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Polycyclic aromatic hydrocarbons (PAHs) are one of
sistent organic pollutants (POPs) with carcinogenic and
tagenic properties [1,2]. PAHs are mainly produced

 incomplete combustion of organic materials and
il fuel, and they exist in the different environmental

trices, including soil, water, and sediment [3–6]. They
 persistent in various environmental media and enter

 plants through their leaf and/or root systems.
sequently, they are transferred to the food chains
 threaten human health [5,7]. Therefore, an improved

understanding of PAHs toxic mechanism is essential for the
assessment of the risk of PAHs exposure.

Recently, the toxic effects of PAHs on plants have been
extensively documented [8–12]. It has been reported that
PAHs inhibited the growth of plants, caused a decrease in
the photosynthesis of antioxidant enzymes, and even led
to lipid peroxidation, DNA damage in plants [13–15]. The
degree of toxicity varies with the kind of PAHs and the
species of plants [12,16]. Liu et al. [14] suggested that
excessive production of ROS in plants was a biochemical
response to PAHs. In general, oxidation of PAHs results in
the generation of ROS, which in turn causes oxidative
stress and subsequent damage to plant cells. However,
plants have enzymatic systems, including free radical
scavengers, like superoxide dismutase (SOD), peroxidase
(POD), and catalase (CAT) [17]. When the elevated levels of
ROS exceed the levels that the antioxidant systems can
handle, the damage may occur. Thus, it is important to
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A B S T R A C T

Polycyclic aromatic hydrocarbons (PAHs) are one of the highly persistent organic

pollutants, and they are toxic to plants and other living organisms, including human

beings. To analyze the response of higher plant to PAHs, we investigated the effects of

phenanthrene (PHE) on seed germination and various physiological changes of wheat

seedlings. Specifically, we investigated growth, chlorophyll content, lipid peroxidation

(LPO), activities of antioxidant enzymes and H2O2 accumulation. The results showed that

PHE inhibited seed germination, affected the growth and chlorophyll level of wheat

seedlings. Furthermore, PHE elevated the levels of LPO and induced H2O2 accumulation in

leaf tissues in a dose-dependent manner, accompanied by the changes in the antioxidant

status. The activities of antioxidant enzymes, including superoxide dismutase (SOD),

catalase (CAT) and glutathione peroxidase (GPX), displayed a decreasing trend with the

increasing of PHE concentration. The results indicated that PHE could exert oxidative

damages in the early development stage of wheat and the harmfulness occurred mainly in

samples with higher concentrations of PHE.
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understand the responses of plant system to environ-
mental stress by determining the occurrence of oxidative
damages and the changes in antioxidant enzymes’
activities in plant.

Although many studies have been published on PHE’s
phytotoxicity against different plants, less attention has
been paid to seed germination and growth of wheat
seedlings. Wheat is one of the main grains in China. Its
quality directly affects people’s life and food security [18].
Thus, to get a better insight into the mechanism of PAHs
toxicology on wheat is essential to an effective environ-
mental management. The objective of this study was to
elucidate the effects of PHE on seed germination and
growth of wheat seedlings. Variations of the activities of
SOD, CAT, glutathione peroxidase (GPX), the content of
chlorophyll, and malondiadehyde (MDA) in wheat seed-
lings were detected, and the probable mechanisms were
discussed.

2. Materials and methods

2.1. Plant materials and growth conditions

Authentic wheat seeds were obtained from the Institute
of Agriculture Science in Shanxi Province, Taiyuan, China.
The wheat (Yunmai 494) seeds were surface sterilized with
0.1% HgCl2 for 10 min, and soaked in water for 12 h. Then,
the seeds were randomly divided into four groups, with
each group consisting of at least 100 seeds and trans-
planted in 30-cm diameter Petri dishes with two filter
papers. Seeds were exposed to PHE in three different
concentrations. The negative control group was exposed to
distilled water for the same time period. The treatment
was replicated three times. All of the test groups were
maintained in an incubator at 25 � 1 8C under a dark/light
cycle (14/10 h). Plants were fertilized daily with water and
Hoagland0s nutrient solution. The germination rate would be
counted after seven days. Seedlings were harvested after
15 days for biochemical and physiological studies, and the
leaf samples were immediately frozen in liquid nitrogen and
stored at –80 8C.

2.2. PHE preparation and treatment application

PHE (Sigma, 98% purity) was initially dissolved in
acetone and then diluted with MilliQ water to get final
concentrations of 0.05, 0.1, 0.2 mg/mL (acetone:water,
v:v = 1:1000). Then, three groups of seeds were sprayed
with each concentration of freshly prepared PHE. Control
seeds were sprayed with MilliQ water containing equal
concentrations of acetone. The concentration of acetone
used in the current experiment was lower than 0.5%, which
had been reported as having no negative effects on tomato
seedlings [15].

2.3. Germination energy, germination rate and length of root

and stem

The number of germinated seeds on the seventh day
after initiation was defined as the germination rate.

After fifteen days of growth, the roots and stem lengths
of 100 seedlings in each group were randomly
measured. Three replicates were conducted from each
experimental unit.

2.4. Chlorophyll content measurements

A fresh leaf sample (0.2 g) was pulverized with distilled
water and the homogenate was extracted using 80%
acetone. Chlorophyll a (chl a) and chlorophyll b (chl b)
were determined by spectrophotometry according to the
procedure of Sang et al. [19].

2.5. Determination of enzyme activity

For the extraction of enzymes, 0.5 g of the leaf tissues
was homogenized in 5 mL of an ice-cooled phosphate
buffered solution (0.05 M, pH 7.8) containing 0.2 M EDTA
and 2% polyvinylpyrrolidone (w/v). The homogenate was
centrifuged at 12,000 rpm and 4 8C for 20 min. The
supernatant was used immediately to determine the
enzyme activity and the contents of MDA and H2O2.

SOD activity was measured by nitroblue tetrazolium
(NBT) spectrophotometry [20]. One unit of SOD activity
was defined as the amount of enzyme required to
cause 50% inhibition of reduction of NBT as monitored
at 560 nm and the enzymes activity was expressed as
U�(g FW)�1.

CAT activity was tested through the absorbance
decrease at 240 nm using the ultraviolet absorbance
method [21]. Results were expressed as U (min g FW)�1.

GPX activity was determined according to the method
of Lawrence and Burk [22]. The reaction mixture contained
the enzyme extract, 0.2 mM NADPH, 1 mM sodium azide
(pH 7.0), 1 mM GSH, 1 U glutathione reductase and 2 mM
H2O2. The reaction was initiated by adding H2O2 and the
absorbance was measured at 340 nm. One unit of GPX
activity was defined as the amount of enzyme catalyzing
the oxidation of 1 mmol of NADPH per minute [23].

2.6. Measurement of H2O2

The formation of H2O2 was measured colorimetrically
as described by Ishida et al. [24]. The homogenate
supernatant was incubated in 2 mL (24 h) or 5 mL (48 h)
of the reaction mixture containing 50 mM Na-acetate
buffer (pH 6.5), 1 mM 4-aminoantipyrine, 1 mM 2,4-
dichlorophenol, 50 mM MnCl2, and 0.2 mM NADH. The
increase in absorbance was measured at 510 nm.

2.7. Determination of the MDA content

The MDA content was determined according to the
method of Draper and Hadley [25]. Then, 0.2 g stems were
homogenized in trichloroacetic acid (TCA) and centrifuged
at 3000 g for 10 min. An amount of 200 mL of homogenate
supernatant were mixed with 0.8 mL of 0.5% (w/v)
thiobarbituric acid (TBA) and 20% TCA, then put in a
boiling water-bath for 30 min. The absorbance was
measured at 532 nm. The value for non-specific absor-
bance at 600 nm was subtracted.
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 Statistical analysis

Each experiment was repeated at least three times. The
a were expressed as means � standard deviation (SD).

 statistical differences (0.05) among the negative control
 a series of treated groups were analyzed using one-way
lysis of variance (ANOVA).

esults

 Effects of PHE on seed germination and growth of wheat

dlings

1. Germination energy and germination rate of wheat

The germination rate may reflect the reaction rate of
nt seeds to their living conditions. From Fig. 1, it can be
n that germination energy and germination rate
reased with increasing PHE concentration. The germi-
ion rate was 62.5% with 0.05 mg/mL PHE, and it showed
oor germination rate with high concentrations (0.2 mg/
). The germination energy reduced significantly by 68%.
relation analysis indicated that germination energy and

 are strongly correlated with PHE concentration
 0.95 and 0.93).

2. Length of root and stem

Fig. 2 shows root and stem lengths. With increasing the
 content from 0.05 to 0.2 mg/mL, the root length

reased by 61.42%, 78.24%, and 89.10%, and the stem
gth decreased by 54.12%, 61.73%, and 68.26%, respec-
ly. According to statistical analysis, PHE had a
ificant adverse effect on root length, stem length at

concentrations (P < 0.05 or 0.01).

 Effects of PHE on physiological activities in leaf tissues of

eat seedlings

1. Content of chlorophyll

The effects of PHE on chlorophyll levels in the leaf tissue
re shown in Table 1. After 15 days of exposure, the

concentration, but responses of chlorophyll a and b to
various levels of PHE were different. The chlorophyll a

content began to decrease at low concentrations and the
contents were 92.5% and 81.31% of the control values after
being treated with 0.05 mg/mL and 0.10 mg/mL PHE.
When the PHE concentration rose to 0.2 mg/mL, a distinct
decrease of chlorophyll a was observed, and the content
was reduced to 52.33% of the control.

A similar trend was observed for chlorophyll b after PHE
exposure. However, at the same concentration levels, the
changes in chlorophyll a were more dramatic than those in
chlorophyll b. For example, when the PHE concentration
was 0.05 mg/mL, the chlorophyll b content was the same as
that in the control. When the concentration of PHE reached
0.10 mg/mL, the chlorophyll b content was 90.6% of the
control values.

3.2.2. Activities of CAT, SOD, and GPX

The activity changes of CAT, SOD and GPX in the leaf
tissues after the treatment of PHE were shown in Fig. 3. The
SOD activities in the samples declined with increasing PHE
concentration with relative activities of 171.03, 99.01,
91.10 and 82.30 U (g FW)�1, respectively (Fig. 3a) There
were significant differences between the control and the
sample treated with 0.2 mg/mL (P < 0.05).

The responses of CAT to PHE were similar to the trends of
SOD. At a low treatment concentration, the activity of CAT
decreased slightly. At 0.1 mg/mL PHE, the CAT activity
decreased significantly, and the difference was statistically
significant compared to the control (P < 0.05). The decrease
was more drastic with a 0.2 mg/mL PHE treatment (Fig. 3b).

1. Effects of PHE on wheat germination at different concentrations.

Fig. 2. Effects of PHE on the root and stem length of wheat seedlings. The

root length and stem length of 100 seedlings from each treatment were

randomly measured. Data represent the mean � SD. *P < 0.05, **P < 0.01 vs

control.

Table 1

The content of chlorophyll (mg�gFW–1).

Phenanthrene concentration

(mg/mL)

Chlorophyll a Chlorophyll b

0 1.07 � 0.01 0.32 � 0.00

0.05 1.00 � 0.02 0.32 � 0.01

0.10 0.87 � 0.01** 0.29 � 0.01*

0.20 0.56 � 0.01** 0.16 � 0.02*
 represent the mean � SD. *P < 0.05, **P < 0.01 vs control.
orophyll contents decreased with increasing PHE Data
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The activities of GPX in the sample treated with PHE
were promoted at a low concentration, and then decline.
The GPX activity increased up to 125.76% of the control
with a 0.05 mg/mL exposure group. With increasing the
exposure PHE concentration, GPX activities decreased, and
the values were 88.75% and 71.30% of the control.
However, there were no significant differences between
the control and PHE treatments (P > 0.05) (Fig. 3 c).

3.2.3. MDA content and H2O2 accumulation in leaf tissues of

wheat

MDA was measured as an important parameter in
evaluating the oxidative stress induced by PHE. In leaf
tissues of wheat seedlings treated with 0.05, 0.1, 0.2 mg/
mL, the lipid peroxidation level increased and the effect
reached statistical significance with the 0.05 mg/mL
treatment (P < 0.05) (Fig. 4).

As compared to the control, H2O2 increased up to 123%,
160% and 243% of the control, respectively, when treated
with 0.05, 0.1 and 0.2 mg/mL PHE. A significant increase
was found for the treatment with 0.05 mg/mL PHE
compared to the control (P < 0.05) (Fig. 5).

4. Discussion

PAHs are a large class of compounds with toxicity

morphology, growth, photosynthetic process of the plants,
and causes inhibition of enzyme activities [11,12,15,26].
Seed germination has often been used as a physiological
index to examine the effects of PAHs on plants. A number
of reports have showed the inhibitory and toxicity of
different PAHs on the seed germination and seedling
growth of some plants, and they are regarded as general
responses associated with PAHs toxicity [27]. The present

Fig. 3. Effects of PHE on the activities of SOD (a), CAT (b) and GPX (c) in the leaf tissues of wheat seedling. Data represent the mean � SD. *P < 0.05, **P < 0.01

vs control.

Fig. 4. Effects of PHE on the MDA content in the leaf tissues of wheat
seedling. Data represent the mean � SD. *P < 0.05, **P < 0.01 vs control.
toward animal and plants. It exerts adverse effects on
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rk is to unravel the responses of wheat to PHE with a
ticular focus on seed germination, morphological and
siological indicators of oxidative stress. In this study,

eat materials were exposed to a PHE solution, which
ctively avoided the effects of temperature, pH and
e other factors linked to soil treatment. Therefore, the

ults were exact and creditable, and they could reflect
 toxic effect of PHE on the plants.
PHE treatment affected growth and chlorophyll content

heat seedlings; these effects varied as functions of PHE
centration. The decreased root, stem length and

orophyll content after PHE treatment in different
centrations, which might be a result of the hormetic
ct that has been reported in other plants
,12,14,15,28]. Normally, plants have their stress
ense, but environmental pollutants decrease the ability
lants. Thus, PHE inhibited the growth and chlorophyll
tent of wheat seedlings in our study, which might

ult from the damage suffered by the defense system.
Several enzymes, like SOD, CAT and GPX, play important
s during seed germination. The activities of antioxidant
ymes (SOD, CAT and GPX) were tested under the same
tment conditions. SOD is the first defense against ROS as
an act on superoxide radicals, which were produced
er stress conditions. It catalyzes the dismutation

ction of O2
�� into H2O2 and O2 [29]. CAT is the primary

2 scavenging enzyme in plant cells [23]. GPX catalyzes
 reduction of H2O2 and lipid peroxides using GSH as an
tron donor [30]. PHE induced a decrease in SOD, CAT

ivities and GPX activities and the ability of H2O2

venging, which resulted in lipid peroxidation.
MDA is the production of lipid peroxidation, generally

 amount of MDA reflects the lipid peroxidation level in
nts exposed to different environmental stresses [31]. In

 study, PHE caused a significant increase of the MDA
tent throughout the treatment range in wheat seedlings.
he same time, an increased accumulation of H2O2 was
erved and occurred in a dose-dependent manner. These
ervations suggest that the accumulation of ROS may
e exceeded the capacity of the plants’ antioxidant

systems, and the activities of SOD, CAT and GPX were
decreased, and lipid peroxidation has occurred. Finally, the
cellular membrane damage is unavoidable, especially at
high PHE concentrations. This excess ROS accumulation
may cause a reduction in germination, root and stem
growth. ROS accumulation may contribute directly or
indirectly to the decrease of chlorophyll levels [14].

The results of this study indicated that PHE’s toxicity
could be attributed to an oxidative stress by ROS, which
was consistent with previous reports. In the future, further
research about the molecular mechanism of PHE’s toxicity
should be carried out to elucidate the PAHs’ toxicity
mechanism fully.

5. Conclusions

In conclusion, PHE treatment inhibited, especially at
higher concentrations, the germination of wheat seed and
caused the reduction of growth and chlorophyll content, an
increase of MDA contents and a decline of many enzymes
activities, such as SOD, CAT and GPX of wheat seedlings,
which might be ascribed to excess ROS such as O2

�� and
H2O2 in plant cells, which were induced by PHE. The results
indicated that PHE could provoke oxidative damages in the
early development stage of wheat, which occurred mainly
in samples exposed to higher concentrations of this
compound.
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