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One of the most remarkable features of the retina is its
remely ordered structure. As many central nervous
tem regions, the vertebrate retina is arranged in a
lti-layered assembly. The cell bodies of the five types of
rons are distributed among three cellular layers

separated by two synaptic strata where connections are
constrained. The inner plexiform layer (IPL) is a multi-
layered synaptic neuropil constituted of bipolar cell
processes, which synapse on retinal ganglion cell (RGC)
dendrites, as well as modulatory connections from
amacrine cells. The outer plexiform layer (OPL) is formed
by ribbon synapses comprising pre-synaptic horizontal
and photoreceptor cells and the post-synaptic bipolar cells
[1,2]. In addition to this vertical distribution, within the
cellular layers, neurons are non-randomly arranged in
regular arrays in the horizontal plane. Cell bodies are

 T I C L E I N F O

le history:

ived 28 November 2013

pted 28 November 2013

lable online 5 March 2014

ords:

tification

na

aic

r plexiform layer

er plexiform layer

s clés :

tification

ne

che plexiforme interne

che plexiforme externe

aı̈que

A B S T R A C T

A noticeable characteristic of nervous systems is the arrangement of synapses into distinct

layers. Such laminae are fundamental for the spatial organisation of synaptic connections

transmitting different kinds of information. A major example of this is the inner plexiform

layer (IPL) of the vertebrate retina, which is subdivided into at least ten sublayers. Another

noticeable characteristic of these retina layers is that neurons are displayed in the

horizontal plane in a non-random array termed as mosaic patterning. Recent studies of

vertebrate and invertebrate systems have identified molecules that mediate these

interactions. Here, we review the last mechanisms and molecules mediating retinal

layering.

� 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Une des caractéristiques importantes du système nerveux des vertébrés et des invertébrés

est l’organisation des synapses en couches. Ces strates sont essentielles pour l’organisation

spatiale des connections synaptiques transmettant l’information neuronale. Un des

principaux exemples est la couche plexiforme interne de la rétine de vertébrés, qui est

subdivisée en au moins dix sous-couches synaptiques. En plus de cette organisation

verticale, les neurones rétiniens sont placés de manière non aléatoire sur le plan

horizontal, en une mosaı̈que régulière. Des études récentes aussi bien chez les vertébrés

que chez les invertébrés ont mis en évidence des molécules impliquées dans le contrôle de

la stratification. Dans cette revue, nous décrirons les mécanismes et les molécules

contrôlant la mise en place de cette organisation en couche.
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evenly distributed and their dendrites tiled. These patterns
are called ‘‘retinal mosaic’’. This very precise organisation
is essential in order to establish a functional circuitry of the
retina.

Shortly after becoming specified, neurons begin to
elaborate neurites and migrate to their final layer. In the
mouse, this phase ranges from embryonic day 12 (E12) to
post-natal day P7 [3]. All retinal cells derive from a
common progenitor, and differentiate following a precise
chronological sequence. Ganglion cells, cone photorecep-
tor, horizontal cells differentiate before birth, while
amacrine cells start pre-natally but finish post-natally.
Finally, rod photoreceptors, Müller glia and bipolar cells
only begin to differentiate after birth [4]. Retinal cells then
have to find their way to their final position to cover all the
surface of the retina. Then, retinal neurons grow processes
and form synaptic contacts within specific layers. Until
recently, only a few molecules involved in setting up this
complex retinal structure was known. However, genetic
tools have led to the discovery of new molecules, which
control the different steps that organize the stratification
of the retina.

Here, we will review recent data on the mechanisms
controlling retinal layering. We will focus on two aspects:
the formation of the two plexiform layers and the mosaic
patterning.

1.1. Formation of the inner plexiform layer

In mice, the IPL starts to form shortly before birth. In
1893, Ramon y Cajal had already subdivided the IPL into
five sublaminae based on his observations of retinal cell
processes [5]. In the 1980s, the improvement of neuroa-
natomical technics allowed for a better description of the
IPL and the specificity of each sublamina [6]. Nevertheless,
it is only recently that we have begun to understand how
bipolar and amacrine cells synapse on the right RGC
dendrite to form specific ON/OFF pathways.

Time-lapse studies of the zebrafish retina have shown
that RGC dendrites, bipolar cell axons and amacrine
neurites seem to grow toward the IPL in a guided manner
[7]. Around P14 in mice, the IPL is constituted of more than
10 sublaminae. Structure and function in the IPL are very
closely related. For instance, retinal neurons with receptive
field centres that are depolarized (ON-cells) by an increase
in light intensity have dendrites that project in the
innermost sublaminae within the IPL, while hyperpolar-
ized (OFF-cells) will stratified their neurites in the outer
sublayers [8]. How do neuronal processes find their
appropriate sublamina? In the last five years, numerous
molecules have been implicated in the guidance of the IPL
processes.

Up to now, five families of molecules were involved in
the formation of the IPL, including, several proteins from
the immunoglobulin (Ig) superfamily. Sidekick-1 and -2,
contain 6 Ig motifs, 13 fibronectin type III (FNIII) repeats
and a carboxy-terminal motif (S/TxV) predicted to bind
PDZ domains. Sidekicks were discovered through a
differential screen of cDNA libraries constructed from
single chick RGCs differing by their size and cell surface

ganglion cell layer just when it starts to be distinguishable
from the inner nuclear layer. At E15, Sidekick-1 is
expressed in the S4 sublamina of the IPL, while Side-
kick-2 is detected in S2 and S4 [9] (Fig. 1). Loss of function
experiments has shown that Sidekick-1 and Sidekick-2 are
required for lamina specific arborization of processes in the
IPL [10]. Overexpression of Sidekick-1 or 2 in the retina
redirects neurites to the sublamina in which the corre-
sponding endogenous protein is normally absent [10].

A close relative of Sidekick, Down Syndrome cell
adhesion molecule (DSCAM) is also implicated in IPL
stratification. This Ig molecule was already known in
Drosophila for its role in axon tiling and dendrite self-
avoidance [11,12]. In the chick, two Dscams were cloned,
Dscam and DscamL, and just like the Sidekicks, they are
expressed by distinct subclasses of retinal neurons [10].
More precisely, in the chick IPL, Dscam is expressed in S5
and DscamL in S1, S2 and S4 (Fig. 1). Loss of function of
Dscam using interfering RNAs results in the development
of ectopic R-cadherin positive processes in S4 instead of S5.
Conversely, when Dscam is overexpressed, all the neurites
are condensed in S5. Similarly, processes overexpressing
DscamL do not project in S3, which is normally DscamL-
negative. Thus, at least in the chick, it is likely that these
two proteins together with the sidekicks regulate the
stratification of the IPL. Indeed, inDscam–/� mice retinal
ganglion cells dendrites are fasciculated and cell bodies are
clustered. Similarly, bipolar cell processes are also bundled
and AII amacrine soma clumped in Dscaml1–/� knockout
mice suggesting that these molecules have a role in self-
avoidance rather than in lamina specification [13].

As mentioned above, the C-termini of Sideckiks and
DSCAM present a motif predicted to bind PDZ domains.
Using Sidekick-2, Yamaga and Sanes identified a family of
binding partners: the membrane-associated guanylate
kinase with inverted orientation (MAGI) [14]. MAGI-2 is

Fig. 1. (Colour online) Molecules regulating inner plexiform lamination.

On the left, the expression pattern of the different molecules identified for

their role in the IPL stratification in the chick. Sidekick-1 is present in S4

while Sidelick-2 is in S2 and S4 together with DSCAML detected also in S1.

DSCAM is found only in S5, and Contactin-2 in S2. In mice, Sema5A and

Sema5B are present in the outer retina constrain amacrine and bipolar

cells neurites toward the IPL. Sema6A-PlexinA4 signalling is necessary for

neurite sublamina targeting of amacrine cells and M1-ipRGC.
Adapted from [17].
characteristics. Sidekick-1 and 2 are expressed in the
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expressed with sidekick-2 in S2 and S4 in the IPL.
reover, when MAGI-2 is knocked down by in vivo

troporation of retroviruses expressing RNAi specific for
GI-2, Sidekick-2 expression becomes diffuse in the IPL,

 Calbindin-positive processes are not restricted any-
re to their sublaminas (S2, S3, S4). Therefore, it is likely
t Sidekick-2 function requires its interaction with
GI-2.
Another family of Ig molecules, the contactins (Cntns)
e been identified for their role in chick IPL formation.

t like the Sidekicks, they have 6 Ig domains, but only
nIII domains and are anchored to the membrane by a
cosylphosphatidylinositol (GPI) moiety. DNA sequence
lysis indicates that Dscams, Sidekicks and Cntns are close
tives [15]. In the chick retina, all five Cntns (Cntn1-5)

 expressed in distinct sublaminas of the IPL. For
tance, Cntn2 is expressed in S2 and S4 (Fig. 1). When
n2 expression is depleted using RNAi, Sidekick-1
ression in the IPL is more diffused instead of being

tricted to S4, but Sidekick-2 expression is not perturbed.
versely, when Cntn2 is overexpressed, all the neurites

 confined to S2 and S4. Therefore, it is likely that Cntns
trol the stratification of processes in the IPL. How do
ns proceed to guide the processes to the appropriate
lamina? The most likely hypothesis is that they act by
ophilic adhesion. When K562 cells that do not express

 known adhesion molecules, are transfected with
n2, they aggregate, whereas untransfected cells do

 [15]. Cntn4, like Cntn2, is also able to aggregate cells,
 not Cntn1, 3 and 5. In conclusion, it is likely that the 3
ted families, Sidekicks, Dscams and Cntnsplay play an
ortant role in the guidance of retinal neurites to their
ropriate IPL sublamina.

More recently, members of the semaphorin family of
n guidance molecules, together with their receptors

 plexins, were shown to regulate stratification of the
. First, in PlexinA4 mutant mice, as well as in
aphorin6A-deficient mice, the IPL stratification is

ally aberrant [16]. More precisely, dopaminergic
acrine cells processes, which project in S1 in wild-
e mice, stratify in all the IPL of the mutant mice.
ewise, M1-ipRGCs (M1 type of intrinsically photo-
sitive retinal ganglion cells) that normally stratify in
also send aberrant neurites to other sublaminas.

xinA4 is expressed in S1 and S4 and in dopaminergic
acrine cells, but not in M1-ipRGCs. On the other hand,

aphorin6A is present in S3 to S5 in the IPL. More
cisely, PlexinA4 is expressed in the OFF sublayers,
ile Sema6A is in the ON sublayers (Fig. 1). Thus, it is
ly that Semaphorin6A acts as a repulsive ligand for

xinA4 to control dopaminergic amacrine cells targeting
the IPL. Concerning M1-IpRGCs, they could use cues
vided by dopaminergic amacrine cells to target the
per sublamina. This study provides evidence that
a6A-PlexinA4 signalling is necessary for neurite

lamina targeting, but do not initially guide the
cesses to the IPL. In another study, two other
aphorins, Sema5A and Sema5B, were shown to coerce

cesses from bipolar, amacrine and retinal ganglion
s to the IPL. During IPL development, Sema5A and
a5B, which are present in the outer retina, prevent any

retinal processes to develop toward the outer retina
(Fig. 1). This is mediated by the PlexinA1 and PlexinA3
receptors [17]. A role for semaphorins in lamina specifica-
tion has also been described in other regions of the
nervous system [18–20].

Finally, an unexpected molecule has been shown to
regulate the stratification of the IPL. The phosphatidylino-

sitol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] phosphatase and

tensin homolog (PTEN) is a tumour suppressor gene, which
codes for a lipid phosphatase [21]. First, it was found to
regulate retinal ganglion cell terminal arborisation in the
Xenopus [22]. PTEN protein is present at a high level in the
mouse IPL during the phase of dendritic development and
synaptogenesis [23]. In PTEN-knockout mice, the IPL is
broader and the sublaminas stratification is totally
disrupted. These morphological defects are associated
with deficits in visual function.

1.2. Formation of the outer plexiform layer

The outer plexiform layer is the less complex of the two
synaptic plexuses in the vertebrate retina, but its devel-
opment has not been studied extensively. The formation of
the OPL occurs post-natally. After differentiation, hori-
zontal cells migrate to the outer part of the INL,
establishing the forthcoming location of the OPL. In the
meantime, at least in the ferret, photoreceptor cells spread
neurites toward the IPL. This is followed around P4 in mice
by horizontal cells, which will first develop dendritic
terminals that will contact the pedicles of cone photo-
receptor cells. They will also extend an axon, which will
connect with the spherules of rod photoreceptor cells
[24,25]. Then, starting at P10, the post-synaptic elements
will invaginate in order to form a pre-synaptic ribbon.

Horizontal and bipolar cells require photoreceptor cells
to form synapse in the OPL. In mutant mice lacking
photoreceptor cells, horizontal cells sprout in the ONL,
instead of the OPL, and bipolar cells processes grow along
the horizontal cells neurites [26]. In order to synapse in the
OPL, horizontal cells also need to reach the outer part of the
inner nuclear layer. In the Lim1–/� mice, horizontal cells
remain in the inner part of the INL and project their
neurites within the IPL rather than the OPL [27].

Not much is known about the molecular mechanisms
that control neurite targeting in the OPL. During light
deprivation, rods and cones cells release glutamate
continuously. When they are stimulated by light, photo-
receptors are hyperpolarized which lower Ca2+ influx and
decrease glutamate release. Thus, it is not surprising that
many of the molecules that were found to regulate synapse
formation of the OPL belong to the Ca2+ pathway. For
instance, Cacna1f, which is a subunit of the Cav1.4 calcium
channel, is involved in ribbon synapse formation in the
OPL. In Cacna1f mutant mice, the presence of synaptic
molecules, such as bassoon and mGLUR6 is greatly reduced
in the OPL compared to wild-type mice. Moreover, the OPL
is disrupted and ectopic processes coming from rod bipolar
and horizontal cells are detected in the outer nuclear
[28,29]. Another subunit of a calcium channel has also
been implicated in the OPL formation: the L-type calcium
channel auxiliary subunit of the alpha2delta type coded by
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the Cacna2d4 gene. In this spontaneous mutant, the
photoreceptor ribbon synapses are affected and the width
of the OPL is considerably reduced. Nevertheless, it cannot
be excluded that this phenotype is a consequence of a
significant loss of rods [30]. Giving the importance of
calcium channels for photoreceptors ribbon synapse
formation, it is somehow expected that molecules
regulating these channels are also essential for the
development of the OPL. For instance, the loss of the
calcium binding protein, CaBP4, which modulates voltage
gating of Cav1.4, results in a reduction of the number of
photoreceptors ribbon synapses [31].

Some studies strongly suggest that the pre-synaptic
protein, Bassoon, is necessary for the formation of
photoreceptor ribbon synapse in the OPL, by controlling
the attachment of the ribbon to the active zone [32].

More recently, it has been shown that Sema6A and its
receptor PlexinA4 are involved in OPL development.
Sema6A–PlexinA4 signalling controls horizontal processes
targeting to the OPL and PlexinA4 guides the horizontal cell
axon to the rod ribbon [33]. New genetic tools to label pre-
or post-synaptic partners in the OPL might help in
improving our understanding of its development [34,35].

2. Mosaic patterning

Within their layers, photoreceptor, horizontal, ama-
crine and retinal ganglion cells are arranged in a non-
random array across the retinal surface often referred to as
mosaic patterning. It is likely that this horizontal
organisation is needed to cover the entire retina and to
avoid blind spots, as a random distribution would lead to
local alterations of the visual space. Moreover, the more
complex the colour system, the more precise the mosaic
[36].

Mosaic patterning has been thoroughly described for
cones, horizontal cells, ganglion cells and for some types of
amacrine cells which all differentiate pre-natally [3].
Although, it cannot be ruled out that bipolar cells and
rods are not arranged in a regular array, this might just
reflect the lack of appropriate cellular markers to study
such organisation.

The cone mosaic has been mostly described in higher
vertebrates, which have a more complex colour system
than the mouse where 97% of the photoreceptors are rods
[36–39]. Nevertheless, cones in the mouse retina are also
organised in a mosaic. A transgenic mouse expressing GFP
under the control of human red/green opsin gene 50

sequences was generated to analyse how the cone mosaic
develops. The analysis of the movement of cone cells by
time-lapse imaging showed that the development of cone
patterning occurs in two steps [40]. First, between E18 and
P10, differentiating cones directly form a non-random
array. Then, while the cone cells are maturing (P10–P20),
the regularity of mosaic pattern is gradually refined,
probably by tangential dispersion, until cone synaptic
contacts are made [41].

The mosaic patterning of horizontal cells has been more
studied, maybe because they are less numerous than
the other cell types and organized in a single layer. In the
mouse, the array of horizontal cells begins to form

post-natally [42]. In the mammalian retina, horizontal
cell bodies are arranged in a regular mosaic and their
dendrites send processes radially within the outer plexi-
form layer, where their unique afferents come from cone
photoreceptors. Mature horizontal cells show some over-
lap of their dendritic fields [43].

There are around 30 subtypes of mammalian amacrine
cells [1,44] and their development is correlated to their
final position in the inner nuclear layer [45]. The arrays of
all the different subtypes have not been studied in details.
Nevertheless, for those who have been analysed, it appears
that each subtype of amacrine cells forms its own mosaic
patterning. For instance, cholinergic amacrine cells, once
differentiated, move tangentially away from their birth
column to set in a mosaic pattern [46].

Mammalian retinal ganglion cells are also arrayed in a
mosaic [36], which is specific for each subtype of RGCs. In
the adult cat, ON- and OFF-a-RGCs cell bodies are always
paired, close to each other [47]. These pairs are distributed
in a regular array in the mature retina [48]. Their dendritic
arborisations are also orderly arranged: they cover the
whole surface of the retina without overlapping [49,50]. In
the mouse, it was recently described that the dendritic
arbours of the two subtypes M1 and M2 melanopsin-
expressing ganglion cells are monostratified in two
different layers in the IPL [51].

The tiling of bipolar cells has been less studied and there
is no clear evidence for a mosaic patterning of bipolar cell
bodies. Yet, it seems that their dendritic trees tile the
retina. For instance, in the mouse, the dendritic arbours
and axon terminals of Type 7 bipolar cells are distributed
without much overlap [52]. A similar organisation has
been observed for rod bipolar axon terminals and
calbindin-positive bipolar cells in the rabbit [53,54].
Nevertheless, as bipolar cells are the last retinal cells to
differentiate [55], this organized distribution could be a
consequence of the already non-randomly array of their
synaptic partners.

How do these mosaics form? Several mechanisms have
been proposed, and it seems that each mosaic combines
some of them (Fig. 2).

First, tiling could be linked to fate determination, as is
the case for Drosophila R8 photoreceptor cells, which
prevent neighboring cells from taking the R8 fate [56]. In
primates, it seems that the first cone photoreceptor could
induce adjacent undifferentiated cones to express a
particular opsin phenotype. Thus, this process would
generate a ‘‘protomap’’ for the development of the cone
mosaic [38]. A similar mechanism has been proposed for
goldfish cone photoreceptors and dopaminergic amacrine
cells [57,58]. In cultures of chick RGCs, less ganglion cells
are produced when young RGCs are cultured in condi-
tioned medium from old RGCs. This could suggest that
mature RGCs secrete a factor inhibiting RGC development
[59]. Accordingly, retinal ganglion cells are distributed in a
mosaic early in development, long before they migrate to
the ganglion cell layer [60]. Using computer modelling,
Eglen and Willshaw investigated whether cell fate
determination can occur in the retina [61]. They found
that cell fate mechanism could generate a non-random
array from undifferentiated cells. Nevertheless, it appeared
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t cell fate alone is unlikely to generate a mosaic of the
e uniformity as observed experimentally. Thus, cell

 is only one of the mechanisms involved in generating
 right density of each retinal cell type. One of the
sons is that it occurs very early in development and
refore the following developmental mechanisms might
rfere in the regularity of the mosaic. Therefore, other
cesses might be needed to maintain the regularity. Last,

 model does not apply to all retinal cell types as for
mple, cholinergic amacrine cells do not show any
imal spacing limitation as their migrate to their final

er [46].
The analysis of clones of different retinal cell lineages
ng transgenic mice expressing ß-galactosidase only in a

 progenitors showed that retinal cells could disperse
gentially once they are differentiated [41,62]. Newborn
s can migrate away from their birthplace at distances
ging from 45 to 150 mm, [62]. Dispersed amacrine,
izontal, cone and ganglion cells can be observed from
ir original column in the same plane. In the rat retina, it
s also found that RGCs and cholinergic amacrine cells
rate tangentially but not further than 30 mm away [46].

ewise, a tangential dispersion of various bipolar and
acrine cells types was also described at early post-natal
s in the mouse [63]. However, only calretinin-positive,
5-positive, Islet1-positive amacrine cells were found

migrate at a significant distance from their original
mn whereas ON-bipolar cells do not disperse tangen-

ly. The strongest support for the existence of tangential

dispersion of retinal cells comes from live imaging studies
in mice and zebrafish. In both species, lateral migration of
horizontal cells have been observed [42,64].

Cell death is a key regulator of the number of neurons in
the nervous system during development. A controlled
balance between proliferation and death is a known
process to fix the size and the cytoarchitecture of neuronal
structures [65,66]. Accordingly, cell death was shown to
play a role in the development of retinal mosaics.
Computer simulations first showed that during post-natal
development, the normal loss of ON- and OFF-a-RGCs
transform a random distribution to a regular array [48], but
also that cell death is not sufficient to form the mosaic of
ON- and OFF-a-RGCs [61]. In transgenic mice overexpres-
sing the anti-apoptotic gene bcl-2, it was observed that
dopaminergic amacrine cells were eliminated when they
were too close, therefore, creating an exclusion zone [67].
This was later confirmed by the analysis of mice deleted for
Baxa proapoptotic factor [68]. The same process occurs for
cholinergic cells, which used ATP-induced cell death to
discard cells that are too close to one another [69].
Recently, it was shown that the mosaic patterning of
ipRGCs requires apoptosis [70]. In Bax-knockout mice, in
which RGCs do not undergo apoptosis, ipRGCs are
clustered instead of being evenly distributed. However,
cell death is not a mechanism involved in the patterning of
all retinal mosaics. For instance, the mosaic organisation of
horizontal cells probably relies on another mechanism.
Indeed, there is no direct evidence that they undergo
naturally occurring cell death during and after their
differentiation [71]. Moreover, there is no evidence for
an overproduction of horizontal cells during development.

The last mechanism that is likely to participate in
mosaic patterning is the interactions between homotypic
cells. The first experimental argument came from the work
of Perry and Linden who removed subsets of ganglion cells
from post-natal rat retina and therefore could evaluate the
role of interactions between neighbouring cells later in
development [72]. They observed that the dendrites from
cells near the depleted area preferentially extend their
arbour toward the empty region. Therefore, ganglion cell
developing dendrites do not grow randomly but fill
preferentially vacant regions. This study was the first
observation that led to the concept of ‘‘tiling’’. This notion
refers to the capacity of dendrites from individual neurons
of the same neuronal type to cover the sensory field as
much as possible but with minimal overlap.

Cell avoidance was first observed in the leech where
sister branches from the same neuron do not contact each
other but overlap with neurites from different cells [73]
(Fig. 2). In the rat retina, when microtubules are perturbed
within dendrites, the monolayered retinal arrays fail to
organize with regular spacing [74]. The mosaic of
horizontal cells is not perturbed in coneless mice
[75–77], which suggests that this non-random array is
not induced by photoreceptor cell afferents, but more
likely involves homotypic interactions between horizontal
cells. Moreover, the primary dendrites of horizontal cells
develop before there are contacted by photoreceptors.
However, the formation of higher order branches requires
photoreceptors contacts [77].

2. (Colour online) Possible non-exclusive biological mechanisms to

te regular cell spacing. A. Fate determination induce adjacent like-

 cell to express the same phenotype. B. Adjacent like-type cell repel

 other in order to migrate tangentially and cover evenly the surface.

ver-generated like-type cells to close to each other are eliminated by

death. D. Dendrites from like-type cells recognize each other in order

void overlapping.

pted from [82].
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Which are the molecules mediating mosaic patterning?
In the chick retina, N-cadherin was first shown to control
the size of the dendritic field of horizontal cells through the
regulation of the attachment of their dendritic processes
to photoreceptor cells [78]. More recently, cadherin-like
proteins were shown to be required for self-avoidance of
starburst amacrine cells [79]. As for plexiform layers, Ig
molecules are involved in mosaic patterning and in
particular, the DSCAMs. In Dscam knockout mice, tiling
and self-avoidance is perturbed in melanopsin-retinal
ganglion cells, dopaminergic and bNOS (neuronal nitric
oxide synthase)-positive amacrine cells triggering fasci-
culation of their neurites [68,80]. Interestingly, the other
types of amacrine cells are not affected. In Dscaml1

knockout mice, rod bipolar cell dendrites are fasciculated
and aII amacrine cell bodies are clumped, suggesting that
DSCAML1 plays a role in self-avoidance [13]. Recently, a
screen for molecules specific of different retinal cell types,
led to the identification of two new transmembrane
proteins, MEGF10 and MEGF11 [81], controlling the mosaic
pattering of starburst amacrine cells and horizontal cells.
More surprisingly, ionotropic glutamate receptors seem to
be able to cause tangential dispersion retinal cells from
their birth column [63].

3. Conclusions

Decades of research has led to a deeper understanding
of how retinal neurons find their way to their final
destination and arborize in their appropriate synaptic
layers. Although this review was focused on vertebrates,
one has to keep in mind that, vertebrates and invertebrates
visual circuits share design principles and molecules, and
that what we learned from the Drosophila eye helped in
understanding the development of retinal stratification. It
is clear that only a few of the mechanisms involved in the
development of retinal layers have been identified, and
that our knowledge remains partial. Nonetheless, new
genetic tools, animal models and imaging technics should
help unravel the different steps implicated in the layering
of the retina.
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