Genetics/Génétique

Chromosomal evaluation in a group of Tunisian patients with non-obstructive azoospermia and severe oligozoospermia attending a Tunisian cytogenetic department

Anomalies chromosomiques et infertilité masculine : étude rétrospective de 476 hommes tunisiens azoospermiques ou oligozoospermiques sévères

Ahlem Amouri a,b,*1, Wajih Hammami a,b,1, Olfa Kilani a,b, Abderrezzak Bouzouita c, Wiem Ayed a,b, Mounir Ben Meftah d, Mohamed Khrouf d, Anis Fadilhaoui d, Sonia Abdelhak b, Fethi Zhioua d, Mohamed Habib Jaafoura e,f

a Department of Histology and Cytogenetics, Institut Pasteur de Tunis, 13, place Pasteur, BP 74, 1002 Tunis Belvédère, Tunisia
b Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunisia
c Department of Urology, Charles-Nicole University Hospital (Medical University of Tunis), boulevard du 9-Avril-1938, Bab Saoudoun, Tunis, Tunisia
d Department of Obstetrics and Gynecology, Aziza Othmana University Hospital (Medical University of Tunis), place du Gouvernement, La Kasba, 1008 Tunis, Tunisia
e Laboratory of Electronic Microscopy, Faculty of Medicine, 1007 Tunis, Tunisia
f Department of Pathology, Institut Kassab d’Orthopédie, Ksar Said, Tunisia

ABSTRACT

Male infertility is the cause in half of all childless partnerships. Numerous factors contribute to male infertility, including chromosomal aberrations and gene defects. Few data exist regarding the association of these chromosomal aberrations with male infertility in Arab and North African populations. We therefore aimed to evaluate the frequency of chromosomal aberrations in a sample of 476 infertile men with non-obstructive azoospermia (n = 328) or severe oligozoospermia (n = 148) referred for routine cytogenetic analysis to the department of cytogenetics of the Pasteur Institute of Tunis. The overall incidence of chromosomal abnormalities was about 10.9%. Out of the 52 patients with abnormal cytogenetic findings, sex chromosome abnormalities were observed in 42 (80.7%) including Klinefelter syndrome in 37 (71%). Structural chromosome abnormalities involving autosomes (19.2%) and sex chromosomes were detected in 11 infertile men. Abnormal findings were more prevalent in the azoospermia group (14.02%) than in the severe oligozoospermia group (4.05%). The high frequency of chromosomal alterations in our series highlights the need for efficient genetic testing in infertile men, as results may help to determine the prognosis, as well as the choice of an assisted reproduction technique. Moreover, a genetic investigation could minimize the risk of transmitting genetic abnormalities to future generations.

(2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

© 2014 Académie des sciences. Published by Elsevier Masson SAS All rights reserved

1631-0691/5 – see front matter © 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved

http://dx.doi.org/10.1016/j.crvi.2014.02.006

* Corresponding author. Department of Histology and Cytogenetics, Institut Pasteur de Tunis, 13, place Pasteur, BP 74, 1002 Tunis Belvédère, Tunisia.
E-mail addresses: amouri.ahlem@pasteur.rns.tn, amouriahlem@yahoo.fr (A. Amouri).
1 These authors contributed equally.
Mots clés :
Infertilité masculine
Anomalies chromosomiques
Oligozoospermie
Azoospermie

RÉSUMÉ

On estime à près de 10 % la fréquence de l’infertilité masculine dans la population humaine. Les causes de cette infertilité sont multiples, notamment génétiques, et plus particulièrement chromosomiques. Dans ce travail, nous avons exploré 476 patients tunisiens présentant des troubles non obstructifs de la spermatogénèse (328 azoospermiques et 148 ayant une oligozoospermie sévère). Une étude du caryotype constitutionnel est réalisée chez l’ensemble de ces patients, avec marquage chromosomique en bandes RHG. Nous avons pu révéler ainsi 52 anomalies chromosomiques (fréquence 10,9 %), réparties en 46 anomalies gonomales et 6 anomalies autosomiques. La fréquence de ces anomalies est plus élevée dans le groupe des azoospermies, chez qui la constitution 47.XXY prédominait. Les autres anomalies étaient autosomales, correspondant à des translocations, une inversion et des chromosomes marqueurs surnuméraires. Nos résultats confirment la forte prévalence des anomalies chromosomiques chez les hommes atteints de troubles sévères de la spermatogénèse. Nos chiffres sont comparables à ceux décrits dans la littérature, incitant à la considération de l’étude cytogénétique au cours du bilan d’infertilité masculine et justifiant la pratique systématique du caryotype avant toute tentative de procréation médicalement assistée.


1. Introduction

Infertility is a major health problem affecting up to 15% of couples of reproductive age [1]. For many years, it was assumed that most reproductive problems could be attributed to the female partner, but research in recent years has demonstrated that 30–50% of infertility is caused by a male factor [2].

The term “male infertility” does not constitute a defined clinical syndrome, but rather a collection of different conditions exhibiting a variety of etiologies. Genetic factors accounts for 10–15% of severe male infertility [3,4]. Among the genetic abnormalities found in infertile men, those involving chromosome anomalies amount to about 8%, the most frequent one being the 47,XXY karyotype that characterizes the Klinefelter Syndrome [5]. Because modern artificial reproduction techniques like intracytoplasmic sperm injection (ICSI) can help couples to overcome infertility, it is imperative to analyze the underlying genetic causes of male infertility.

The aim of this study was to determine the frequency of chromosomal abnormalities in a group of Tunisian infertile men attending the Pasteur Institute of Tunis.

2. Materials and methods

2.1. Patients

A total of 476 Tunisian infertile patients with idiopathic oligozoospermia or azoospermia were enrolled in the study. These infertile men with sperm disorders were referred for karyotyping to the department of histology and cytogenetics at the Pasteur Institute of Tunis between 2006 and 2012. Patients were checked for the history of relevant medical disorders, e.g., diabetes, renal, liver disease, radiation, endocrine abnormality (e.g., hypogonadotropic hypogonadism), exposure to toxins and/or medication affecting spermatogenesis, acquired and congenital structural defects of urogenital system; history of surgical intervention of genital tract. All cases of azoospermia or severe oligozoospermia resulting from endocrine or obstructive cases were excluded from our study. Upon verifying that sperm density was lower than 5 × 10⁶/mL, patients were asked to sign and informed consent form for genetic analysis.

2.2. Karyotyping

Cytogenetic analysis was performed from phytohemagglutinin-stimulated lymphocyte cultures by routine laboratory protocol. For microscopic analysis, R-banded metaphase spreads were analyzed and abnormalities recorded according to the current International System for Human Cytogenetic Nomenclature [6]. A resolution of 550 to 700 bands per haploid karyotype was used for the routine analysis.

For each patient, at least 20 well-spread metaphases were analyzed and two to five metaphases were karyotyped. When at least one of the 20 showed a loss or gain of a chromosome, especially X or Y chromosome, the number of analyzed metaphases was increased to 30. If a second abnormal cell was observed, the analysis was considered complete; otherwise, the number of metaphases was increased to 50. Sex chromosome mosaics occurring at a level of less 5% were not considered as well as pericentric inversions of chromosome 9 or other structural chromosome variants and polymorphisms that were considered as normal cytogenetic events.

The statistical analysis was performed using the Chi² test. A P-value < 0.05 was considered to indicate statistical significance.

3. Results

The present study only entailed 476 men with non-obstructive subfertility. They included men with azoospermia (n = 328; 68.91%) and severe oligozoospermia with sperm counts lower than 5 million/mL (n = 148; 31.05%).
The average age was 37.94 ± 3.00. The average duration of infertility was 5.05 ± 4.03.

As summarized in Table 1, 52 infertile patients tested to rule out cytogenic causes of male infertility had an abnormal karyotype including: (37) 47,XXY and variants consistent with Klinefelter syndrome (KS), (1) 47,XY,Y, (1) Yq deletion, (2) 46,XX males, (7) balanced autosomal rearrangements, and (4) unbalanced rearrangements. Sex chromosome abnormalities accounted for 42 (or 80.7%) of all abnormal karyotypes detected (Table 1). The most frequent sex chromosome abnormality observed was 47,XXY or variant karyotype (mosaic 47,XY/46,XY, 47,XXY/48,XXXY) consistent with KS. Of autosomal abnormalities, balanced rearrangements are identified in 7 males including 4 with balanced reciprocal translocations, 2 balanced Robertsonian translocations between chromosome 13 and chromosome 14 and 1 with pericentric inversion of chromosome 7. An unbalanced rearrangement was identified in the five last patients (a supernumerary marker chromosome in a low level mosaic [3 out 20 metaphases] in two patients whether another oligozoospermic patient have this marker chromosome in all cells, one man had three cells with a 45X constitution and the last have a deletion of the long arm of the Y chromosome). The remaining 424 infertile patients showed normal 46,XY karyotype.

4. Discussion

Although it has long been recognized that among numerous etiologic factors, chromosomal abnormalities play a prime role in male infertility with abnormal semen parameters, reports regarding the prevalence of cytogenetic anomalies in Tunisian population are scarce [7,8]. Previous studies [9] from different populations have shown that the incidence of chromosomal abnormality in infertile males was between 2.2% and 19.6%. In the present study, the frequency of chromosomal aberrations (10.92%) among infertile men (non-obstructive azoospermic and severe oligozoospermic men) was found to lie within the previously reported range (4.34% [10] – 19.73% [8]).

The frequencies of chromosomal aberration in our patient sample are in agreement with other studies, where an increase in chromosomal abnormalities with decreasing sperm counts has been documented. It is well know that the sperm count is inversely related to the existence of chromosomal anomaly [11]. It is consistent with our study where, the proportion of chromosomal anomalies in non-obstructive azoospermic men (14.02%) was significantly (P < 0.05) higher than in severe oligozoospermic men (4.05%). Reported frequencies of chromosomal aberrations range from 3% to 19%; 3% in the cases of mild infertility and 19% in men with non-obstructive azoospermia [12]. Table 2 lists the results of studies of the frequency of chromosomal anomalies in infertile men in Tunisia and some regions of Europe, America and Asia. In order to ensure comparability, all of the articles included in this table were selected to contain the same study objects as the current study (i.e., non-obstructive azoospermia and severe oligozoospermia with a sperm count < 5 × 10^6/mL) [13–19].

In the group of azoospermic patients, sex chromosome abnormalities such as 47,XXY and 46,XX were predominant. We found 10.6% (35/328) of patients with Klinefelter
The ratio between gosonome and autosomal abnormalities differs considerably between the two groups. We note that sex chromosome abnormalities predominate in non-obstructive azoospermic men (86.9%; 40/46), whereas autosomal abnormalities are more frequent in patients with severe oligozoospermia (4/6; 66.6%). This is similar to or even higher than the data of the literature [5,16,19].

Autosomal abnormalities were identified in 10 patients (2.1% (Table 1) of whom, six had balanced autosomal translocations. In the remaining 4 infertile patients, a pericentric inversion of chromosome 7 was found in an azoospermic man while a supernumerary marker chromosome was detected in the last 3 men.

A relationship between balanced autosomal translocations and infertility has been reported among severely oligozoospermic and azoospermic men [14]. In our study, reciprocal translocations [t(4;6); t(7;16),t(4;17)] were seen in 3 azoospermic men and the last [t(1;17)] was
found in one man with azoospermia. Otherwise, two patients had a Robertsonian translocation involving chromosomes 13 and 14 (Table 1).

The effects of chromosomal translocations on spermatogenesis are obvious [36]. Assisted reproductive techniques have given the chance of having a child to infertile males with poor semen quality and autosomal abnormalities. However, using the ICSI in this group may increase the inheritance of paternal genetic disorders to offspring [13] because the structural chromosomal abnormality predisposes to abnormal segregation in meiosis leading to unbalanced gametes, in vitro fertilization (IVF)/ICSI failure [37] or poor embryonic development after fertilization. Significant heterogeneity was observed in the rates of unbalanced gametes, varying from 2.7% to 26.5% according to the translocations [38]. The risk of meiotic imbalance is primarily determined by the characteristics of the chromosomes involved, and the break-point positions. In addition, Robertsonian translocations can result in offspring with Down syndrome or Patau’s syndrome or in gestational loss of a conceptus with monosomy of chromosome 13, 14 or 21, or trisomy of chromosome 14, which are not compatible with life. Sperm karyotyping studies and FISH studies have demonstrated that the frequency of unbalanced sperm in men is lower than theoretically expected, ranging from 7% to 40% of unbalanced spermatozoa, with a mean of 15% unbalanced [39,40]. Because of the risk of passing the translocation to the offspring in unbalanced state, FISH is recommended to have an estimation of the risk for abnormal offspring and to adapt genetic counselling accordingly.

Moreover, it is important to document whether structural chromosomal aberrations in infertile males are ‘de novo’ or inherited. In case a structural chromosomal aberration is familial and co-segregates with male infertility, this might pinpoint a chromosomal region harbouring one or more genes involved in spermatogenesis. Attempts were made to obtain blood samples to karyotype other family members, but in most cases the patients do not concur. Except for the Robertsonian translocation find in an azoospermic man, which was inherited from his normally fertile mother, no further information was obtained for the other cases.

5. Conclusion

In conclusion, our results support the existence of a relationship between chromosomal aberrations and non-obstructive azoospermia and severe oligozoospermia. Our data show that the pattern and the prevalence of chromosomal abnormalities are comparable within infertile groups from other North African, Asian and western countries. These findings strongly suggest that such patients should at least be karyotyped and receive counselling before they are referred for assisted reproduction techniques. Such investigation is a pre-requisite to minimize the risk of transmitting genetic abnormalities to future generations, such as intellectual disability, genital ambiguity and/or birth defects. Furthermore, a screening of Y chromosome should be done in patients with a normal karyotype. This screening is being performed since some years (data not yet published).

Disclosure of interest

The authors declare that they have no conflicts of interest concerning this article.

Acknowledgments

We are thankful to the patients for their collaboration in the present study. We wish to thank Miss Imen Chemki, Miss Nabila Abidli, Mr. Helmi Guermani, and Mr. Sofien Bentari for their excellent technical assistance.

This work was supported by the Tunisian Ministry of Higher Education and Scientific Research (Laboratory of “Biomedical Genomics and Oncogenetics” LR11IPT05) and the Tunisian Ministry of Public Health.

References


