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1. Introduction

Influenza A virus infection continues to be a major
public health threat to human society and animals. In
1997, an outbreak of highly pathogenic avian influenza A
(H5N1) spread from poultry to human in Hong Kong,
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A B S T R A C T

In this report, we quantitatively analyzed the essential ecological factors that were

strongly correlated with the global outbreak of highly pathogenic H5N1 avian influenza.

The ecological niche modeling (ENM) was used to reveal the potential outbreak hotspots of

H5N1. A two-step modeling procedure has been proposed: we first used BioClim model to

obtain the coarse suitable areas of H5N1, and then those suitable areas with very high

probabilities were retained as the inputs of multiple-variable autologistic regression

analysis (MAR) for model refinement. MAR was implemented taking spatial autocorrela-

tion into account. The final performance of ENM was evaluated using the areas under the

curve (AUC) of receiver-operating characteristic. In addition, principal component analysis

(PCA) was employed to reveal the most important variables and relevant ecological

gradients of H5N1 outbreak. Niche visualization was used to identify potential spreading

trend of H5N1 along important ecological gradients. For the first time, we combined

socioeconomic and environmental variables as joint predictors in developing ecological

niche modeling. Environmental variables represented the natural element related to H5N1

outbreak, whereas socioeconomic ones represented the anthropogenic element. Our

results indicated that: (1) the high-risk hotspots are mainly located in temperate zones

(indicated by ENM)—correspondingly, we argued that the ‘‘ecoregions hypothesis’’ was

reasonable to some extent; (2) evaporation, humidity, human population density,

livestock population density were the first four important factors (in descending order)

that were associated with the H5N1 global outbreak (indicated by PCA); (3) influenza had a

tendency to expand into areas with low evaporation (indicated by niche visualization). In

conclusion, our study substantiates that both the environmental and socioeconomic

variables jointly determined the global spreading trend of H5N1, but environmental

variables played a more important role. Consequently, our study is consistent with the

assumption that the natural element is more important than the anthropogenic element as

the underlying ecological mechanisms explaining global H5N1 transmission.

� 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Corresponding author.

E-mail address: haydi@126.com (Y. Chen).

Contents lists available at ScienceDirect

Comptes Rendus Biologies

ww w.s c ien c edi r ec t . c om

://dx.doi.org/10.1016/j.crvi.2014.06.001
1-0691/� 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.crvi.2014.06.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crvi.2014.06.001&domain=pdf
http://dx.doi.org/10.1016/j.crvi.2014.06.001
mailto:haydi@126.com
http://www.sciencedirect.com/science/journal/16310691
http://dx.doi.org/10.1016/j.crvi.2014.06.001


Y. Chen, Y.-F. Chen / C. R. Biologies 337 (2014) 459–465460
resulting in 18 infected people and six deaths [1], and
reemerged in 2003, causing two similar cases with one
fatality [2]. As human exposure to and infection with H5N1
viruses continue to increase, so too does the likelihood of
the generation of an avian-human reassortant virus that
may be transmitted efficiently to the global human
population, which currently lacks H5N1-specific immu-
nity. Consequently, H5N1 viruses could be strong candi-
dates for causing the next influenza pandemic [3].

As widely recognized, zoonotic infectious diseases are
inextricably linked to their surrounding environment [4–
7]. The understanding of viruses’ spatiotemporal spreading
patterns is a fundamental component to assess human risk
for zoonotic diseases [8]. The previous reports [4,9]
indicated that a number of landscape features are closely
associated with the transmission of zoonotic diseases. In
particular, climate, water, and landscape patterns are
important triggering factors [4,10]. A more precise under-
standing of the landscape features distribution of influenza
virus would contribute to the recognition of virus
spreading tendency and risk assessment [4,9–13].

To our knowledge, there are two basic elements in
explaining the global outbreak patterns of H5N1avian
influenza virus: anthropogenic and natural elements. The
anthropogenic element includes all events related to
human activities, for example, global human migration
and traveling, international poultry trade [14], and so on.
The natural element is mainly composed of bird migration
and environmental stimuli, corresponding to the migration
model and the latency model proposed by a previous study
[15]. In the latency model, virus isolates keep constant in
outbreak locations and become infectious when climatic
adaptation exists. However, in the migration model, virus
isolates were transmitted through global avian migration.
Bird migration related to global H5N1 outbreak has been
well documented, and the seasonal patterns of human
influenza in temperate regions have been reported [16].
However, little attention has been paid to ecological
aspects of H5N1 infection in the world. More importantly,
the question has not been seriously addressed: which
element, natural or anthropogenic, is more important in
explaining the global outbreak of H5N1? Based on the
available global data sets, we believe this problem can be
approached through multivariate analysis techniques.

In this paper, we tested whether ecoregions (we name
‘‘ecoregions hypothesis’’ hereafter) could interpret global
patterns of H5N1 distribution [17]. The previous study [17]
proposed that ecoregions could explain the outbreak
dominance zones of H5N1 worldwide. Accordingly, they
suggested that some important ecoregions could be used
to predict the outbreak of H5N1. Because their conclusion
of H5N1-related ecoregions is only based on individual
outbreak observations, we introduced ecological niche
modeling [9], which will significantly improve the quality
in finding suitable areas closely correlated to H5N1
occurrence, to model the compatible environmental
envelope [10] and preferentially suitable areas [9]. In
comparison with the predicted suitable range and the
proposed ecogeographic regions, we could identify the
adequacy of ecoregions hypothesis. To run ecological niche

BioClim [19] as the methods to predict the risking hotspots
for H5N1 at global scale. By gathering the outbreak
information of H5N1 during 2003 and 2007 around the
world, we will make attempts to:

� find out the potential outbreak hotspots using ecological
niche modeling to test the ecoregions hypothesis;
� understand the important variables and reconcile the

effects of natural and human elements in regulating the
global outbreak of H5N1;
� predict the potential spreading dynamic based on a niche

presentation of H5N1.

The threefold analysis provides a consecutive recogni-
tion of H5N1 spatial characteristics from an ecological
perspective [20]. In a word, our study might provide
further evidences to the current ongoing epidemiologic
and ecological studies of avian influenza [21], as well as
help launch public health intervention strategies to
highest-risk areas for H5N1.

2. Materials and methods

2.1. Data sets

The worldwide occurrence cases of H5N1 between
November 2003 and March 2007 were derived from the
database constructed by Declan Butler for Google Earth
(http://declanbutler.info/Flumaps1/avianflu.html), who
had collected all the real-time data from WHO website
(http://www.who.int). Each outbreak case has been
georeferenced to input into the geographic information
system. Because the data of Declan Butler is in the format
of KML, we extracted the geographic coordinates for each
outbreak case using Visual Basic for Excel (Microsoft,
http://www.microsoft.com/). The software ArcView (ESRI
Inc., http://www.esri.com/) was used to map global H5N1
outbreak cases.

We used two groups of variables to predict H5N1
distribution, which has not been effectively integrated in
previous works and can well correspond to the two basic
elements of H5N1 distribution as discussed above:
environmental and socioeconomic variables. In general,
environmental variables used denoted abiotic factors,
reflecting natural element of H5N1 outbreak. For example,
climatic and topographic factors can be classified as abiotic
factors. The socioeconomic variables used principally
denoted the biotic and anthropogenic ones. This variable
group reflects the anthropogenic element of H5N1 out-
break: for example, human population density, global
vegetation, etc. We downloaded these two groups of
variables from different resources as mentioned below:

� the environmental variables were extracted from
WorldClim (http://www.worldclim.org/) database. In
sum, eight representative variables [9] were used as
the environmental variables explaining the distribution
of H5N1, which were average elevation, annual average
temperature, annual minimal temperature, annual
maximal temperature, precipitation, evaporation, radia-
modeling, we used multiple regression analysis [18] and
 tion and absolute humidity;

http://declanbutler.info/Flumaps1/avianflu.html
http://www.who.int/
http://www.microsoft.com/
http://www.esri.com/
http://www.worldclim.org/
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r socioeconomic variables, the six typical ones were
uman population density, human built-up land density,
opland density, livestock population density (mainly

enotes these typical ungulates: sheep, goat and pig),
oultry population density (mainly denotes chicken) and
egetation type;
orld livestock distribution information was obtained
om the Food and Agriculture Organization of the United
ations (FAO) [22]. Data related to the global vegetation
yer were collected form the Atlas of the Biosphere
ttp://www.sage.wisc.edu/atlas/). Worldwide human

opulation density and built-up land density were
ownloaded from Gridded Population of the World
ersion 3 (Center for International Earth Science
formation Network, Columbia University; http://
dac.ciesin.columbia.edu/gpw).

All data were standardized prior to analysis using
ware Statistica version 6.0 (http://www.statsoft.com/).

ethods

To predict the potential distribution of H5N1, we
eloped a two-step prediction procedure. The first step
sists in selecting potential suitable areas. This is done
ioClim algorithm using software OpenModeler (http://

nmodeller.sourceforge.net/). The second step is to
ne the risking classification of all the candidate areas
ng multiple regression analysis (MAR), which is
formed using Statistica version 6.0 (http://www.stat-
.com/). BioClim is a simple environmental envelope

orithm that identifies locations that have environmen-
values that fall within the range of values measured

 the occurrence dataset [19,23]. The advantage of
Clim algorithm is the fact that it generates the potential
table areas at a fast speed. MAR is a discriminative
babilistic classification model that operates over real-
ued variables. It makes use of predictor variables that
y be either numerical or categorical. MAR was used to
ne the prediction based on the output of BioClim model
ly the areas with predicted probability = 1 are con-
red). MAR was implemented considering spatial

ocorrelation by forcing an additional covariate, termed
oregressive term, into the MAR model [18]. This
oregressive term accounts for spatial dependency in
 response variable and is estimated by averaging the
sence/absence among a set of neighbors defined by the
it of autocorrelation, weighted by the inverse of the
lidean distance [24]. The purpose of the two-step
diction procedure is to eliminate the influence of
mportant areas to the prediction power of MAR. The
t step is to retain those areas with high correlation with
ponse variables and guarantee the power of MAR [18].
evaluate the validation of the model performance, we
ployed the areas under the curve (AUC) of the receiver-
rating characteristic (ROC).
To identify the contribution of environmental and
ioeconomic factors to the global distribution of H5N1,

 performed a principal component analysis (PCA) using
oftware [25]. PCA is effective and robust in the

ntification of dominant variables [26].

In the two-dimensional visualization of suitable niches
for H5N1 [27], for each environmental attribute, a t test for
two independent samples was applied to detect whether
there was a significant difference between the observed
outbreak locations and the predicted suitable sites; the
predicted sites were derived from BioClim output.

4. Results

The global outbreak cases during November 2003 and
March 2007 are displayed in Fig. 1A, while the outbreak
hotspots (or areas with high risking probabilities) based on
MAR model are showed in Fig. 1B. The model performance
is very good based on the high AUC value of the ROC curve
(AUC = 0.955). The outbreak hotspots were mainly located
in southern Europe, East Asia and Middle Africa. These risk
hotspots corresponded mostly to the ecoregions proposed
in Sengupta et al. (2007). However, some additional
ecoregions have been overlooked in Sengupta et al.
(2007), but identified in our modeling. These regions were
principally located in Latin America and South America,
where there are no outbreak records but where there is a
high likelihood of the H5N1 risk (Fig. 1B).

Results from PCA are displayed in Table 1. The first four
axes (axes 1, 2, 3, and 4) explained 70.20% of the total
variance. In axis 1, the most important factor was
evaporation, followed by annual minimal temperature
and annual average temperature. Axis 1 mainly character-
ized the thermal gradient of H5N1 outbreak, while in axis
2, the pivotal factor was humidity, which characterized the
water gradient of the outbreak. The most influencing
factors for axis 3 and 4 were human population density and
livestock density, respectively, reflecting the anthropo-
genic impact of H5N1 outbreak.

We presented the visualization of suitable niches for
H5N1 in Fig. 2. Only the two most important environ-
mental variables were present. The points of current
occurrence were principally located within the boundary of
predicted occurrences. The t-test for independence indi-
cated that there was a significant difference between the
observed (mean = 177.17, SD = 84.17) and predicted points
(Mean = 162.14, SD = 69.05) along the gradient of evapora-
tion (P < 0.005). However, along the gradient of humidity,
the difference between the observed (mean = 114.68,
SD = 36.62) and predicted points (mean = 112.50,
SD = 37.41) is not significant (P = 0.22). This visualization
illustrated that the potential transmission trend around the
world of H5N1 will probably shift to areas with lower
evaporation, which are generally cold-temperature areas
(low temperatures could decrease evaporation), for exam-
ple, much of Europe, northern Asia, and so on.

5. Discussion

We present the global map of the risk of H5N1
outbreak in this contribution. We have addressed these
following issues and provided new evidences relevant to
the epidemiology of H5N1 transmission: the testing of
ecoregions hypothesis; the outbreak hotspots’ identifi-
cation based on species distribution modeling; the
presentation of niche differentiation of H5N1 in the

http://www.sage.wisc.edu/atlas/
http://sedac.ciesin.columbia.edu/gpw
http://sedac.ciesin.columbia.edu/gpw
http://www.statsoft.com/
http://openmodeller.sourceforge.net/
http://openmodeller.sourceforge.net/
http://www.statsoft.com/
http://www.statsoft.com/
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spreading process; the importance of combining environ-
mental and socioeconomic variables in building prediction
models.

Ecological niche modeling has identified the most
preferential areas for virus transmission and outbreak
[27,28]. Most of these areas correspond to the ecoregions
proposed in the previous study [17]. Such outbreak
hotspots have the highest probability of avian influenza
risk; therefore, through a simple comparison, we could
conclude that the ecoregion hypothesis should be able to
explain its global spreading.

Geographical information systems have become a ripe
technique in mapping and managing global diseases and
vectors [4,8,11,29–31]. It provides a direct view of the
transmission of virus vectors through distribution map-
ping [27]. Meanwhile, ecological niche modeling for
predicting potential risks posed by the viruses is gaining
increasing attention [4,9,26]. The available data, the
various mathematical approaches, and the ecological
theories make ecological niche modeling become a more
robust means for interpreting ecological patterns of
infectious viruses at the spatial scale [9].

Fig. 1. (A) (Color online). Outbreak records of H5N1 during November 2003 and March 2007. (B) Predicted global distribution of H5N1 using multiple-

variable autologistic regression analysis on the basis of BioClim output. (Colors from light grey to black represent the risking probabilities from low to high).
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BioClim model is very conservative compared to other
deling techniques [32], although it is likely to fail when
deling the impact of climate change on species’
ribution [33,34]. Moreover, BioClim model is simple
mplement and the mathematical basis is very easy to
erstand [34]. BioClim algorithm is one of the most
mon ones that have been used in the course of history

 in current time when modeling species’ potential
ributions [34,35]. It consists simply in comparing the

ues of the environmental variables across all the
tions to the ones where the species is present. The

re similar the values are, the more suitable the location
[34]. These are the reasons why we preferentially

selected its output for niche visualization of H5N1.
Multiple-variable autologistic regression analysis is gain-
ing increasing attention in H5N1 distribution modeling
[18,36]. We integrated these two algorithms into the
prediction model to form a two-step prediction process,
which has the merit of reducing the influence of irrelevant
areas and enhancing the power of MAR. Because the
predicted map of BioClim algorithm is conservative, the
retained candidate sites (with probability = 1) are certainly
correlated with the response variables. The power of MAR
considering spatial autocorrelation is thereby assured.

Another problem may be the selection of variables for
modeling [37]. Some studies also emphasized the essence

Table 1

PCA resulting reports, including the eigenvalues for the four axes and the related variable loadings.

Axis 1 Axis 2 Axis 3 Axis 4

Items

Eigenvalues 5.203 1.74 1.471 1.414

Percentage 37.165 12.428 10.508 10.097

Cumulated percentage 37.165 49.593 60.101 70.198

PCA variable loadings

Radiation –0.072 0.556 0.026 0.134

Elevation 0.178 0.151 –0.112 0.183

Annual maximal temperature –0.404 0.26 –0.034 –0.038

Annual minimal temperature –0.421 0.163 –0.02 –0.027

Annual average precipitation –0.365 –0.251 –0.081 0.068

Annual average temperature –0.416 0.213 –0.027 –0.032

Evaporation –0.428 0.014 –0.042 –0.041

Humidity –0.137 –0.596 –0.026 0.11

Human population density –0.077 –0.042 0.614 –0.251

Human built-up land density 0.009 0.006 0.604 –0.368

Cropland density –0.052 –0.09 0.002 –0.171

Poultry population density –0.168 –0.102 0.319 0.521
Livestock population density –0.042 –0.033 0.321 0.63

Vegetation type 0.276 0.297 0.169 0.175

Bolded values denote the most important factors.

2. (Color online). Visualization of suitable ecological niches from BioClim model (X, Y axes represent the most influencing factors evaporation and

idity from axes 1 and 2, respectively). Dots denote the randomly selected 60,000 predicted suitable areas, while squares denote the outbreak cases.
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of biotic interaction in explaining the distribution range
[38–40]. However, the degree of this interconnection is
still ambiguous up to date [41]. Considering the available
data and the objective of our study, we did not include
biotic interaction in the modeling. Besides, the dubiety of
the choice of modeling techniques is negligible to some
extent. In some works [42], it has been revealed that the
disparities among the results generated using different
modeling approaches were not remarkably significant.

The previous study, concerning Southeast Asia [18],
identified the most influencing socioeconomic factors
associated with H5N1 outbreak, including duck abun-
dance, human population and rice cropping intensity. They
did not involve abiotic variables as predictors, which might
lead to the biased recognition of the role played by
socioeconomic factors.

Our findings also differed from those of the previous
study conducted on Mainland China [36], which identified
that the distance to roads and precipitation were the most
associated factors. A possible problem of variable selection
in the study on the outbreak of H5N1 in Mainland China
[36] is that they did not include temperature, which has
been suggested very important in ecological niche
modeling [9]. Besides, as showed in our study, the first
axis of PCA reflected the thermal gradient of H5N1
outbreak. If the previous study [36] includes thermal or
water-related variables, they might obtain a different
result. It is impossible to compare our finding with that of
the previous study [36] directly therefore.

Although having inconsistent aspects in determining
the relative importance of variables, our study, along with
the pervious studies [18,36], represented the distribution
modeling of avian influenza from three spatial scales—
global, regional, and national, respectively. They provide
some insights into H5N1 transmission at different spatial
dimensions.

Very interestingly, our findings suggested that the
natural element played a more important role than the
human element in H5N1 transmission. Compared to
previous works [18,36], we did not have a biased treatment
of environmental or socioeconomic factors; therefore our
results can provide a further understanding of H5N1
transmission. Through the combination of human and
nature-related variables as model predictors, our study
indicated that the thermal requirement was most essential
for H5N1 outbreak. This may be related to global bird
migrations. Water requirement was also very pivotal for
H5N1 transmission, as revealed by the second axis of PCA.
This gradient reflected the physiological requirement of
migrating waterfowl [17]. Human-related socioeconomic
variables seemed less important compared to environ-
mental variables, and were only indicated in the third and
fourth axes of PCA. Based on variable-combination
modeling, we stand in line with the conclusions of the
previous study [17]: the natural (or environmental)
element can explain H5N1 outbreak, the ecological
dominance of H5N1 supports the ‘‘ecoregions’’ hypothesis.
The importance of climate and water variables associated
with infectious diseases is strictly in line with previous
conclusions [4,10]. Although our recognition, like that of

researchers [43,44] who emphasized the extreme impor-
tance of the anthropogenic element, we still suggest that
the natural element cannot be overlooked, leastways if we
want to have a better understanding of the H5N1
spreading pattern, especially at the global scale.

Currently, the global potential risk of infectious
diseases is predicted based on the assumption of virus’
ecological requirement [13,27]. Another prediction mod-
eling complementary to our approach is to take advantage
of the phylogenetic relationship inferred from molecular
data [15,45], namely phylogeographic approach, which is
capable of handling the rapid evolutionary dynamics [46]
and spreading estimation of avian influenza [45]. Here we
suggest that phylogeographic analysis integration [45] and
ecological niche modeling [47] will contribute to the
knowledge on worldwide surveillance of avian influenza A.
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