

Contents lists available at ScienceDirect

Comptes Rendus Biologies

www.sciencedirect.com

Molecular biology and genetics/Biologie et génétique moléculaires

Detection of phytochrome-like genes from *Rhazya stricta* (Apocynaceae) using *de novo* genome assembly

Jamal S.M. Sabir^a, Nabih A. Baeshen^a, Ahmed M. Shokry^{a,b}, Nour O. Gadalla^{a,c}, Sherif Edris^{a,d}, Mohammed H. Mutwakil^a, Ahmed M. Ramadan^{a,b}, Ahmed Atef^a, Magdy A. Al-Kordy^{a,c}, Osama A. Abuzinadah^a, Fotouh M. El-Domyati^{a,d}, Robert K. Jansen^{a,e}, Ahmed Bahieldin^{a,*,d}

^a Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), PO Box 80141, Jeddah 21589, Saudi Arabia

^b Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt

^c Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt

^d Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt

^e Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA

ARTICLE INFO

Article history: Received 22 June 2013 Accepted after revision 10 October 2013 Available online 13 November 2013

Keywords: phyA PhyB phyC phyE BLASTp Alkaloids

ABSTRACT

Phytochrome-like genes in the wild plant species Rhazya stricta Decne were characterized using a de novo genome assembly of next generation sequence data. Rhazya stricta contains more than 100 alkaloids with multiple pharmacological properties, and leaf extracts have been used to cure chronic rheumatism, to treat tumors, and in the treatment of several other diseases. Phytochromes are known to be involved in the light-regulated biosynthesis of some alkaloids. Phytochromes are soluble chromoproteins that function in the absorption of red and far-red light and the transduction of intracellular signals during light-regulated plant development. De novo assembly of the nuclear genome of R. stricta recovered 45,641 contigs greater than 1000 bp long, which were used in constructing a local database. Five sequences belonging to Arabidopsis thaliana phytochrome gene family (i.e., AtphyABCDE) were used to identify R. stricta contigs with phytochrome-like sequences using BLAST. This led to the identification of three contigs with phytochrome-like sequences covering AtphyA-, AtphyC- and AtphyE-like full-length genes. Annotation of the three sequences showed that each contig consists of one phytochrome-like gene with three exons and two introns. BLASTn and BLASTp results indicated that RsphyA mRNA and protein sequences had homologues in Wrightia coccinea and and Solanum tuberosum. respectively. RsphyC-like mRNA and protein sequence were homologous to Vitis vinifera and Vitis riparia. RsphyE-like mRNA coding and protein sequences were homologous to Ipomoea nil. Multiple-sequence alignment of phytochrome proteins indicated a homology with 30 sequences from 23 different species of flowering plants. Phylogenetic analysis confirmed that each R. stricta phytochrome gene is related to the same phytochrome gene of other flowering plants. It is proposed that the absence of *phyB* gene in *R. stricta* is due to RsphyA gene taking over the role of phyB.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Plant development and performance is strongly influenced by environment. Light is one of the most important factors affecting plants because it is involving in the regulation of seed germination, establishment of seedlings,

* Corresponding author.

E-mail address: bahieldin55@gmail.com (A. Bahieldin).

1631-0691/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crvi.2013.10.009 determination of growth habit, and the transition to flowering [1]. Plants have a collection of photoreceptors perceiving information (light quality and quantity, and duration) about their light environment [2,3]. Red (R) and far-red (FR) light are important environmental signals in the regulation of plant development, with major roles in seedling de-etiolation, neighbor detection, and photoperiodism [4,5]. Plant R and FR photoreceptors, the phytochromes, are soluble chromoproteins consisting of a 120– 130 kDa apoprotein and a linear tetrapyrrole chromophore. A small gene family *phy*, encoding the phytochrome apoproteins (chromoproteins), functions in the absorption of R and FR light and the transduction of intracellular signals during light-regulated plant development [6].

Plants contain multiple, distinct phytochrome species that are the products of a divergent gene family [7]. Physiological and biochemical experiments in earlier studies indicated that plants contain two different forms of phytochromes [8–10]. The first form is frequently referred to as type-I (or light labile) phytochrome, predominating in etiolated tissue, while the second form is referred to as type-II (or light-stable) phytochrome, prevalent in light-grown tissue [11–13].

The phy gene family was first identified in Arabidopsis and subsequently in many other plant species [1,7,14–16]. In Arabidopsis, there are five phytochrome genes, phyABCDE [17]. The product of the phyA gene, phyA, is light labile and predominates in etiolated seedlings where it accumulates to relatively high levels. phyB and phyC proteins are more light-stable, with phyB are common in light-grown tissues [18]. Arabidopsis may not be representative of flowering plants because additional phy loci related to phyA and phyB evolved independently several times in eudicots. Additionally, monocots may lack orthologs of Arabidopsis phyD and phyE [19]. Etiolated seedlings of phyB mutants are deficient in several responses to red light [20,21]. Light-grown seedlings of phyB mutants have an elongated, early flowering phenotype of the shade-avoidance syndrome of wild-type seedlings grown under low R/FR. The phyB mutant seedlings display attenuated responses to the low R/FR or to the end of day (EOD) far-red light, leading to the proposal that *phyB* may play a key role in the shadeavoidance response [22,23]. In addition, Hirschfeld et al. [13] indicated that the level of phyC apoprotein is strongly reduced in Arabidopsis phyB mutants. This observation suggests that phenotypes associated with phyB mutant genes result from the attenuation of phyC signaling. Some shade-avoidance responses of the phyB mutant to the low R/FR or to EOD far-red light are severely attenuated [22], although other responses, such as reduction in leaf area and acceleration of flowering, are clearly retained [24,25]. Devlin et al. [26] demonstrated that phyA-phyB double mutants respond to EOD far-red light by the acceleration of flowering and by the promotion of elongated internodes between rosette leaves. These responses are reversible by subsequent treatment with red light, indicating that one or more of phyC, phyD, or phyE control flowering time and internode elongation [26,27]. Unexpectedly, Hu et al. [28] revealed both light-dependent and -independent roles for phytochromes to regulate the Arabidopsis circadian clock,

indicating dual roles for phytochromes to arrest and/or promote the progression of plant development in response to the prevailing light environment. Phytochrome was also shown to function in circadian clock adjustment to plant iron status through a new retrograde pathway that involves a plastid-encoded protein [29].

Rhazya stricta Decne is a robust plant with erect stems and upright thick and smooth leaves placed close together on the stem [30]. It is common in the Arabian Peninsula and the Indian subcontinent. Leaves are used to make a tonic with a peculiar bitter taste. Rhazya stricta is used traditionally in Asia for the treatment of different types of diseases, such as skin diseases, stomach diseases, and hypertension [31]. The leaves, flowers and fruits are also used in joint infections and for cancer [32]. Phytochemical analyses have identified more than 100 alkaloids [33] with several pharmacological properties. There is considerable evidence that light can affect the production of alkaloids. For example, Catharanthus roseus L. is affected by light in the production of the dimeric indole alkaloids, vinblastine and vincristine. The biosynthesis and accumulation of vindoline in the intact plant is controlled by tissue-specific, development regulated, and light-dependent factors [34]. Several lines of evidence showed that phytochromes are involved in the light-regulated biosynthesis of these dimeric indole alkaloids. Also, Höft et al. [35] demonstrated that the alkaloid content in the leaves of Tabernaemontana pachysiphon Stapf. (Apocynaceae) is influenced by light intensity.

In this study, phytochrome-like genes of *phyA*, *phyC* and *phyE* were characterized from *de novo* assembled genome contigs from next generation sequencing in the wild plant species *Rhazya stricta*. Bioinformatic analyses of these data confirmed the recovery of three full-length phytochrome-like genes.

2. Materials and methods

2.1. Isolation of nuclear DNA

Extraction of total DNA was performed using the modified procedure of Gawel and Jarret [36]. Three samples of discs collected from the upper leaves of *R. stricta* were frozen in liquid nitrogen (approximately 500 mg of tissue each). To remove RNA contaminants, RNase A (10 mg/mL, Sigma, USA) was added to the DNA samples and incubated at 37 °C for 30 min. Estimation of the DNA concentration in different samples was done by measuring optical density at 260 nm according to the equation:

Purified DNA samples were sent to Beijing Genomics Institute (BGI), Shenzhen, China for sequencing.

2.2. Sequence filtering and bioinformatic analysis

The raw sequence data were obtained using the Illumina python pipeline v. 1.3. For obtained libraries,

Table 1

Accession number, description of the genes and organism (Latin name), for phytochrome genes used in this study.

Accession No.	Description	Latin Name
XM_637404	Dictyostelium discoideum AX4 prolyl 4-hydroxylase (phyA) mRNA, complete cds	Dictyostelium discoideum AX4
XM_004362186	Dictyostelium fasciculatum prolyl 4-hydroxylase (phyA) mRNA, complete cds	Dictyostelium fasciculatum
AF547224	Synthetic construct phytase (phyA) mRNA, complete cds	synthetic construct
EU786166	Aspergillus japonicus strain BCC18313 PhyA (phyA) mRNA, complete cds	Aspergillus japonicas
EU786167	Aspergillus niger strain BCC18081 PhyA (phyA) mRNA, complete cds	Aspergillus niger
XM_002561048	Penicillium chrysogenum Wisconsin 54-1255 phytase phyA from patent	Penicillium chrysogenum
	WO2003038111-A2-Penicillium chrysogenum (phyA) mRNA, complete cds	Wisconsin 54-1255
AJ310697	Agrocybe pediades mRNA for Phytase (phyA gene)	Agrocybe pediades
AJ310700	Trametes pubescens mRNA for Phytase (phyA gene)	Trametes pubescens
AB042805	Aspergillus oryzae phyA mRNA for phytase, complete cds	Aspergillus oryzae
AJ310696	Peniophora lycii mRNA for Phytase (phyA gene)	Peniophora lycii
GU120223	Aspergillus sp. A25 phytase (phyA) mRNA, complete cds	Aspergillus sp. A25
AJ543399	Trichoderma harzianum phyA gene for phytase	Trichoderma harzianum
JF412664	Amphicarpaea edgeworthii phytochrome B (PhyB) mRNA, complete cds	Amphicarpaea edgeworthii
JQ771614	Arabidopsis thaliana ecotype Landsberg erecta (Ler-0) phytochrome C	Arabidopsis thaliana
	(PhyC) mRNA, complete cds	
DQ208423	Solanum tuberosum phytochrome A (phyA) mRNA, complete cds	Solanum tuberosum
AB743571	Fragaria x ananassa phyA mRNA for phytochrome A, complete cds	Fragaria x ananassa
XM_002271635	PREDICTED: Vitis vinifera phytochrome E (PhyE), mRNA	Vitis vinifera
GU994130	Amblyopyrum muticum cultivar Ae45 phytochrome A (PhyA) mRNA, complete cds	Amblyopyrum muticum
GU994114	<i>Triticum monococcum</i> cultivar BO1 phytochrome A (<i>PhyA</i>) mRNA, complete cds	Triticum monococcum
AB743572	Fragaria x ananassa phyB mRNA for phytochrome B, complete cds	Fragaria x ananassa
XM_003555718	Glycine max phytochrome type A-like (LOC100790763), mRNA	Glycine max
EU428746	<i>Glycine max</i> phytochrome A-1 (<i>phyA</i>) mRNA, complete cds	Glycine max
EU428748	<i>Glycine max</i> phytochrome A-3 (<i>phyA</i>) mRNA, complete cd.	Glycine max
EU428747	<i>Glycine max</i> phytochrome A-2 (<i>phyA</i>) mRNA, complete cds	Glycine max
NM_117721	Arabidopsis thaliana phytochrome D (PhyD) mRNA, complete cds	Arabidopsis thaliana
AY348568	<i>Orobanche minor</i> phytochrome A (<i>phyA</i>) mRNA, complete cds	Orobanche minor
AY348569	Monotropastrum globosum phytochrome A (phyA) mRNA, complete cas	Monotropastrum globosum
X/5412	P. Crispum pnyA mkiNA for phytochrome A	Petroseiinum crispum
AF544028 AY078504	Stellaria longipes ecotype prairie phytochrome B (<i>PhyB</i>) mRNA, complete cds	Stellaria longipes
NM_001251357	Givenne max phytochrome A (PhyA), mRNA	Glycine max
L34644 NM 117022	Arabidancia thaliana phytochroma E (DUVE) mPNA, complete ede	Glycine mux
NW_117925	Arabidopsis thanana phytochionile $E(PHE)$ mRNA, complete cas	Arabiaopsis thanana
NM 122975	Arabidonsis thaliang phytochrome $C(PhyC)$ mRNA complete cds	Arabidonsis thaliana
FU/228751	<i>Clycine may</i> phytochrome B-3 (<i>nhyB</i>) mRNA complete cds	Clycine may
XM 003533109	<i>Clycine max</i> phytochrome B-like (LOC100799831) mRNA	Clycine max
NM_001123784	Arahidonsis thaliana phytochrome A (PhyA) mRNA complete cds	Arabidonsis thaliana
U56731	Sorghum hicolog phytochrome C (PhyC) mRNA complete cds	Sorghum hicolor
XM 002991073	Selaginella moellendorffii hypothetical protein (PhyB) mRNA	Selaginella moellendorffii
AF544029	Stellaria longipes ecotype prairie phytochrome C ($PhyC$) mRNA. complete cds	Stellaria longipes
U56729	Sorghum bicolor phytochrome A (PhyA) mRNA, complete cds	Sorghum bicolor
XM_002278574	PREDICTED: Vitis vinifera phytochrome A (PhyA), mRNA	Vitis vinifera
NM_100828	Arabidopsis thaliana phytochrome A (PhyA) mRNA, complete cds	Arabidopsis thaliana
XM_002318877	Populus trichocarpa phytochrome (phya), mRNA	Populus trichocarpa
AJ001914	Lycopersicon esculentum mRNA for phytochrome A, type 1	Solanum lycopersicum
AB109891	Oryza sativa Japonica Group PHYA mRNA for phytochrome A, complete cds	Oryza sativa Japonica Group
AJ001318	Populus tremula x Populus tremuloides mRNA for phytochrome A	Populus tremula x Populus
		tremuloides
AB036762	Armoracia rusticana phyA mRNA for phytochrome A, complete cds	Armoracia rusticana
AJ001915	Lycopersicon esculentum mRNA for phytochrome A, type 2	Solanum lycopersicum
NM_001247561	Solanum lycopersicum alternative transcript type 3 (phyA), mRNA	Solanum lycopersicum
AJ001916	Lycopersicon esculentum mRNA for phytochrome A type 3	Solanum lycopersicum
AY348567	Cuscuta pentagona phytochrome A (phyA) mRNA, complete cds	Cuscuta pentagona
EU428752	<i>Glycine max</i> phytochrome B-4 (<i>phyB</i>) mRNA, complete cds	Glycine max
AB018442	Oryza sativa Japonica Group mRNA for phytochrome C, complete cds	Oryza sativa Japonica Group
NM_127435	Arabidopsis thaliana phytochrome B (PhyB) mRNA, complete cds	Arabidopsis thaliana
AY345120	Cyrtosia septentrionalis phytochrome A (phyA) mRNA, complete cds	Cyrtosia septentrionalis
AY888046	Inticum aestivum putative phytochrome B (PhyB) mRNA, complete cds	Iriticum aestivum
AB264087	Lotus japonicus phyb mRNA for phytochrome b, complete cds	Lotus japonicas

only high quality reads (quality > 20) were retained. Then, *de novo* assembly of the short single-end read dataset was performed using assembler Velvet, which has been developed for the assembly of short reads using the de Bruijn graph algorithm [37].

2.3. Basic local alignment search tool (BLAST)

BLAST finds regions of local similarity between sequences. The program compares nucleotide or protein sequences to sequence databases, and calculates the

Table 2

Description of the three detected Atphy-like sequences in Rhazya stricta genome contigs greater than 1000 bp.

Subject	Query	Score	Identities	<i>E</i> -value
PhyA (NM_100828.3)	Contig no. 52,341	1266	1593/2037 (78%)	0.0
phyC (NM_122975.2)	Contig no. 6,028	893	1243/1737 (72%)	0.0
phyE (NM_117923.7)	Contig no. 6,070	850	1186/1654 (72%)	0.0

statistical significance of matches based on pair-wise alignment method. It can be used to infer functional and evolutionary relationships between sequences as well as help identify members of gene families (http://www. ncbi.nlm.nih.gov/BLAST).

2.4. Eukaryotic GeneMark.hmm program

GeneMark.hmm E-3.9 (http://exon.gatech.edu/ eukhmm.cgi, A. Lukashin and M. Borodovsky, unpublished) was used for gene finding and annotation of *R. stricta* phytochrome-like genes. The statistical model of genomic sequence organization employed in the GeneMark.hmm algorithm is a HMM with duration [38] or a hidden semi-Markov model (HSMM).

2.5. Sequence alignment and estimation of phylogenetic relationships

MUSCLE [39] was used for multiple-sequence alignment. GenBank accession numbers for phytochrome protein sequences data aligned and analyzed in this study are displayed in Table 1. Maximum likelihood was used to build a tree where the evolutionary rates are free to differ in different lineages. ML trees were constructed using amino acid sequences and the Jones–Taylor–Thornton (JTT) substitution model. To evaluate the reliability of the inferred trees, bootstrap analysis using 1000 replicates was carried out. All the phylogenetic analyses were performed using MEGA 5.2 [40].

3. Results

3.1. Next generation sequencing and BLAST searches for phytochrome-like gene family

A total of 73,841,902 single-end short DNA sequence reads was generated for R. stricta using the HiSeq 2000 Illumina platform (Illumina, San Diego, CA). The raw sequencing reads have been deposited at EMBL (accession number PRJEB4739). De novo assembly using Velvet generated 714,083 contigs and the 45,641 contigs greater than 1000 bp were used in constructing a local database. Five sequences belonging to Arabidopsis thaliana phytochrome gene family (i.e. AtphyABCDE, accession NM_100828.3, NM_127345.3, NM_122975.2, nos. NM_117721.1 and NM_117923.7, respectively) were obtained from GenBank and used for searching the local database to identify contigs with phytochrome-like sequences using BLAST. The BLAST searches resulted in the identification of three phytochrome-like contigs in R. stricta. The first contig (number 152,341) was 4955 bp long and had an average depth of coverage of 15.32 and corresponds to AtphyA-like sequence. The second contig

(number 6,028) was 7216 bp long with an average coverage of 13.25 and represents an *AtphyC*-like. The third contig (number 66,070) was 7000 bp long with an average coverage of 12.61 and corresponds to an *AtphyE*-like sequence (Table 2).

3.2. Annotation of the three phytochrome gene sequences

GeneMark.hmm was used to identify exon-, intron- and protein-like structures in three phytochrome-like sequences of the *R. stricta* contigs. Each contig consisted of one phytochrome-like gene comprised of three exons and two introns (Fig. 1, Table 3). Contigs 152,341, 6,028 and 66,070 were submitted to GenBank (accession numbers: phyA–HG380749; phyC–HG380750; phyE– HG380751). BLASTn and BLASTp of the GenBank nucleotide and protein databases were performed using the predicted mRNA and protein sequence of each contig to search for homologous sequences.

Rhazya stricta phyA-like (or RsphyA-like) mRNA sequence (contig 152,341) had the highest homology to the *phyA* coding sequence of *Wrightia coccinea* with query coverage equal to 49% and an E-value of 0.0. Protein sequence searches indicated that RsphyA-like sequence is most similar to phyA of Solanum tuberosum with query coverage equal to 96% and an E-value of 0.0. Both results confirmed that contig 152,341 likely contains a full-length copy of the RsphyA-like gene (Table 3 and Fig. 1a). Searches of mRNA sequence predicted from the second contig (6,028) identified a Rhazya stricta phyC-like (or RsphyClike) sequence that had the highest sequence identity to the phyC coding sequence of Vitis vinifera with query coverage equal to 98% and an E-value of 0.0. The protein sequence query identified the highest identity to phyC of Vitis riparia with query coverage equal to 99% and an Evalue of 0.0. These results confirmed that contig 6,028 likely contains a full-length RsphyC-like gene (Table 3 and Fig. 1b). Finally, using the mRNA sequence predicted from the third contig (66,070), R. stricta phyE-like (or RsphyElike) sequence was found to have high sequence identity to the *phyE* coding sequence of *Ipomoea nil* with query coverage equal to 96% and an E-value of 0.0. Protein sequence queries indicated that this contig had the highest identity with phyE of Ipomoea nil with query coverage equal to 97% and an E-value of 0.0. Both results confirmed that contig 66,070 likely contains a full-length copy of the RsphyE-like gene (Table 3 and Fig. 1c).

Protein sequences of the three identified *R. stricta phy*like genes were analyzed against the pfam database (http://pfam.sanger.ac.uk/) to detect the protein family and conserved domains. The analysis revealed the presence of a phytochrome protein family (accession number PF00360). The domains summary of the predicted proteins is shown in Tables 4–6 and Fig. 2.

Fig. 1. The relative position for the three phytochrome-like genes (blue), i.e. *RsphyA*-like (a) *RsphyC*-like (b) and *RsphyE*-like (c), and exons (yellow) within the three contigs. Color online.

able 3	
nnotation results of the three contigs with Rsphy-like sequences showing number, type, range and length of exons (b	p).

Gene	Contig No.	Exon No.	Strand	Exon Type	Exon range (bp)		Exon length (bp)
					Start	End	
phyA	15,2341	3	_	Terminal	252	270	19
phyA	15,2341	2	-	Internal	379	1195	817
phyA	15,2341	1	-	Initial	1372	3418	2047
phyC	6,028	1	+	Initial	923	2960	2038
phyC	6,028	2	+	Internal	4035	4851	817
phyC	6,028	3	+	Terminal	6854	7154	301
phyE	66,070	1	+	Initial	1570	2667	1098
phyE	66,070	2	+	Internal	2737	3619	883
phyE	66,070	3	+	Terminal	5050	5852	803

3.3. Multi-sequence alignment (MSA) and phylogenetic analysis

The best BLASTp search hits were used to perform multi-sequence alignment. This resulted in 30 sequences from 23 different species. Alignment of the 30 sequences was obtained by gap open penalty of 10 and gap extension penalty of one. Alignment of *R. stricta* phytochromes-like proteins and the 30 amino acid sequences from the BLASTp search showed high sequence identity (Table 7). Phylogenetic relationships among these sequences showed that each phytochrome-like gene of the *R. stricta* grouped with the same type of subunit in the other plant species (Fig. 3).

4. Discussion

Using local BLASTn searches, three *phy*-like genes (i.e., *RsphyA*-, *RsphyC*- and *RsphyD*-like) were identified in *Rhazya stricta*. By applying more sensitive protein search tools, such as GeneMark.hmm, it was possible to identify the start and stop codons as well as the exon and intron boundaries of *phy*-like homologues in *R. stricta* (Fig. 1). Domain searches confirmed that both the C-terminal and

N-terminal domains are conserved for all three *Rhazya phy*-like genes (Fig. 2). phyA and phyB proteins have been shown to be the primary mediators of the phytochrome-mediated development (reviewed in Mathews [41]).

The fact that *phyB* gene was not detected in *R*. *stricta* could be the result of the protein sequence being too divergent from Arabidopsis to be detected by BLAST. This explanation seems unlikely because of the high amino acid sequence identity between the three detected phytochrome genes of Rhazya and other angiosperms (96-99%). Alternatively, phyB protein may be absent from Rhazya and one of the other subunits has taken over its function. Rhazya stricta grows in extremely high light intensities in the deserts of western Asia and these conditions may have affected the evolutionary history of phytochrome genes in this plant species. Earlier studies of single and double mutants for phyA and phyB genes have demonstrated redundancy of function between both genes [42], supporting the hypothesis that that *phyA* may have taken over the function of phyB in Rhazya. Other studies on transcriptional profiling of etiolated phyB mutants subjected to red (R) wavelengths showed similar response to that of the wildtype controls [43,44]. These results suggest that other

Fig. 2. Domain structure of the three phytochrome-like proteins of *R. stricta* displayed as a Pfam diagram. The figure shows relative position for the identified protein family and N-terminal and C-terminal domains within the three identified proteins, i.e. RsphyA-like (a) RsphyC-like (b) and RsphyE-like (c). Domains are connected by a flexible hinge region (H). Color online.

Table 4

Pfam search results show relative position, bit score and E-value for the identified protein family and domains within R. stricta phyA-like identified protein.

	Family	Description	Entry type	Clan	Envel	ope	Alignment		Alignment HMM		HMM length	Bit score	E-value
					Start	End	Start	End	From	То		_	
N-terminal domain	NTE	N-terminal extension	Region	N/A	1	65	1	65	N/A	N/A	65	60.8	$4.00E^{-09}$
	PAS_2	PAS fold	Domain	CL0183	66	182	66	182	2	110	110	135.8	$7.30E^{-40}$
	GAF	GAF domain	Domain	CL0161	215	398	215	398	1	154	154	142.4	$1.20E^{-41}$
	PHY	Phytochrome region	Family	CL0161	409	588	409	586	1	181	183	234.8	$3.60E^{-70}$
C-terminal domain	PAS	PAS fold	Domain	CL0183	616	731	617	731	2	113	113	78.8	2.50E ⁻²²
	PAS	PAS fold	Domain	CL0183	746	871	747	869	2	111	113	82.0	$2.40E^{-23}$
	HisK	Histidine kinase-related (phospho-acceptor)	Domain	CL0025	891	953	894	948	4	61	68	28.5	1.10E ⁻⁰⁶

Table 5

Pfam search results shows relative position, bit score and E-value for the identified protein family and domains within R. stricta phyC-like identified protein.

	Family	Description	Entry type	Clan	Envel	ope	Alignment		Alignment HMM		HMM length	Bit score	E-value
					Start	End	Start	End	From	То			
N-terminal domain	NTE	N-terminal extension	Region	N/A	1	67	1	67	N/A	N/A	67	137	1.00E ⁻³⁵
	PAS_2	PAS fold	Domain	CL0183	68	184	68	184	1	110	110	145	$1.00E^{-42}$
	GAF	GAF domain	Domain	CL0161	218	396	221	395	5	153	154	133.7	$5.70E^{-39}$
	PHY	Phytochrome region	Family	CL0161	407	586	407	584	1	181	183	234.9	3.30E ⁻⁷⁰
C-terminal domain	PAS	PAS fold	Domain	CL0183	613	728	614	728	2	113	113	67.2	9.80E ⁻¹⁹
	PAS	PAS fold	Domain	CL0183	743	868	745	866	3	111	113	58.5	$4.70E^{-16}$
	HisK	Histidine kinase-related (phospho-acceptor)	Domain	CL0025	892	952	893	950	6	66	68	27.7	1.90E ⁻⁰⁶

Fig. 3. Phylogenetic analysis of 33 phytochromes including those of *R. stricta* phytochrome proteins. Color online.

Table 6
Pfam search results shows relative position, bit score and E-value for the identified protein family and domains within R. stricta phyE-like identified protein.

	Family	Description	Entry type	Clan	Envel	ope	Alignment		Alignment HMM		HMM length	Bit score	E-value
					Start	End	Start	End	From	То			
N-terminal domain	NTE	N-terminal extension	Region	N/A	1	67	1	67	N/A	N/A	67	138	3.00E ⁻³⁶
	PAS_2	PAS fold	Domain	CL0183	83	196	83	196	1	110	110	136.7	$3.70E^{-40}$
	GAF	GAF domain	Domain	CL0161	229	371	231	368	3	126	154	104.8	$4.30E^{-30}$
	PHY	Phytochrome region	Family	CL0161	387	566	387	563	1	180	183	237.3	$6.10E^{-71}$
C-terminal domain	PAS	PAS fold	Domain	CL0183	593	709	594	709	2	113	113	85.3	2.30E ⁻²⁴
	PAS	PAS fold	Domain	CL0183	724	846	725	844	2	111	113	57	$1.40E^{-15}$
	HisK	Histidine kinase-related (phospho-acceptor)	Domain	CL0025	865	924	869	921	5	59	68	27.9	1.70E ⁻⁰⁶

Table 7							
Information for 30	plant phy	ytochrome	proteins 1	used for	multi-seq	uence al	ignment.

No.	Accession	Description	Latin name	Length (aa)
1	AAF66603	phytochrome C	Oryza sativa Indica Group	1137
2	AAP06790	phytochrome C1 apoprotein	Zea mays	1135
3	AAR33026	phytochrome C	Sorghum bicolor subsp. Verticilliflorum	1135
4	AAU06208	phytochrome C	Triticum aestivum	1139
5	ABA46868	phytochrome A	Solanum tuberosum	1123
6	ABB13327	phytochrome C	Hordeum vulgare subsp. vulgare	1139
7	ACC60969	phytochrome A	Vitis riparia	1124
8	ACC60971	phytochrome C	Vitis riparia	1123
9	ACC60972	phytochrome E	Vitis riparia	1124
10	AEA50880	phytochrome A	Populus tremula	958
11	AEK26583	phytochrome A	Populus tremula	1109
12	BAA99410	phytochrome A	Armoracia rusticana	1122
13	BAH79238	phytochrome A	Cardamine nipponica	1122
14	BAH79243	phytochrome A	Cardamine resedifolia	1122
15	BAM67032	phytochrome A	Chrysanthemum seticuspe f. boreale	1121
16	BAN14712	phytochrome E	Lotus japonicas	943
17	P33530	Phytochrome A1	Nicotiana tabacum	1124
18	P55004	Phytochrome E	Ipomoea nil	1115
19	XP_002271671	PREDICTED: phytochrome E	Vitis vinifera	1124
20	XP_002512596	phytochrome A	Ricinus communis	1124
21	XP_002519749	phytochrome B	Ricinus communis	1131
22	XP_003535030	PREDICTED: phytochrome E-like	Glycine max	1120
23	XP_003559446	PREDICTED: phytochrome C-like	Brachypodium distachyon	1140
24	XP_003595571	Phytochrome E	Medicago truncatula	1122
25	XP_004144620	PREDICTED: phytochrome C-like	Cucumis sativus	1119
26	XP_004147430	PREDICTED: phytochrome E-like	Cucumis sativus	1134
27	XP_004232975	PREDICTED: phytochrome E-like	Solanum lycopersicum	1137
28	XP_004243570	PREDICTED: phytochrome C-like	Solanum lycopersicum	1118
29	XP_004295419	PREDICTED: phytochrome E-like	Fragaria vesca subsp. vesca	1162
30	XP_004303565	PREDICTED: phytochrome C-like	Fragaria vesca subsp. vesca	1122

phytochrome family member(s) may be predominantly responsible for perception and transduction of R light in the absence of phyB protein. Recently, phyA protein was shown to play a dominant role in regulating rapid gene expression responses to R light [45]. These and other more recent studies indicate a shuttle role for phyA protein in response to R light, which is normally masked in the presence of phyB [46]. Thus, we propose that absence of *phyB* gene in *R. stricta* has resulted in *RsphyA* taking over the role of *phyB*.

Phytochromes play both unique and overlapping roles across the life stages of plants to regulate a range of developmental processes especially at seed germination and seedling stages. The latter stage is known for accumulating the higher levels of alkaloids useful for different pharmaceutical purposes in another medicinally important plant *Pinellia ternata* (Araceae) [47]. The present study provides valuable information for future manipulations of phytochrome gene expression at the seedling stage to enhance resources for better understanding alkaloids and their potential medicinal/pharmaceutical use in *Rhazya stricta*.

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Acknowledgments

The authors gratefully acknowledge the financial support from King Abdulaziz University (KAU) Vice

President for Educational Affairs Prof. Dr. Abdulrahman O. Alyoubi and the KAU Deanship of Scientific Research, Jeddah, Saudi Arabia, represented by the Unit of Strategic Technologies Research through the Project number 431/008-D for the Project entitled: "Environmental Meta-Genomics and Biotechnology of *Rhazya stricta* and its Associated Microbiota".

References

- J. Li, G. Li, H. Wang, X. Wang Deng, Phytochrome signaling mechanisms, in: The Arabidopsis Book 9, 2011, p. e0148 doi/10.1199/tab.0148.
- [2] J.M. Christie, Phototropin blue-light receptors, Annu. Rev. Plant Biol. 58 (2007) 21-45.
- [3] L. Rizzini, J.J. Favory, C. Cloix, D. Faggionato, A. O'Hara, E. Kaiserli, R. Baumeister, E. Schäfer, F. Nagy, G.I. Jenkins, R. Ulm, Perception of UV-B by the Arabidopsis UVR8 protein, Science 332 (2011) 103–106.
- [4] H. Smith, Sensing the light environment: The functions of the phytochrome family, in: R.E. Kendrick, G.H.M. Kronenberg (Eds.), Photomorphogenesis in Plants, 2nd ed, Kluwer, Dordrecht, The Netherlands, 1994, pp. 377–416.
- [5] X. Zheng, W. Suowei, H. Zhai, P. Zhou, M. Song, L. Su, Y. Xi, Y. Li, Y. Cai, F. Meng, L. Yang, H. Wang, J. Yang, *Arabidopsis* phytochrome B promotes SPA1 nuclear accumulation to repress photomorphogenesis under farred light, Plant Cell 25 (2013) 115–133.
- [6] R.A. Sharrock, T. Clack, Patterns of expression and normalized levels of the five Arabidopsis phytochromes, Plant Physiol. 130 (2002) 442–456.
- [7] S. Mathews, R.A. Sharrock, Phytochrome gene diversity, Plant Cell Environ. 20 (1997) 666–671.
- [8] H. Abe, K.T. Yamamoto, A. Nagatani, M. Furuya, Characterization of green tissue-specific phytochrome isolated immunochemically from pea seedlings, Plant Cell Physiol. 26 (1985) 1387–1399.
- [9] Y. Shimazaki, L.H. Pratt, Immunochemical detection with rabbit polyclonal and mouse monoclonal antibodies of different pools of phytochrome from etiolated and green Avena shoots, Planta 164 (1985) 333– 344.
- [10] J.G. Tokuhisa, S.M. Daniels, P.H. Quail, Phytochrome in green tissue: spectral and immunochemical evidence for two distinct molecular

species of phytochrome in light-grown Avena sativa L, Planta 164 (1985) 321-332.

- [11] M. Furuya, Phytochromes: their molecular species, gene families, and functions, Annu. Rev. Plant Physiol. 44 (1993) 617–645.
- [12] L.H. Pratt, M.M. Cordonnier-Pratt, B. Hauser, M. Caboche, Tomato contains two differentially expressed genes encoding B-type phytochromes, neither of which can be considered an ortholog of *Arabidopsis* phytochrome B, Planta 197 (1995) 203–206.
- [13] M. Hirschfeld, J.M. Tepperman, T. Clack, P.H. Quail, R.A. Sharrock, Coordination of phytochrome levels in *phyB* mutants of *Arabidopsis* as revealed by apoprotein-specific monoclonal antibodies, Genetics 149 (1998) 523–535.
- [14] S. Mathews, M. Lavin, R.A. Sharrock, Evolution of the phytochrome gene family and its utility for phylogenetic analyses of angiosperms, Anal. Missouri Bot. Garden 82 (1995) 296–321.
- [15] R. Alba, P.M. Kelmenson, M.M. Cordonnier-Pratt, L.H. Pratt, The phytochrome gene family in tomato and the rapid differential evolution of this family in angiosperms, Mol. Biol. Evol. 17 (2000) 362–373.
- [16] G. Bae, G. Choi, Decoding of light signals by plant phytochromes and their interacting proteins, Annu. Rev. Plant Biol. 59 (2008) 281–311.
- [17] T. Clack, S. Mathews, R.A. Sharrock, The phytochrome apoprotein family in *Arabidopsis* is encoded by five genes: the sequences and expression of *PHYD* and *PHYE*, Plant Mol. Biol. 25 (1994) 413–427.
- [18] D.E. Somers, R.A. Sharrock, J.M. Tepperman, P.H. Quail, The *hy3* long hypocotyl mutant of *Arabidopsis* is deficient in phytochrome B, Plant Cell 3 (1991) 1263–1274.
- [19] S. Mathews, R.A. Sharrock, The phytochrome gene family in grasses (Poaceae): a phylogeny and evidence that grasses have a subset of the loci found in dicot angiosperms, Mol. Biol. Evol. 13 (1996) 1141–1150.
- [20] M. Koomneef, E. Rolf, C.J.P. Spruit, Genetic control of light inhibited hypocotyl elongation in *Arabidopsis thaliana* (L.) Heynh, Z. Planzenphysiol. 100 (1980) 147–160.
- [21] J.W. Reed, P. Nagpal, D.S. Poole, M. Furuya, J. Chory, Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout *Arabidopsis* development, Plant Cell 5 (1993) 147–157.
- [22] A. Nagatani, J. Chory, M. Furuya, Phytochrome B is not detectable in the hy3 mutant of Arabidopsis, which is deficient in responding to end-ofday far-red light treatments, Plant Cell Physiol. 32 (1991) 1119–1122.
- [23] G.C. Whitelam, H. Smith, Retention of phytochrome mediated shadeavoidance responses in phytochrome deficient mutants of *Arabidopsis*, cucumber and tomato, J. Plant Physiol. 139 (1991) 119–125.
- [24] P.R.H. Robson, G.C. Whitelam, H. Smith, Selected components of the shade-avoidance syndrome are displayed in a normal manner in mutants of *Arabidopsis thaliana* and *Brassica rapa* deficient in phytochrome B, Plant Physiol. 102 (1993) 1179–1184.
- [25] K.J. Halliday, M. Koomneef, G.C. Whitelam, Phytochrome B and at least one other phytochrome mediate the accelerated flowering response of *Arabidopsis thaliana* L. to low red/far-red ratio, Plant Physiol. 104 (1994) 1311–1315.
- [26] P.F. Devlin, K.J. Halliday, N.P. Harberd, G.C. Whitelam, The rosette habit of *Arabidopsis thaliana* is dependent upon phytochrome action: novel phytochromes control internode elongation and flowering time, Plant J. 10 (1996) 1127–1134.
- [27] I.C. Jang, R. Henriques, H.S. Seo, A. Nagatani, N.H. Chua, Arabidopsis phytochrome interacting factor proteins promote phytochrome B

polyubiquitination by COP1 E3 ligase in the nucleus, Plant Cell 22 (2010) 2370–2383.

- [28] W. Hu, K.A. Franklin, R.A. Sharrock, M.A. Jones, S.L. Harmer, J.C. Lagarias, Unanticipated regulatory roles for *Arabidopsis* phytochromes revealed by null mutant analysis, Proc. Natl. Acad. Sci. USA 110 (2013) 1542– 1547.
- [29] P.A. Salomé, M. Oliva, D. Weigel, U. Krämer, Circadian clock adjustment to plant iron status depends on chloroplast and phytochrome function, EMBO J. 32 (2013) 511–523.
- [30] S. Nazimuddin, M. Qaiser, Apocynaceae, in: E. Nisir, S.I. Ali (Eds.), Flora of Pakistan, 148, 1983, pp. 26–27.
- [31] S. Mukhopadhyay, G.A. Handy, S. Funayama, G.A. Cordell, Anticancer indole alkaloids of *Rhazya stricta*, J. Nat. Prod. 44 (1981) 696–700.
- [32] A.U. Rahman, M.M. Qureshi, Applications of modern 2D-NMR techniques in structure elucidation of natural products, Pure Appl. Chem. 62 (1990) 1385–1388.
- [33] S.A. Gilani, A. Kikuchi, Z.K. Shinwari, Z.I. Khattak, K.N. Watanab, Phytochemical, pharmacological and ethnobotanical studies of *Rhazya stricta* Decne, Phytother. Res. 21 (2006) 301–307.
- [34] R.J. Aerts, V. De Luca, Phytochrome is involved in the light-regulation of vindoline biosynthesis in *Catharanthus*, Plant Physiol. 100 (1992) 1029–1032.
- [35] M. Höft, R. Verpoorte, E. Beck, Growth and alkaloid contents in leaves of *Tabernaemontana pachysiphon* Stapf (Apocynaceae) as influenced by light intensity, water and nutrient supply, Oecologia 107 (1996) 160–169.
- [36] N.L. Gawel, R.L. Jarret, A modified CTAB DNA extraction procedure of Musa and Ipomoea, Plant Mol. Biol. Rep. 9 (1991) 262–266.
- [37] D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn graphs, Genome Res. 18 (2008) 821–829.
- [38] L.R. Rabiner, A tutorial on hidden Markov models and selected applications in speech recognition, Proc. IEEE 77 (1989) 257–286.
- [39] R.C. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucl. Acids Res. 32 (2004) 1792–1797.
- [40] K. Tamura, D. Peterson, N. Peterson, G. Stecher, M. Nei, S. Kumar, MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods, Mol. Biol. Evol. 28 (2011) 2731–2739.
- [41] S. Mathews, Phytochrome evolution in green and nongreen plants, J. Heredity. 96 (2005) 197–204.
- [42] G.C. Whitelam, P.F. Devlin, Roles of different phytochromes in Arabidopsis photomorphogenesis, Plant Cell Environ. 20 (1997) 752–758.
- [43] L. Ma, J. Li, L. Qu, J. Hager, Z. Chen, H. Zhao, X.W. Deng, Light control of *Arabidopsis* development entails coordinated regulation of genome expression and cellular pathways, Plant Cell 13 (2001) 2589–2607.
- [44] J.M. Tepperman, M.E. Hudson, R. Khanna, T. Zhu, S.H. Chang, X. Wang, P.H. Quail, Expression profiling of *phyB* mutant demonstrates substantial contribution of other phytochromes to red-light-regulated gene expression during seedling de-etiolation, Plant J. 38 (2004) 725–739.
- [45] J.M. Tepperman, Y.S. Hwang, P.H. Quail, *phyA* dominates in transduction of red-light signals to rapidly responding genes at the initiation of *Arabidopsis* seedling de-etiolation, Plant J. 48 (2006) 728–742.
- [46] J. Li, W. Terzaghi, X.W. Deng, Genomic basis for light control of plant development, Protein Cell 3 (2012) 106–116.
- [47] J. Zeng, Z. Peng, J. Song, X. Ma, S. Wei, Y. Luo, The dynamic change of total alkaloids content from *Pinellia ternate*, Zhong Yao Cai. 27 (2004) 471–473.