved that the predator
extinction equilibrium is globally asymptotically stable
when the coexistence equilibrium is not feasible and
derived sufficient conditions for the global stability of the
coexistence equilibrium. Chakraborty et al. [21] described
a stage structured prey-predator fishery model where
adult prey and predator populations are harvested in the
system. They discussed the dynamic behavior of the
system and used the fishing effort as a control to develop a
dynamic framework to investigate the optimal utilization
of the resource. The optimal management of renewable
resources as fishery, which has a direct relationship with
sustainable development, has been extensively studied by
Clark [22,23] and Kot [24] and references therein [25-28].

In the present paper, we have discussed the dynamics of
a stage-structured prey-predator fishery system in a
competitive environment [29,30]. The asymptotic behav-
ior of the proposed system is analyzed and the sufficient
conditions are derived for the global stability of the system
at the interior equilibrium point using a geometrical
approach. The competitive parameters are used to exam-
ine the system transitions at the critical points. Attempt
has made to interpret the obtained results in terms of
ecology to the extent possible. The control parameter is
characterized and the optimal control problem is formu-
lated to it solve using an iterative method with a Runge-
Kutta fourth-order scheme. The numerical results provide
several realistic features of the model system.

2. Model formulation

We consider a prey—predator model with stage structure
for predator and non-selective harvesting is taken into
consideration. Let us assume x, y and z are respectively the
size of prey population, immature predator population and
mature predator population at time t. It is assumed that the
populations are growing in a closed homogeneous envi-
ronment. The growth of prey population is assumed to be
logistic and the birth rate of the immature predator
population is assumed to be proportional to the density
of the existing mature predator population with a propor-
tionality constant S.Itis to be noted that cannibalism (which
means the act of any population consuming members of its
own type or kind, including the consumption of mates)
introduces trophic structure and feedback loops within
populations. We have assumed the cannibalism or cyclic
recruitment pattern of the predator population. In this
regard, we have considered that the mature predator
population catches the prey population and the immature
predator population according to Holling type-II functional
response, i.e., respectively, axz/(a + x) and wyz/(b +y), where
o and o are the respective maximal predator per capita
consumption rate, i.e. the maximum number of prey and
immature predator that can be eaten by a predator in each
time unit and a, b are the half-capturing saturation constant,

i.e. the number of prey and immature predators necessary to
achieve one-half of the maximum rates o and w [31]. It is
also assumed that there exist density-dependent factors,
competition, between prey population and immature
predator population for their survival. The growth of mature
predator population is assumed to be of the Leslie-Gower
type, with an intrinsic growth rate s and carrying capacity
proportional to the sum of the prey and immature predator
population size [17,32,33].

In this context, it is to be noted that a study in a
Canadian lake showed how the introduced red shiners
decreased the rainbow trout population by competition
with young trout, even if large trout benefited from the
introduction by eating the shiners [34]. Differences in the
dynamics, growth, survivorship, and resource use within
age classes of interacting populations are often produced
by the combined effect of competition and predation [34].
This shows that there is often the need at the present age to
study the population dynamics, since very complex
interactions work at different levels in populations.

Keeping these aspects in view, the dynamics of the
system may be governed by the following system of
differential equations:

%frx(l—f)— axz —0X
de” k) “avx oY
W_ g, @Yz

dz vz

a-=(1-5)

where r is the intrinsic growth rate of the prey population,
K is the environmental carrying capacity of prey popula-
tion.o and p are the constant coefficients of competition. y
is the equilibrium ratio of predator-prey populations.

Harvesting has a strong impact on the dynamic
evaluation of a population subjected to it. First of all,
depending on the nature of the applied harvesting strategy,
the long-run stationary density of population may be
significantly smaller than the long-run stationary density of
a population in the absence of harvesting. Therefore, while a
population can in the absence of harvesting be free of
extinction risk, harvesting can lead to the incorporation of a
positive extinction probability and, therefore, to potential
extinction in a finite time. Secondly, if a population is
subjected to a positive extinction rate, then harvesting can
drive the population density to a dangerously low level at
which extinction becomes sure, no matter how the
harvester affects the population afterwards.

The functional form of the harvest is generally
considered using the phrase catch-per-unit-effort (CPUE)
hypothesis [23] to describe an assumption that catch per
unit effort is proportional to the stock level. Therefore,
harvesting function hy(t), hy(t) and hs(t) can be written in
the following form:

hi(t) = g4 Ex,
hy(t) = g,Ey, (2.2)
hs(t) = q3Ez.

where ¢, g2, g3 are catchability coefficients, E is taken as
combined harvesting effort used to harvest the popula-
tions.
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Finally, using equation (2.2) in (2.1), the system
becomes,

%: m(l —5) —ﬂ—axy—qﬁx

(cjlt K/ a+x
Y _ g, 2 v
a =P by P q2Ey (23)

dz yz
i sz(l _x+y> —q3kz
with the initial conditions x(0) > 0, y(0) >0, z(0) > 0.

3. Boundedness of the system

In this section, we intend to establish the conditions to
get positive as well as bounded solutions of the system (2.3).

Theorem 3.1. Ify(t)is always non-negative, then all possible
solutions of the system (2.3) are positive.

Proof. From the first set of equation (2.3) system we can
write,

X
%: Kr(l -%) —aa—fx—qﬁ—ﬂy)}dt
= ¢(x,y,2)dt

where ¢(X,y,2) = [(r(l - %) - % — q1E — O‘y)}
Taking integration in the region [0,t], we get,

X(t) = X(O)e./.‘b(xy‘z)dt LoVt

as x(0) > 0.

Again, from the third equation of the system (2.3) we
get,

dz vz
b1 55) o
dz

o £ob(-25) ude

Y(x,y,z)dt

N

where

W(x,y,2) _s<l _)Ty> — q3E.
By integration in the region [0t], we get,
2(t) = z(0)e) VAU S g/,

Hence, according to our assumption, if we consider
y(t) >0V, then it may be concluded that all the solutions
of the system (2.3) are always positive.

In the remaining part of our analysis, we assume that
y(t) is always non-negative, so that the solutions of the
system (2.3) are always positive. In the next theorem, we
try to find some sufficient conditions for which the
solutions of the system (2.3) are bounded.

Theorem 3.2. If E < B/q,y, then the solution of the system
(2.3) are bounded above.

Proof. From the first equation of the system (2.3), we may
conclude that x(t) <K V't.

Again, from the third equation of the system (2.3) we
may write:

ya(t) < (x(t) +y(1)). Vt
(< Oy,

or,z

Using the above expression in the second equation of
the system (2.3), we obtain % < g(K +y(t)) — qE.

_ (¢ Kp
——(at-D)yo +

= —§y+K—);3 where E:qu—g
or dy+€y_1<y,3

Now, if (qu — g) >0 then, £ > 0 and then, integrating
the above equation, we get:

£y(0) - %2 KB KB
t) < e ¥ +— ie; yt) <=t Vvt
YO < g v <
Kk
Thus, we may write z(t) < Vt.
Hence all the solutions of the system (2.3) are bounded
if E< qu

Hence, the theorem is proved.

4. Equilibrium points: existence and stability

To analyze the system (2.3) at its equilibria, we first try
to find all possible non-negative equilibria. Clearly, the
system has three feasible non-negative equilibria, namely:

o the boundary equilibrium at P; (¥ (r — q,E), 0,0) provid-
ed E< Ll
o the prey-free equilibria at P (0, y;, z;) where

bls(a2E-B)+a3EB]

_ b(s—q3E)[s(q2E-B)+43EB]
Y1 ﬁs BasE—ws+wq3zE—sqyE -

s[(B-w) (s—q3E) —sq,E]

and z;

provided 8> w and S <E<g
o the interior equ111br1um P(x ,y , z*) where (x',y, ) are
the positive solution of the system x =y =z = 0.

The third equation of the system (2.3) gives,

7 :(qu3E)(X*+y*). (41)
sy

Again, eliminating z' from the first and third equation of
the system (2.3), we get:

A1X*2 +A2X*y* + Asx* +A4y* +As5=0
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where A; =2,

sa
Ay = —0ys, A3 = als — GsE) + L2 — (r — q,E),

Aq = (s — q3E) + oys, As = —ays(r — ¢4 E)

As + Asx* + A]X*2

Ax T As (4.2)

Consequently, we have y* = —

Now eliminating z* from the second and third equation
of the system (2.3), we get

ysy* (b +y)(ox* + q,E)
= (Bb+ By" — wy") (X" +y*)(s — q3E)

Substituting y* in the above expression we get,

Gsx™> + Gax™ + G3x™ + Gx™? + G1x* +Go = 0 (4.3)

where,  Go = q,EysAs(bAy — As) — As* (B — @) (s — 3E) +

(s — q2E) BbA4As,

= ,OJ/SAS (bA4 — A5) + quJ/S(b(AzAS —|—A4A3) — 2A3A5)
+(5 — q3E)(AsA2 8D — A3As (B — w)
— (A4 — A3)(Pb(As — As) +wAs)),

= p]/S(b(AzAs +A4A3) - 2A3A5)
— qZE}/S(A]A5 — A3 (bAz — A32) +A1 (bA4 — A5)>

+(s — q3E)((A1 — A2)(BbAs — As(B — w)) — (B — w)A1As),

Gs = —pys(Ai1As — A3 (bA; — As?)
+ Aq (bA4 — A5) + qu)/SA] (bAz — 2A3))
+(s — 3 E) (A1 (B — w)t(Ag — A3)
— (A2 — A1)(Bb(Az — (B — w)As))),

Gy = pys(A1(bA; — 2A3)) — q,EysA,?

+ (s — q3E) (B — w)(A2A1 — A1),
Gs = —pysA 1%‘ ( )

Therefore, after getting the positive solution of x” from
equation (4.3), it is easy to get the interior positive
solution of y'and z from equations (4.1) and (4.2)
provided E < %

Theorem 4.1. The boundary equilibrium Py (X (r — q,E),0,0)
is locally asymptotically stable if the fishing effort used to
harvest lies between the biotechnical productivity of the
mature predator and the prey population, i.e., o <E< L

Proof. The characteristic equation of the system (2.3) at
Py (®(r — q,E),0,0), can be written as:

Ot (r= @) (2 + (0} (r= @)+ B ) ) G =5+ as)

Tge roots are —(r—qE), —(p
(s — q3E).

Consequently, P;(¥(r—gq,E),0,0), is asymptotically
stable if 53 <E< L ar

K(r—q,E)+Eq,) and

Theorem 4.2. The prey free equilibrium P, (0, y;, z1) is
unstable if

2
TP and E< 2

(SY+ﬂ)<(b+y1)2 s

Proof. The characteristic equation of the system (2.3) at
P, (0, y1, z1) is:

2(M+ar+a) =0

)B4 - i)

where a; = (1

2
e (S22 o (4 ) - 0fo+3)

Suppose that the three roots are 0, Aq, Ay.

Then, Ay + Ay = — (1 %F) {(ﬁ+ ¥s) — (gl;32:| and

= (o [ (0 )70 05)]

Therefore A1, A2 both are negative if (sy + B) < 2%, 2o
(b+y1 )
and E < = q3

It is to be noted that the saddle-node equilibrium occurs
in non-linear systems with one zero eigenvalue when the
system undergoes the saddle-node bifurcation, where a
saddle and a node approach each other, coalesce into a
single equilibrium and then disappear.

It is also evident that saddle-nodes are always unstable.

Now the characteristic equation of the system around
its interior equilibrium point P (x, y, z ) is given by:

A%+ 1A% + byh + by =0 (4.4)

where b1 =C1—Cy, b2 = —(X*y*p)O'— d1 + dz, b3 =-0e1—-63t+es,

rx* syz* _ax'z Bz* wy*z*
K (x+y)’ (@+x)* ¥ (b+y)*

C1 =

Bsyz? )

- -
dy = <rx z*ﬂ> N asyzx z (B
Ky (@+x)2(x +y) (x+y*)

rx*y*z*w wysy*Z*Z
+ 2 + 2 ’
K(b+y) (b+y)"(x* +y7)

afxz? ( rsyx*z* ) asyxz?
=+ s * + 2
(a+x)%y K(x* +y~) (a+x7)(x* +y)

*2
+< Bsyz )
(x*+y*)
N owx* y “z+2 wysy*z*?
@+x2b+y)?) \b+y)x +y)3?)
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(sx yiz py) XY 22 yw
(X +y7) (b+y)x +y)?)

( SX 2‘304,3)/ sx*z3a By >
+

(@+x)(x +y)? ) ((a+X*)2y*(X* +y)?
SX* y*z2ayp > N (sx*z*zﬂyoe>

(@+x)*(x +y)? (x +y)°
+< rsx*y* z 2yw > < sx'y* z3ayw >
K(b+y ) (x +y)) \(@+x)%b+y)*x +y)?
+< sxy “z3ayw >
(@+x)2(b+y*)(x +y*)?

rsx*z2 By rsx*z*2 By
(1 K(xX* +y*) ) ((X* +y*)1<y*>
+< SX 2*301/37/ ) N < ISx*y*z2yw )
(@ +x*)2y*(x* +y*) K(b+y")(x +y*)?

N sxyz*3aya)
(@+x ) b+y) > x +y))

It is to be noted that b; >0 if ¢; > c,. Again, bz >0 if
€3—€
o< 232
Now, bib; —b3 = -0 f1 + f,
where fi=(c1 - )Xy p-er, fo=(c1 - ) (da—d3) + e -
€3. It may also be noted that b3 can be expressed as,

bs = —pg; — g, + &5

X'y z%ay N <sx*y*z*,oya>
(a+x7)(x +y*)>? x+y) )

where g; = <

g, - ( sxz3a By >+< sx*'z3a By >
27 @+ x )2 +y)? (@+x )y (x +y)°

N <sx z*2 ,Bya) < ISX*y X2 yw >
(x+y°) K(b+y*)*(x +y*)
sx*y*z3ayB
<a+x* (b+y)? (x*+y*>2>

+

sx yzZlayw (s z2yow
(@+x)2(b+y)(x +y)? (b+y)x +y)*)

+

rsx*z* By rsx*z* By
<I<(x* ) ) (x* + J’*)KJ/*>
sxz3a By rsX* y*z 2 yw
((a + )%y (x° +y*)> <K(b +y +y*)2>

X'y zZ'ayw
+ 5 5 .
(@+x)%(b+y ) (x +y)

Therefore, bz >0 if p < ‘%

Again7 biby — b3 = —,Ohl + hy

where hy=(c;-¢;) Xy o-g1, hy=(c;-¢) (dy-ds)
+82-83.

Now, we state and prove the theorem for the local
stability of the system around its interior equilibrium
point.

Theorem 4.3. The sufficient conditions for the system (2.3) is
locally asymptotzcally stable around its interior equilibrium
point P (X', y', z') are ¢; > ¢;, o< S22 62 or (p< & g2> and

o< ff or <p< ]>.

Proof. If the interior equilibrium point P" (x', y', z') of the
system (2.3) exists, then its characteristic equation at the
interior equilibrium point is given by equation (4.4).
The condition c¢; > ¢, implies that b; > 0.
i i €3—-€ £3-8
Again, b; >0 if o < e - or (p< m )

Finally, o < ;2 or (,o< Z—f) implies that b;b, > bs.

Hence, by the Routh-Hurwitz criterion, the theorem
follows.

5. Bifurcation analysis

We now analyze the bifurcation phenomenon of the
proposed system considering competitive parameters, o
and p, as the bifurcation parameters. It is easy to show,
using Liu’s criterion [35], that the system (2.3) undergoes a
Hopf bifurcation at its interior equilibrium for the critical
value of the competitive parameters c=c¢ and p=p".

Theorem 5.1. Let us assume that the positive equilibrium is
locally asymptotically stable with e;>(c;-c2) xy'p (or
g1>(c;-cz) Xy'o); then a simple Hopf bifurcation occurs
at the unique real value o = o* = 2 or (p=p= Z—Z)

Proof. The characteristic equation of the model system
(2.3) at the interior equilibrium P’ (x, ¥, z') is given by
)\,3+b1)\.2+b2)\,+b3=0.

As it is assumed that the positive equilibrium point
P (x',y’, z) is locally asymptotically stable, therefore it is
evident from Theorem 4.4 that b; >0 and bs; >0 for all
positive values of ¢ and p.

Now, A(0) = by(0)by(0) — b3(0) = —0 f1 + f

or we can write A(p) = b1 (p)bz(0) — b3(p) = —phy + hs.

Consequently, we have A(c')=0 or A(p')=

Furthermore, (94),_,. =—f1(#0) if e;>(c1—c3)
Xy p,

Again, (ﬁ) = —hi(#£0) if g

Hence, by Liu’s criterion, the theorem follows.

> (€] — )Xy o.

6. Global stability

In this section, we will use geometric approach
to derive the sufficient conditions for the global stability
of the system at the positive equilibrium. For detailed
calculations, one can see Chakraborty et al. [17],
Li and Muldowney [36], Bunomo et al. [37], Martin
[38] etc.
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The autonomous system (2.3) can be written as ?j’t‘
f(x), where

dx X axz
?—rx<1—ﬁ>——a+x—q1Ex oxy .
| Y _g, Y _
fx) = ddr—ﬁz by PV Dby : (f;)
az _ Y2\
dt—sz(l x+y> q3Ez

If V(x) be the variation matrix of the system, then it can
be written as:

_x,_ex _ox o
K (a+x)? a-+x
af Bz wzy wy
= = — —+ -
V=% » Y (b+y)? b+y
syz? syz? _ syz
x+y)° x+y)° X+y

If V! is the second additive compound matrix of V due
to Bunomo et al. [37]; we can write:

_xLoex Pz omy PG
K @+x0? v (b+y)? bty
V2 syz? X, ox syz
(x+y)? K (a+x® x+y
_svz oy
(x+y)*
We consider M(x) in C' (D) in a way that
M = diag{%,%,%}. Then we can write: M~' = diag{Z,Z,Z

and

My = ~deell- (23~ ()23 ()

Thus, easily we can show that,

MM = diag{———,———,———}
and MVPIM1 = vPI

So by calculating we get:

_ _ B B
B MM MV\Z\MIZ( 11 12)_
f + By1 By )’

(a+x)? (b+y)?

ox
a+x

whereBn*(xfi?%Jr axz f%Jr ‘”yz)

= (Ppy

2 2 \*'
syz syz
B21_< 2 2)
x+y) x+y)
X_ 2 m oxz | ysz _ox

By x z K (a+x? x+y
2 oy 2 2 fz, ayz  ysz
X Z Yy (b+y? X+Y

Now let us define the following vector norm in
R®| <u,v,w>| = max{[ul, |v| + |w|} where (u, v, w) is the
vector norm in R? and it is denoted by I':

I'(B) <{p1,p2}; pi = I'1(By) + |Bij]
X Z oxz ,Bz wyz
[yBy)=~_2_™ _Pz :
1( 11) X z K (a+x)2 y (b+y)2
- _pg_ Wy | o
Blz*max{ p b+y’a+x}‘
ax
a+x
—0X
E+ wzy  syz
Y (b+y? X+Vy
321max{ syz2  syZ }| syz?
x4y x+p?f )
X 7 ysz
I5(By) = - Xty

X axz Pz
+ max t—=,
K T (avx?y

" py=T"1(Bn1) + B2

+w_y2}
(b+y)

oxz  pz wyz
(a+x)? (b+y)?

y
emax{ (-6-5%5) a'x)
™ Bz

,§,S<1,£> q + axz A, +
X Xty P Tarx? Koy

ax
Pty a+x}

+

wyz
(b+y)

+ max{ b Ty
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py = I'2(B22) + By

X Z SZ X axz 74 wyz
X 2V +max{——+ ’3—+ Y }
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Theorem 6.1. The system (2.1) is globally asymptotically
stable around its interior equilibrium if s + 3 > q3E, where:

g B ot
, =min{ 1221
Xz xty K arx? v bry? " {K (@)
syz? __ W SYH o, T SY
2
x1y)? (b+u)* 2 K 4
, _ oy g W S_J/}
=S _s+qE+ Syz 5 (a+/'Ll)2 (b"‘ﬂl)z 4
(x+y)
+maxd XXz Bz wyz with p,€R such that for t;>0, we have u, =
K @+x?y ((b+y)? inf{x(t),y(t),z(t)} whenever t > t;.
X &_ oxz  wyz  syz —max{ﬁ+ wy ozx}
U E min K"y (a+x? (b+y? x+y b+yla+x/’
(B) = —s+ask- x sy axz | Pz wyz syz
Ko xvy)? @ex”| ¥ (b+y)?® x+y)°
Now we assume that there exists a positive t; € R and
t; > 0 such that:
nq = inf{x(t),y(t),z(t)} where t > t;.
g B apy? oy SV sy apy? Wity sy}
M3 = min + - - — Mg, == — |-B- +=F
{K M@ty ()’ 2 K4 ()’ (b+p)” 4
Then, we can write:
T g @M’ Oy’ Sy T Sy
. 2 2 s 2’
F(B)§§fs+q3E7min K (a;rl/h) (b+up)? 2 K4 (@a+p)
X ,5,%+ﬂ
(b+p)® 4
_ wpq | oy
Also, we take p1, = maxy |B+ 5k, ol

X
=y TBE—s— 13

e, I'(B) <>~ (s—a5E+ )
17 1, |x(6)
. X
ie., ?(/ I'(B)ds < ?ln TO)‘ —(s—q3E+ u3)
0

t
tlim supsup%/ I'(B(s,xp))ds < — (s — qzE+ 3) <0
0

Now, we are asserting the following theorem to the
existence of a global stability around its interior equilibri-
um.

7. Optimal control problem

In commercial exploitation of renewable resources, the
fundamental problem from the economic point of view is
to determine the optimal trade off between present and
future harvests. The emphasis of this section is on the
profit making aspect of fisheries. It is an elaborate study of
the optimal harvesting policy and the profit earned by
harvesting, focusing on the quadratic cost and conserva-
tion of fish population by constraining the letter to always
study above a critical threshold. The main reasoning for the
quadratic cost is that it allows us to derive an analytical
expression for the optimal harvest; the resulting solution is
different from the bang-bang solution, which is usually
obtained in the case of a linear cost function.

In this section, our objective is to optimize (maximize)
the total discount net revenue earned from the fishery.
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Symbolically, our strategy is to maximize the present value
J, which is to be formulated as:

ty
J(E) = / e [(p, — 11q,Ex)q,Ex

+ (P2 — V2G2EY)q,Ey(p3 — V3q3E2)q3Ez — cE] dt

where v,,i=1, 2, 3 are the economic constants and d is the
instantaneous annual discount rate. c¢ is the constant
fishing cost per unit effort, p;i=1, 2, 3 are the constant
price per unit biomass of landed fish respectively for prey,
immature and mature predator populations.

The problem subjected to the population equation (2.3)
and control constraints 0 < E < Eyax, can be solved by
Pointagrin’s Maximum Principle.

The convexity of the objective function with respect to
E, the linearity of the differential equations in the control
and the compactness of the range values of the state
variables can be combined to give the existence of the
optimal control.

Suppose Es is an optimal control with the corresponding
states x;, ys and z;. We are seeking to derive the optimal
control Es such that:

J(Es) = max{J(E) : Ec U},

where U is the control set defined by:

U = {E: [to, tf] — [0, Emax]|E is Lebesgue measurable}.

The Hamiltonian of this control problem is:

Now, the adjacent equations are

dii OH
F—S}\] 7a78)\1
2x az axz
{r(l —?> *m+m*%5*0y A+ YA,
4
—YE s (pr - 2014 Ex)q, Ex,
(x+y)
(8.3)
dry oH
@ ey
= 0Ay + Aox
wz wyz
-t px+ q.E| A
b+y (b+y)2 12 QZ 2
sy2? . (8.4)
(x+y)
drs OH
F i
ox wz
:8}\.3+a+x)\.1 7}\.2,3+m)x2
2yz
— 1-— - As. .
{S< Hy) qz] 3 (8.5)

Therefore, we summarize the above analysis by the
following theorem:

Theorem 8.1. There exist an optimal control Es and corre-
sponding solutions x;, ys and zs and that maximizes J(E) over
U. Furthermore, there exists adjoint functions A, Ay and As

X
H = [(p1 = i@ E) Q1 EX + (Py — V2o EY)GoEY + (D3 — 303E2)E2 — cE] + A [rx(1 — )

oxXz
a—+x

wyz

b+y

where A (t), A»(t) and A3(t) are the adjacent variables.
The transversality conditions give A(tf)=0,i=1, 2, 3.
Now, it is possible to find the characterization of the
optimal control Es.
On the set {t|0 < E5(t) < Emax}, we have:

oH
5 =X(=A1 + P1)q1 +Y(=A2 + P2)d2 +2(=A3 + P3)qs
— 2E(x2q12v1 +}/ZQ22V2 +qu3zu3) -
=0

at E(g(t)
This implies that:

Ey — X8P191 Y5 P2 +25P3d3 — Xsh Gy —Vshala — 254303 — €

2(x52q12v1 +Y52q2%V2 + 252q5%03)
(8.2)

—q1Ex — oxy} + A {ﬁz — 2 Xy — quy} + A3 {sz(l — LZ) — q3Ez}

X+Yy

satisfying equations (8.3)-(8.5) with transversality condi-
tions Ai(t)=0, i=1, 2, 3. Moreover, the optimal control is
given by:

Es — XsP141 +Ys P2da + Zs P3qs — XsA1qy — YsAaqy — ZsAsqz — C
b 25244201 + 525202 + 252q3203) '

8. Numerical simulation

As the problem is not a case study, the real world data
are not available for this model. We, therefore, take here
some hypothetical data with the sole purpose of
illustrating the analytical results that we have established
in the previous sections. Moreover, it may be noted that as
the parameters of the model are not based on real world
observations, the main features described by the
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simulations presented in this section should be consid-
ered from a qualitative, rather than a quantitative point of
view. However, numerous scenarios covering the breadth
of the biological feasible parameter space were conducted
and the results shown above display the gamut of
dynamical results collected from all the scenarios tested.

8.1. Numerical simulation to study the bifurcation
phenomenon

In order to ensure the existence of bifurcation, let us
consider the following parameter set:

r=15K=100,a¢ =0.5,a=5,q; =0.5,
q, =08,q3=02,b=20,w=0.5,y=0.6,0=0.08
B=04,5s=05E=02

It is to be noted that if we consider the value of,
0=0.13591, then it is observed from Fig. 1 that P'(x", y", z')
is locally asymptotically stable and the populations x, y and
z converge to their steady states in finite time. Now if we
gradually increase the value of p, keeping other parameters
fixed, then by Theorem 5.1, it is easy to get a critical value
of pas p'=0.14591 such that P'(x’, y, z') loses its stability
as p passes through p’. Figs. 2 and 3 clearly show the result.
It may also be noted that if we consider the value of
p=0.15591, then it is evident from Fig. 4 that the positive
equilibrium P'(x, y', z') is unstable. Moreover, a periodic
orbit may be observed near P'(x’, y', z).

8.2. Numerical simulation to study the optimal control
problem

The numerical simulation of optimal control [39] under
various parameters set can be done using the fourth-order
Runge-Kutta forward-backward sweep method; the sys-
tem state equations (2.3) and their corresponding adjoint
equations (8.3)—(8.5) are simultaneously solved. Initially,
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Fig. 1. Solution curves of the prey population, immature predator
population and mature predator population as a function of time when
p=0.13591.
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Fig. 2. Solution curves of the prey population, immature predator
population and mature predator population as a function of time when
p=0.14591.

Fig. 3. Phase plane trajectories of different biomasses with the different
initial levels when p=0.14591.
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Fig. 4. Solution curves of the prey population, immature predator
population and mature predator population as a function of time when
p=0.15591.
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we make a guess for optimal control and then solved the
system of state equations (2.3) forward in time using the
Runge-Kutta method with the initial conditions xg, yo and
Zo. Then, using state values, the adjoined equations (8.3)-
(8.5) are solved backward in time using the Runge-Kutta
method with the transversality condition. At this point, the
optimal control is updated using the values for the state
and adjoint variables. The updated control replaces the
initial control and the process is repeated until the
successive iterations of the control values are sufficiently
close. The convergence of such an iterative method is based
on work of Hackbush [40].

At first, we discretize the interval [to, t,] at the points
ti=to+1ih(i=0, 1, 2,...,n) where h is the time step such
that t,=t;. Now a combination of forward and backward
difference approximation is considered to solve the system.
The time derivative of state variables can be expressed by
their first-order forward difference as follows:

Xip1 — X ( Xi+1> oXi1Zi
=X (1 ———— — q1EXi;1 — oXi1Yi,

h i+1 K at X q1LXj1 i+1Yi>
y1+1 wz,ym

=Bz — brv. . XiYi1 — G2Eyiiq,
+Y, Vi
7. _ 7 7.
% = SZiy1 (1 - A) —q3Ez; .
Xiv1 + Vit

By using a similar technique, we approximate the time
derivative of the adjoint variables by their first-order
backward difference and we use the approximate scheme
as follows:

9. Conclusion

This paper deals with a prey-predator type fishery
system which incorporates cannibalism in competitive
environment with stage structured for the predator. The
interactions among immature and mature species are
based on the assumptions as follows: (i) the recruitment
of the immature species depend on the size of the mature
species; (ii) two substocks interact via cannibalism; (iii)
immature predator population which are the product of
the mature predator also become mature and (iv) prey
population and immature predator population compete
with each other for their survival. Though our paper is not
based on a case study, Canadian lake fishery may be a good
example for our model as red shiners population of
Canadian lake fishery decreased the rainbow trout
population by competition with young trout, even if large
trout benefited from the introduction by eating the
shiners.

The dynamics of the proposed system is analyzed in the
presence of combined harvesting. Though cannibalism
plays an important role towards achieving a sustainable
ecosystem, however, it may be noted that so far very few
research articles incorporate the effects of cannibalism in
the growth of a species in a prey-predator system. It is
evident from our study that the cannibalism can be
considered as an important structural force in population
dynamics. Moreover, our results depict that cannibalism
can be considered as an essential biotic process for the
populations life in environments characterized by large
fluctuations in food resources. The cannibalism in the

> —Gqq1E — in+1:| PR

R S — s, r(l B 2Xi+1) _OZiq | OXi4Zi
h K a+ Xiq (a+xis1)
i Z; i
Vi h" T —YEEL (20004 X1 )1 B

(X +}’z’+1)2

Azn—l _ )LG—z—l

h
SYZii1? As n—i-1
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(Xi+l +J’i+1)

- (Pz - 21’2‘]253’1'“)‘125}’,‘“7
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3 3 :8)\3nll+ 1+1An11 )\nllﬂ+
h a+ X

Xip1 + Vi

The sensitivity of the biological as well as economic
parameters of the system on the optimal prey population,
immature and mature predator population and also on the
fishing effort can be studied using the numerical solution
of the optimal control problem.

i i wzZ; wyii1Zi i
:(S)\zn i 1+)\1n i 1O'X,‘+1 + b i+t1 Vi1 1+12 + X1 +q2E )LG i—1
Vi1t (b+yin)

WZjq )\' n—i—1
b+y1+l

2yz;
- {5 <] - ﬂ) - %} As"” - (ps — 2v3q3Ez;1)qEz; 1.

predator population creates different behavior in the the
prey-predator system and thus alters the impact of a
predator on prey population dynamics. It may also be
concluded that cannibalism decreases the probability of
extinction of the species of an ecosystem.
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It is observed that for the boundedness of the system, it
is necessary to control the fishing effort used to harvest the
populations. The criterion for the existence of several
equilibria, stabilities and bifurcations of the system are
derived. It is further noted that the saddle-node equilibri-
um occurs to the non-linear systems at the prey free
equilibrium. Our results suggest that the density-depen-
dent competitive coefficients may lead a stable equilibri-
um to become unstable through a simple Hopf bifurcation
as the density-dependent competitive coefficients for the
species passes through its critical value. It is also clear that
when density-dependent competitive coefficients for the
species are large, both prey and predator populations reach
periodic oscillations around the equilibrium in finite time
then converge to their equilibrium values. However, as the
density-dependent competitive coefficients for the species
decreases, oscillations also increase and the positive steady
state disappears; then the consumer population dies out.

It may also be pointed out that in this paper, several
important parameters such as ecological fluctuations,
refuge, interaction with other species etc. are disregarded.
Hence, further research is necessary to accomplish the
needs in this field.
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