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 Introduction

Molecular biology tools have become prominent in
dies of systematics and phylogenetic relationships of

ecies. In recent decades, these tools have contributed to
ecies delimitation and improved our knowledge con-
rning the evolutionary history of several taxa. DNA
quencing is the leading method selected in molecular
sed research and mitochondrial DNA (mtDNA) is the
ost widely used genetic marker for accessing molecular

diversity [1]. The abundant presence of mtDNA in
molecular biology studies can be explained by the peculiar
properties of this genome (for review see Avise [2]).
Moreover, nuclear markers present certain difficulties,
such as multiple copies (paralogs), requiring extensive
effort to identify a marker with a reasonable evolutionary
rate and the identification of alleles from heterozygous
individuals via cloning prior to sequencing [3].

Despite the confirmed usefulness of mtDNA as a genetic
marker, an increasing number of studies have shown that
its reliability is subject to compromise [4–6]. There are
several molecular processes that undermine certain
general assumptions based on mtDNA unique character-
istics. A frequent issue is the incorporation of mitochon-
drial DNA fragments into the nuclear genome, the so-called
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A B S T R A C T

The incorporation of fragments of mitochondrial DNA (mtDNA) in the nuclear genome,

known as numts (nuclear mitochondrial pseudogenes), undermines general assumptions

concerning the use of mtDNA in phylogenetic and phylogeographic studies. Accidental

amplifications of these nuclear copies instead of the mitochondrial target can lead to

crucial misinterpretations, thus the correct identification of numts and their differentiation

from true mitochondrial sequences are important in preventing this kind of error. Our goal

was to describe the existence of cytochrome b (cytb) numts in the leafcutter ant

Acromyrmex striatus (Roger, 1863). PCR products were directly sequenced using a pair of

universal primers designed to amplify the cytb gene of these insects. Other species of

leafcutter ants were also sequenced. The sequences were analyzed and the numts were

identified by the presence of double peaks, indels and premature stop codons. Only

A. striatus clearly showed the presence of numts, while the other species displayed the

expected amplification of the mtDNA cytb gene target using the same primer pair. We hope

that our report will highlight the benefits and challenges of using mtDNA in the molecular

phylogenetic reconstruction and phylogeographic studies of ants, while establishing the

importance of numts reports for future studies.
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umts or nuclear mitochondrial pseudogenes [7,8]. These
re non-transcribed and untranslated regions in the
uclear genome that occur due to the natural transfer of
NA from the mitochondrial to the nuclear genome during
e evolutionary period [8,9]. Due to their lack of function

 the nuclear genome and the presence of complex
achinery to monitor and repair damaged DNA in the

ucleus, numts evolved under molecular evolutionary
rocesses that are distinct from the original mitochondrial
opy. This could lead to erroneous interpretations and
isperceptions while conducting phylogenetic, phylogeo-

raphic and population genetic studies [6,8,10]. Moreover,
e basic underlying assumption of homology between

equences is overlooked when both nuclear and mito-
hondrial gene copies are used in molecular analysis.

Numts have been detected in several eukaryote taxa
om plants to higher vertebrates [8,10], though the
equency and abundance of numts varies enormously
cross taxa [8,11]. Mitochondrial pseudogenes is a
ecurrent issue in insects and a growing number of studies
ave reported the occurrence of numts in a wide range of
xa [8,11–16], and in an increasing number of reports
volving social insects [4,13,17–19]. Despite this trend,

umts in ants have been poorly described and likely
nderreported in this eusocial insect group [20].

In the course of developing a phylogeographic and
hylogenetic study of leafcutter ants (genera Acromyrmex

nd Atta), we encountered several difficulties while
enerating sequences of mtDNA. In general, primers used

 amplify mtDNA for phylogenetics and phylogeographic
tudies in ants resulted in non-amplification by polymer-
se chain reaction in our selected species. During our
creening for a mtDNA marker, we used CB-J-10933 and a
odified TS1-N-11683 primer designated by Simon et al.
1], in order to amplify partial sequences of cytochrome b
ytb) of the Acromyrmex and Atta species. In this study, we

aimed to describe the inferred numts retrieved from
Acromyrmex striatus while studying the molecular sys-
tematics of this ant genus, considering the recent interest
in mitochondrial pseudogenes and their importance in
molecular evolution.

2. Material and methods

2.1. DNA isolation, amplification and sequencing

Total genomic DNA was extracted by grinding an entire
ant specimen using a modified phenol-chloroform proto-
col [22]. DNA was extracted from the following ants:
A. striatus (Roger, 1863), A. balzani (Emery, 1890), Atta

colombica Guérin-Méneville 1844, A. laevigata (Smith,
1858), A. robusta Borgmeier 1939, and A. sexdens rubropi-

losa Forel 1908 (Table 1). Specific permission (SISBio
26441-1) for collections was authorized by the Chico
Mendes Institute for Biodiversity Conservation (Instituto

Chico Mendes de Conservação da Biodiversidade, ICMBio).
A. colombica was kindly provided by Dr. Anayansi
Valderrama. In order to improve the amplification condi-
tions, we modified two base pairs from the original TS1-N-
11683 primer designed by Simon et al. [21], relying on
Solenopsis invicta complete mitochondrial genome [23]
(Fig. 1). This modified primer was used in combination
with the CB-J-10933 primer to amplify partial fragments of
the mitochondrial gene cytb (Fig. 1). Amplification was
performed in a total volume of 25 mL using the following
components: 1X Master mix GoTaq1 Hot Start Colorless
(12.5 ml), 0.4 mM of each primer (1 mL), 0.5 mL of DNA
(approximately 50 ng). The PCR reaction was performed
with an initial denaturation step at 94 8C for 2 min,
followed by 35 cycles of 1 min at 94 8C to achieve
denaturation, 1 min at 49 8C for annealing, 1 min 15 s at
72 8C for extension, and a final extension step at 72 8C for

able 1

ampling sites, species, coordinates and GenBank access numbers of the numts and cytb gene sequences.

Specimens Localities Coordinates Genbank access

Latitude Longitude

Numts

Acromyrmex striatus Araranguá, SC–Brazil 28857011.3’’S 49822029.6’’W KF500040

Acromyrmex striatus Garopaba, SC - Brazil 27859042.4’’S 48837055.5’’W KF500041

Acromyrmex striatus Sonho, SC–Brazil 27850024.0’’S 48835015.6’’W KF500042

Acromyrmex striatus Sonho, SC–Brazil 27850019.9’’S 48835015.8’’W KF500043

Acromyrmex striatus Joaquina, SC–Brazil 27837053.0’’S 48827008.1’’W KF500044

Acromyrmex striatus Joaquina, SC–Brazil 27838010.3’’S 48827023.9’’W KF500045

Acromyrmex striatus Pinheira, SC–Brazil 27852031.3’’S 48836002.4’’W KF500046

Acromyrmex striatus Mostardas, RS–Brazil 31806037.2’’S 50852012.4’’W KF500047

Acromyrmex striatus Pinheira, SC–Brazil 27852027.2’’S 48836003.4’’W KF500048

Acromyrmex striatus Quintão, RS–Brazil 30823034.9’’S 50817057.3’’W KF500049

Acromyrmex striatus São José do Norte, RS–Brazil 32801033.9’’S 52801057.6’’W KF500050

Acromyrmex striatus Cassino, RS–Brazsil 32813019.8’’S 52812003.4’’W KF500051

Acromyrmex striatus Santiago, RS–Brazil 29810048.4’’S 54850059.3’’W KF500052

Acromyrmex striatus Tapes, RS–Brazil 30839008.6’’S 51833054.1’’W KF500053

mtDNA

Acromyrmex balzani Araranguá, SC–Brazil 29800054.2’’S 49826024.6’’W KF500035

Atta colombica Gamboa–Panama 98706.75’’N 79841054.24’’W KF500036

Atta laevigata Viçosa, MG–Brazil 20845014.0’’S 42852055.0’’W KF500037

Atta robusta São Francisco de Itabapoana,

RJ–Brazil

21827000.0’’S 41802001.0’’W KF500038

0 0
Atta sexdens rubropilosa Viçosa, MG–Brazil 20845 14.0’’S 42852 55.0’’W KF500039
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in. The amplicons were purified and directly sequenced
 both directions (forward and reverse) with the same
imers used during PCR amplification (Macrogen Inc.,
uth Korea; www.macrogen.com).

. DNA sequence analyses and comparisons

With the purpose of searching for ambiguities among
e sequences (quality, noise and doubles peaks), the
romatograms were inspected visually using the Consed
ogram [24]. Double peaks can be attributed to poly-
orphic sequences due to heterozygous nucleotide sites in
clear sequences, while regarding mtDNA haplotypes,
uble peaks represent the amplification of distinct
nomes, either between mitochondria (heteroplasmy)

 numts (nuclear genome vs. organelle genome) [25]. We
ssified sequences as polymorphic when at least one
uble peak was observed, as described by Miraldo et al.
6]. Further, the analyzed chromatograms of the two DNA
ands (forward and reverse) were assembled and
ported from Consed. The edited sequences were aligned
ing the ClustalW algorithm [27] in MEGA5 [28]. The
quences were translated into amino acids to perform
ditional searches for stop codons, indels and comparison

ith other sequences, as suggested by Cristiano et al. [4].
Based on the alignment of sequences obtained from

romyrmex and Atta species, we examined these for sites
at could highlight differences between species and
mts. We compared the partial mitochondrial cytb

quences observed in this study with the S. invicta cytb

ne (GenBank access number NC014672), obtained from
 complete mitochondrial genome, and the partial cytb

quence of Myrmica rubra (GenBank access number
79626), obtained using a similar primer set [29]. Numts

ould display premature stop codons within their
tative amino acid sequences and indels that do not

llow differences among the sequences by multiples of
ree base pairs.

 Results

Sequences amplified with the CB-J-10933 and TS1-N-
683-modified primers produced good sequence reads

r all species, ranging from 630 to 642 base pairs. During
e examination of the chromatograms in A. striatus, the

amplified region resulted in well-defined sequence reads,
although a few nucleotide sites with poor Phred quality
(< 20) were observed at the same location in both the
forward and reverse sequences. At these sites, double
peaks were clearly observed in both directions (Fig. 2).
These results were not observed in any other leafcutter ant
species analyzed in this work, which seems to suggest the
co-amplification of DNA fragments of a similar size in
A. striatus.

Comparisons between the sequences obtained here
with the complete cytb gene of S. invicta showed that we
amplified the final portion of the gene, as expected. During
the translation into amino acids, we observed that
A. striatus sequences did not show the same reading frame
as the other leafcutter species in relation to S. invicta.
Besides this discrepancy, in order to achieve the reading
frame, the ClustalW algorithm used to determine nucleo-
tide alignment inserted in numerous indels across the
A. striatus sequences that were not multiples of three base
pairs. Where the cytb sequence of A. striatus was shorter
than the other species, we observed six premature stop
codons (Fig. 3). Based on these findings, we assumed that
the cytb sequences from A. striatus were numts. No
evidence of numts was observed in any of the other
leafcutter ant sequences analyzed herein. Thus, the
sequences from the other leafcutter ants were likely
amplified from the mtDNA target.

We also observed that there were three recurrent numts

in A. striatus that varied in length (Fig. 3). The first numts

(KF500040–KF500047) showed similar length compared
to the other ants, while the second numt (KF500048–
KF500051) showed a deletion of 12 base pairs and the third
(KF500052 and KF500053) showed a deletion of eight base
pairs.

Concerning the cytb sequences of the other leafcutter
ants, all four species of Atta displayed insertions of two
amino acids (six nucleotides) at position 904 compared
with the S. invicta cytb gene. In addition, A. balzani showed
one amino acid insertion (three nucleotides) at the same
position. The six-nucleotide insertion patterns of the Atta

species was also observed among A. striatus numts (Fig. 3).
Despite the insertion of two amino acids in all the Atta

species, the length of the mtDNA sequences of these
species seemed to present very similar overall sizes. This is
because A. colombica showed one amino acid less (three

. 1. (Color online). Representation of the primers position for partial amplification of the cytochrome b gene (cytb). The arrows illustrate the direction of

plification of each primer. The detail is shown in the sequence of the tRNASer based on the Solenopsis invicta genome (blue sequence), the original

uence of primer (TS1-N-11683) and two adenines (red letters) changed in the primer designed for this study (Modified).

http://www.macrogen.com/
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ucleotides) and the other Atta species showed three
mino acids less (nine nucleotides) precisely at the end of
e gene (Fig. 3).

. Discussion

High quality sequences were obtained from the primers
sed to amplify the cytb gene in this study; however, co-
mplification was suggested by apparent polymorphism in
e chromatograms that showed in numerous double

eaks in recurrent nucleotide positions. These polymorph-
ms, the high quality sequence reads and amplifications
om different individuals sampled at distinct sites
dicated that A. striatus presents multiple copies of the

ytb gene. Typically, it is expected that individuals harbor a
nique copy of mtDNA due to uniparental heritance
omoplasmy). However, it is currently known that

xceptions to this general rule can occur through several
rocesses, such as bi-parental heritance, mitochondrial
enome mutation within organisms and mitochondrial
enome recombination [30], resulting in multiple copies
ithin an organism (heteroplasmy). However, the hetero-

lasmic signal detected in A. striatus (double peaks) is not
kely due to true heteroplasmy. This is because in the
mplified fragments of the cytb gene, shifts were observed

 the reading frame and various premature stop codons,
hich were not supposed to be detected in the presence of
ore than one mtDNA variant within an individual.

Besides premature stop codons, indels were also
bserved in A. striatus numts, as previously reported for
ther numts in Hymenoptera [4]. The deletions were
cated in two distinct regions in the numts of A. striatus.

hese deletions were flanked by AT-rich regions, which are
equently associated with polymerase slippage during

DNA replication [31]. An AT-rich base pair was also
described flanking indels in numts of other social species
Melipona colimana and M. fasciata [18].

All the A. striatus numts were invariable, except at a
polymorphic double peak site. In contrast to mtDNA, numts

are presumed to present lower mutation rates of sequence
evolution. It has been proposed that once the fragments of
mtDNA are integrated into the nucleus, they diverge from
the selective constraints imposed in the mitochondrial
genome and are under no pressure, given their lack of
function in the nucleus [10]. Consequently, they can
preserve close homology with the original mtDNA gene
and for this reason are considered to be ‘‘fossil copies’’ of an
ancient mitochondrial lineage [10,32,33]. These numts

characteristics could have important consequences when
primers are flanking regions that are better preserved in
numts than in the actual mtDNA target that should be
preferentially amplified. This problem is likely to be
maximized by the use of so-called universal primers that
target a large number of taxa and that are designed to rely
on highly cross-preserved regions of the genome [34,35].
Although universal primers are supposedly more prone to
amplify numts [10], primers designed to be restricted to a
genus or specific to a species also amplified numts

[4,36,37].
Numts have become an issue in molecular biology based

studies in the past two decades [5,32], and there are a
growing number of studies reporting the occurrence of
numts in insects [4,5,12,13,18,38,39]. It seems to be
relevant for social insects, in which numts appear to
comprise a significant fraction of their nuclear genome.
Among metazoans, the eusocial bee Apis melifera displayed
the highest density of mitochondrial copies in its nuclear
genome. It has been suggested that this high level of numts

ig. 2. (Color online). Chromatograms resulting from sequencing using the primer CB-J-10933 (above) and TS1-N-11683-modified (below) from

cromyrmex striatus (Genbank access–KF500041). The primer TS1-N-11683-modified was visualized in reverse complement. The arrows show a double

eak in the two primers used for sequencing these fragments, revealing co-amplification.



Fig. 3. Sequence alignments for 642 base pairs of Acromyrmex striatus numts and the cytb gene from other ants species. The alignment is based on the cytb gene of

Solenopsis invicta (NC014672), and the numbers correspond to the position of this nucleotide sequence. Dots indicateno change in the nucleotide compared with

the cytb of S. invicta. The sequences that encoded premature stop codons in the numts sequences are highlighted in yellow and deletion of part of the sequences is

highlighted in blue. The cytb gene showed an insertion of two codons (six nucleotides) in the Atta species and one codon (three nucleotides) in A. balzani, which

are in bold at position 904. The dash represents a gap. For interpretation of references to color, see the online version of this article.
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bundance is related to a high recombination rate and low
ffective population size [13]. Sirvö et al. [40] inferred that
e species A. echinatior has a high recombination rate, thus
hether or not this is linked to numts dispersal, a high

ensity of numts would be expected in ants. Studies
eporting the occurrence of numts in ants are rare;
owever, this low frequency of numts is likely under-
stimated.

We found only one study that specifically investigated
umts in ants [17]. The authors identified and described

o numts from the leafcutter ant A. cephalotes, on the

cytochrome oxidase I (COI) gene. Both numts showed a low
mutation rate similar to the numts reported here. However,
A. cephalotes numts showed no typical evidence of numts

sequences, such as double peaks, indels, frameshift and
premature stop codons [17]. Further evidence of numts in
ants was reported by Kronauer et al. [41], who suggested
the occurrence of COI numts and COII in the genus Dorylus,
because of various frameshift changes. All these putative
numts showed low mutation rates and identical sequences
across the species analyzed. These findings and the
evidence reported here indicate that numts in ants have

Fig. 3. (Continued ).
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en overlooked. The study of ants involves substantial use
 molecular techniques and it is possible that numts,
hich are not always easily identifiable [5,39], could be
sponsible for some of the results reported in molecular
ylogenies, population genetics and evolution of this

oup.
Here, we reported for the first time the occurrence of

mts in the genus Acromyrmex. We believe it is worth
phasizing that the only other numts reported were

served in an ant from the same tribe (Attini) as
 striatus. All the numts detected so far in ants were
und in members of the Attini tribe and for distinct
tDNA regions. This suggests that several transfer events

 mtDNA copies into the nuclear genome may have
curred throughout the evolutionary history of this ant
eage. It is our hope that this report will highlight the
nefits and challenges of using mtDNA in molecular
ylogenetic reconstruction and phylogeographic studies

 ants, while establishing the importance of numts reports
 the planning and management of future studies.
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