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e tensor-based model of plant growth applied to leaves of
abidopsis thaliana: A two-dimensional computer model
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ntroduction

Growth of leaves like other plant organs is symplastic as
ll as other plant organs [1]. It means that cells grow in a
rdinated way within an organ and neighboring cells do

 slide or glide with respect to each other [2,3]. In other
rds, in the course of the growth of a plant organ, its
sical integrity is continuously maintained. Such growth
rdination involves a link between growth of individual
s and growth of the organ as the whole [4].
thematically, in the case of a symplastically growing
an, a field of displacement velocity (V) of points exists

at the organ level, which is represented by a continuous
and differentiable function of point position [5]. Knowing
V, one is able to determine growth rates at points within
the organ. The linear elemental growth rate (R1) at a given
point along the particular direction s can be calculated
from the equation: R1(s) = [(grad V)es] es, where es is a unit
vector of the direction s and dot indicates a scalar product
[6]. As grad V represents the second-rank operator [7],
values of R1 change with the direction [8]. The areal
elemental growth rate (Ra) at a given point can be
calculated simply as a sum of R1 in every two mutually
orthogonal directions. The operator grad V is called tensor
of growth rate (GT). In the growing organ, there exists a GT
field, calculated with the aid of GT for all points within the
organ. Importantly, the GT field of an organ is continuous
in time and space [6]. If growth is anisotropic, at every
point of a growing organ three mutually orthogonal
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Plant organs grow in coordinated and continuous way. Such growth is of a tensor nature,

hence there is an infinite number of different directions of growth rate in each point of the

growing organ. Three mutually orthogonal directions of growth can be recognized in

which growth achieves extreme values (principal directions of growth [PDGs]). Models

based on the growth tensor have already been successfully applied to the root and shoot

apex. This paper presents the 2D model of growth applied to the arabidopsis leaf. The

model employs the growth tensor method with a non-stationary velocity field. The

postulated velocity functions are confirmed by growth measurements with the aid of the

replica method.

� 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Corresponding author.

E-mail address: marlip@us.edu.pl (M. Lipowczan).

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Biologies

ww w.s c ien c edi r ec t . c om
1-0691/$ – see front matter � 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

://dx.doi.org/10.1016/j.crvi.2013.09.001

http://crossmark.crossref.org/dialog/?doi=10.1016/j.crvi.2013.09.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crvi.2013.09.001&domain=pdf
http://dx.doi.org/10.1016/j.crvi.2013.09.001
mailto:marlip@us.edu.pl
http://www.sciencedirect.com/science/journal/16310691
http://dx.doi.org/10.1016/j.crvi.2013.09.001


M. Lipowczan et al. / C. R. Biologies 336 (2013) 425–432426
principal directions of growth rate (PDGs) exist: maximal,
minimal and of the saddle type. If growth is isotropic, no
PDGs can be distinguished. Knowing PDGs for all points in
the organ, we can define the pattern of PDG trajectories.

The GT approach was successfully applied to simula-
tions of root or shoot apex growth [9–11]. In present paper,
this method was applied to a growing leaf.

The development of leaves is a very complex process,
and can be divided into three phases [12]. The first phase
is the initiation of leaf primordium. The second phase
refers to a change of shape during primordium growth
and establishment of leaf blade and petiole. The last
phase is the expansion phase, and this phase is
considered in the present paper. In many plant species,
including a model plant Arabidopsis, leaf blade expands
in two directions: longitudinal (proximodistal) and

lateral (mediolateral) [13,14]. Finally, a leaf acquires
its typical size and shape.

Leaf blade growth changes in time and space. A tensor-
based model is proposed here to describe such a complex
growth for the Arabidopsis leaf. The latter is generally flat
(Fig. 1), and we considered its projection onto a plane, so
that the model is two-dimensional.

2. Material and methods

2.1. Plant material and growth conditions

Arabidopsis thaliana ecotype Columbia-0 (Col-0) plants
were grown in pots in short days (9 h day; 15 h night),
at temperature between 19–21 oC, illumination
60 mmol m–2 s–1. In such growth conditions, aerial rosettes

Fig. 1. Epoxy resin casts observed by Scanning Electron Microscopy (day 1, day 3, day 5). Red dots (characteristic marker points) were used to divide the leaf

blade into polygons and obtain the meshwork (1st row). The meshwork with an extreme direction of deformation calculated for an exemplary Arabidopsis
leaf in 48-h time intervalsis represented with crosses. The color map represents the areal growth rate (second row) (color online).
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 formed in the axils of the oldest cauline leaf of plants
20 weeks after germination [1]. The third or fourth
es of such aerial rosettes were used in the investiga-
. All the leaves were in the expansion phase of
elopment [15].
We examined the adaxial epidermis of leaf blade at
ee time points at 48-h time intervals (referred to as days
3, 5) for three leaf blades. The examination was
formed with the aid of a non-invasive sequential
lica method [16]. Briefly, the replica was taken from the

 surface using silicon dental polymer. The replicas were
t used as forms for epoxy resin casts, which were
erved in Scanning Electron Microscopy (SEM). An effort
s made to obtain the top view image from each cast. This
thod gives very good results only for three time points.
ore time steps are applied, the leaf blade growth slows
n. The experimental data were sufficient to propose a

del of growth for the leaf blade.

 Data analysis

In order to compute growth variables from the
secutive images of an individual leaf (day 1–5), we
cified a mesh consisting of polygons. The polygons were
ned by three to nine points that can be recognized at
secutive images of a growing leaf (see red dots in Fig. 1).
se points were either vertices (three-way junctions of
iclinal epidermal cell walls) or geometric centers of
home bases. Each polygon consisted of several cells.
se empirical data were used to compute growth
iables. Based on the polygon deformation during leaf
wth, we calculated the directions of maximal and
imal deformation for individual polygons using the
dall and Green formula [17], which are further called

reme directions of deformation (EDDs). The Goodall and
en method is dedicated to triangles. However, we
lied it for polygons because, although the triangulation

the leaf blades would be possible, many of triangles
uld be far away from equilateral ones. This would imply
re errors than the adapted approximation in the
dall–Green method for the polygons. For the model-

, we assumed that the EDDs represent PDGs. We also
ulated the relative area increment (Ia) for each

ygon according to the formula Ia ¼ Stþ1�St
Stþ1

, where St is
 surface of a chosen polygon in t time point.

 Modeling

First, we determined the curvilinear coordinate system
hich the leaf is growing. Two coordinate systems with

 axis of symmetry have been applied to plant organs
,19], i.e. paraboloidal and logcosh curvilinear orthogo-

 coordinate system. We chose the paraboloidal one,
ich is simpler, and then we adjusted the location of the

 blade assuming velocity functions for all its points. The
tulated velocity functions were non-stationary where
ir components were sigmoid functions. In statistical
lysis, we employed the t-test to check how well the
sen coordinate system fits to empirical data (compar-

 empirically obtained EDDs with versors of the

a curvilinear coordinate system, we applied the growth
tensor to develop the growth model for the Arabidopsis leaf.
For calculations and visualization of virtual leaf blade
growth, original codes were written in MATLAB (Math-
Works). All the statistical analyses were performed with
the aid of STATISTICA 10 (StatSoft).

3. Results

3.1. Empirical data on leaf blade growth

First we computed the relative area increment (Ia) and
EDDs which are represented in Fig. 1 as colormaps and the
crosses for the exemplary mesh of polygons at the surface
of growing leaf. These empirical data show that:

� there is a gradient of Ia along the midrib (the lowest rates
are in the distal leaf portion);
� growth is more anisotropic in the distal leaf portion than

in proximal;
� the area increment is lower during the second time

interval.

3.2. Natural coordinate system and GT field for Arabidopsis
leaf

Based on the computed EDDs, we assumed that the
appropriate coordinate system for the arabidopsis leaf is
paraboloidal. The explicit form of the paraboloidal
coordinate system is:

x ¼ uv (1)

Fig. 2. Leaf natural coordinate system applied to a growing leaf. A) day 1,
ay 3 (color online).
rdinate system – PDGs). Having velocity functions in B) d
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z ¼ 1

2
u2 þ v2
� �

(2)

where the scale factors are:

hu ¼ hv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
(3)

We further call this system the leaf natural coordinate
system (L-NCS [u,v]).

Next, we searched for the correct location of the
growing leaf blade in the L-NCS(u,v) (Fig. 2).

Both stationary GT field and non-stationary GT field
were considered (Fig. 3). First, we showed, with the ANOVA
test (Table 1), that there were no significant differences
between the analyzed leaves in both considered time
intervals (comparing angles between EDDmax and versor in
the u direction, eu).

If the natural coordinate system were chosen correctly,
the EDDs calculated for all the polygons would agree with
the versors (eu, ev) of the system. Therefore, angles were
measured between the maximal direction of deformation
(EDDmax) and eu at geometric centers of all polygons. This
was done for both time intervals for the examined leaves in
both stationary and non-stationary GT fields. In order to
determine whether there were significant differences
between orientations of EDDmax and eu (see mean and
median values in Table 2), the t-test for dependent samples
was performed (significance level: 0.05). The paired t-test
showed significant differences between EDDmax and eu in a
stationary GT field (Table 2 C, D), and no significant
differences in a non-stationary GT field (Table 2 A and B).
Statistical analysis shows that the assumed non-stationary
GT field operating in the chosen L-NCS (u,v) is the correct
one and describes well the growth of the leaf blade. We
have proven that there are no statistically significant
differences between the EDDs calculated directly from the
empirical data and those assigned by coordinate system
(eu, ev) during the virtual leaf blade growth.

In the non-stationary GT field, the pattern of PDG
trajectories computed from the model changes during leaf
blade growth, because the GT field moves with respect to
the leaf (the focus of the coordinate system moves away
from the leaf).

Having the L-NCS, we assumed displacement velocity
functions V for all the points of a growing leaf. In 2D, the
velocity functions (both are sigmoid, see also [20]; Fig. 4A)
in two orthogonal directions (u,v) are:

vu ¼ a
0:151

1 þ e�u
(4)

vv ¼ b
0:215

1 þ e�1:96vþ3:5
(5)

where:

a ¼ e�m=640 (6)

b ¼ e�m=200 (7)

Fig. 3. Schematic representation of the leaf in the initial stage of the

simulation (A), in a non-stationary GT field (C), in a stationary GT field. (B,

D) Final stage of simulation, non-stationary and stationary GT fields,

respectively (color online).

Table 1

Comparison of the considered Arabidopsis leaves in each time interval: (A,

C) from day 1 to day 3; (B, D) from day 3 to day 5. (A, B) are computed for a

non-stationary GT field, (C, D) for a stationary GT field (the one-way

ANOVA analysis for angles between EDDmax and eu in the considered three

leaves). The differences between the analyzed leaves are statistically non-

significant (significant level 0.05).

ANOVA test

F-value P

A 0.005 0.995

B 2.854 0.063

C 0.563 0.572

D 2.208 0.116

Table 2

Paired t-test for each individual polygon for the differences between

EDDmax and eu for the growing leaf blades of A. thaliana Col-0 (experimental

and model data). Calculation performed for two time intervals of leaf

growth: (A, C) from day 1 to day 3; (B, D) from day 3 to day 5. A, B are

computed for a non-stationary GT field, C, D for a stationary GT field.

Notation: SE–standard error, n–sample size. Each class of angles was

considered separately.

Paired t test

Mean � SE n t-value P

A 3.43 � 2.38 90 1.50 0.14

B 6.84 � 2.98 85 0.59 0.56

C 1.76 � 2.46 90 2.78 0.01

D 7.99 � 3.23 85 2.47 0.02
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 the extinguish terms, and:

1

5
log m þ 1ð Þ, m ¼ 105t � 1 (8)

 time step.
The velocity functions are presented in Fig. 4 for several
e steps. The velocity function in the u direction is
sented on a semi logarithmic scale, because its value
reases rapidly in time. The general expression for the
ocity function for the Arabidopsis leaf in the i direction is:

 a
A

1 þ e�xiþy
(9)

ere a is the extinction factor, A the amplitude of the
ocity function, x the slope of the sigmoid, y the

slation in the i direction.
The graphical representation of R1 in 2D, calculated

 the above equations of the velocity functions, is
sented in Fig. 5. The spatial variability from isotropic to
sotropic growth is apparent. The considered leaf blade
ves through this field, and accordingly R1 in the u

ction changes its value, while R1 changes in the u

ction are much smaller.

3.3. Application of the non-stationary GT field in the

simulation model of Arabidopsis leaf growth

Further, using the GT, we created also a model of
growing Arabidopsis leaf in the expansion phase of its
development. The results of such modeling are presented
in Fig. 6. We assumed that an initial shape of a virtual leaf
blade is a simplified outline of real leaf blade (neglecting
the leaf margin serration). Such virtual blade was placed in
the defined non-stationary GT field, and five exemplary
time steps of its growth are presented. The simulation
shows a cessation wave of Ra that moves from the proximal
to the distal part of the leaf (see also Movie 1). In the first
time interval, the value of Ra, computed between the first
and the second time step of the simulation, is generally
higher than in the following intervals, and attains its
maximal value in the proximal part of the leaf blade. The
gradient of Ra is the steepest in the first time interval and,
in the following intervals, it gradually decreases. Similar
growth changes take place in the real leaf blade (compare
Fig. 1, 2nd row, and Fig. 6). Therefore, we conclude that our
model functions properly.

The proposed model can also be used to predict the
growth rate along the main leaf axis, i.e. along the midrib.
Movie 2 shows the changes in Rl computed in the direction
parallel to the leaf midrib. It shows that the maximum Rl is
in the most proximal part of the leaf blade. In the following
steps, this value decreases and the Rl distribution along the
midrib becomes uniform. We can also predict Rl in other
directions, for example the Rl in the direction perpendi-
cular to the midrib (u direction in L-NCS) (Movie 3). In this
case, no maximum appears. Rl in u direction is uniform and
decreases with time.

4. Discussion

Here, we present the modelling method adopted to leaf
blade expansion that can be used also to model the growth
of other, symplastically growing plant organs. To specify

4. Velocity functions. A) in the u direction (semi logarithmic scale), B)

e v direction (color online).

Fig. 5. Anisotropy of the growth tensor field represented by indicator

(color online).



M. Lipowczan et al. / C. R. Biologies 336 (2013) 425–432430
the model variables, we need the experimental data on
displacement velocities of marker points on the organ
surface. Having the empirically obtained displacement
velocities, we can formulate appropriate velocity functions
in the natural coordinate system (NCS). The system is
natural if the orientation of EDDs obtained using the
Goodall–Green formula are in agreement with the
orientation of versors in NCS. The velocity functions are
therefore combined with the NCS and the estimations
between both are mutually dependent. The calculations
are much easier in a stationary field case because the
versors are independent of velocity functions; never-
theless, non-stationary fields can be also modeled.

There exist several models of leaf blade growth.
Computer analysis of leaf growth was first performed by
Erickson [8]. This analysis was based on empirical data
acquired from a Xanthium pensylvaticum leaf and the
method of analysis proposed by Richards and Kavanagh
[21]. A set of points (landmarks) was placed on the
surface of the growing organ. These points changed
position due to surface expansion. The displacement
velocity vectors of points were used to estimate growth
gradients within the plant organ. A discrete approach was
also used for modeling leaf growth [22]. Wang et al. [23]
created a model for the Xanthium leaf, similar to ours, but
they consider only the growth simulation without maps
of the growth rate changes. Their animation corresponds
to three days of leaf growth. Kennaway et al. [24] studied
the role of tissue polarity and differential growth in the
generation of the shape. Their model includes interac-
tions between regulatory factors (hormones), velocity
field (generating displacement field used to calculate the
field of volumetric growth) and elasticity (used to
compute the resultant deformation of the cells). Dupuy
et al. [25] modeled the cell–cell interactions with the
genetic background. They focussed on the distribution of
trichomes on the leaf surface, while, in our approach, we
focus on the growth rate maps and the change of the
general shape of the whole leaf blade. Backhaus et al. [26]
and Bilsborough et al. [27] in turn model only the margin
of the Arabidopsis leaf accounting for the serration, and

the geometric form of the leaf, and combine it with
single-metric shape parameters for different mutants
[26] or the auxin distribution and gene expression [27].
Since our model neglects the leaf margin serration,
combining their modeling with ours, one can obtain a
wider description of the Arabidopsis leaf growth and
form.

In the present paper, first the velocity field V for the
displacement of points and the appropriate coordinate
system was defined. This allowed us to calculate the
growth tensor field in which the leaf blade is placed. This
field is non-stationary and the numerical calculations are
unavoidable. The field is dedicated to experimental data
coming from Arabidopsis leaves. We obtained the quanti-
tative data of the velocity field with the aid of the
sequential replica method [16]. The model can be briefly
described as follows. The leaf grows in a non-stationary GT
field according to the velocity functions given by Eqs (4, 5).
The field moves with respect to the leaf along the leaf
midrib (Fig. 6). The velocities decrease in time with factors
a, b (Eqs. (6, 7)).

We postulate the velocity functions that describe the
displacement velocities of the points defined on the leaf
blade. These velocity functions influence the actual
position of the leaf blade in the coordinate system. We
have proven that there are no statistically significant
differences between the orientation of EDDs calculated
directly from the empirical data and those assigned via
coordinate system (eu, ev) during the virtual leaf blade’s
growth. We showed that the empirically obtained orienta-
tion of EDDs fit the principal direction of growth in both
examined time intervals. The velocity functions are valid
only in the curvilinear coordinate system, in this case
paraboloidal, and therefore we regard this system as the
natural coordinate system for Arabidopsis leaf blade (L-
NCS). The presented model of the leaf blade growth can be
used to predict the growth in any intermediate time step
and in any direction during the expansion stage of leaf
development. The velocity functions are sigmoids and they
can be modulated via the parameters defined in Eq. (9), to
achieve the empirically obtained values.

Fig. 6. Five time stages of the growth of a virtual leaf. The current position of the growth tensor field is represented by the axis. The color map of polygons

represents the areal growth rate Ra (color bar in arbitrary units).
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Up to now, in the description of plant growth with
 aid of GT, only the stationary GT field was
sidered, in which the growth tensor was steady in
e and space. Such a stationary GT field was applied to

 modeling of growth of root and shoot apices [9–11].
he present model that assumes a non-stationary GT
d, the leaf moves through the field (spatial changes)

 growth is decreasing in time (temporal changes).
s property of growth can be obtained by using the
cific velocity functions. We considered also the
tionary GT field, by placing the growing leaf in the
us of the coordinate system, but we falsified this kind
approach: there are significant differences between
ntation of versors in L-NCS and the empirically

ained EDDs.
The stationary GT field was applied to the organs self-
intaining their shapes: root and shoots. Leaf is beyond

 description, the leaf blade changes its shape in time
 space and the non-stationary GT field can explain this

ture. To conclude, one can say that the fact that plant
ans self-maintain their shapes can be described by a
ionary GT field, and plant organs changing their shapes
a non-stationary GT field.
Our model is in agreement with the results presented
Kuchen et al. (fig. 1 J in [30]) and Remmler and Rolland-
an [28] and Walter et al. [29]. The maximum growth

 can be found in the proximal region of the leaf blade,
 a gradient of growth rate is observed. Also, the linear
wth rates in Movie 2 are similar to those shown in
. 1e–i of Kuchen et al. [30]. GT modeling provides also
rmation about growth anisotropy (temporal and
tial dependencies).
The presented model includes a complete kinematic
rmation on the leaf blade growth. We are able

calculate growth rates in any direction as well as
wth anisotropy. We can also simulate changes in leaf
de shape and size during its growth. The starting
nt of the modeling is the determination of the
placement velocity functions, which in the case of

 Arabidopsis leaf blade are sigmoids (Fig. 4A in [20]).
 next important issue is to adjust the appropriate
rdinate system, defining the principal directions of
wth. These two ‘variables’ (velocity functions and
ural coordinate system) provide a full kinematic
cription of growth, but the numerical calculations are
voidable.
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