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A B S T R A C T

The biological information coming from electrophysiologic sensors like ECG, pulse sensor or

from molecular signal devices like NMR spectrometry has to be visualized and manipulated

in a compressed way for an efficient medical use by clinicians, if stored in scientific data

bases or in personalized patient records repositories. Here, we define a new transform called

Dynalet based on Liénard ordinary differential equations susceptible to model the

mechanism at the source of the studied signal, and we propose to apply this new technique

first to the modelling and compression of real biological periodic signals like ECG and pulse

rhythm. We consider that the cardiovascular activity results from the summation of cellular

oscillators located in the cardiac sinus node and we show that, as a result, the van der Pol

oscillator (a particular Liénard system) fits well the ECG signal and the pulse signal. The

reconstruction of the original signal (pulse or ECG) using Dynalet transform is then compared

with that of Fourier, counting the number of parameters to be set for obtaining an expected

signal-to-noise ratio. Then, we apply the Dynalet transform to the modelling and

compression of molecular spectra obtained by protein NMR spectroscopy. The reconstruc-

tion of the original signal (peak) using Dynalet transform is again compared with that of

Fourier. After reconstructing visually the peak, we propose to periodize the signal and give it

to hear, the whole process being called the protein ‘‘stethoscope’’.

� 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

L’information biologique provenant de capteurs électrophysiologiques, comme l’ECG, les

capteurs de pouls, ou d’appareils générant des signaux moléculaires, comme la

spectrométrie de masse ou la spectrométrie RMN, doit être visualisée et manipulée sous

une forme compressée, de manière à optimiser son usage en médecine clinique et n’en
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1. Introduction

The different ways to represent a biological signal are
aiming both to:

� explain the mechanisms having produced the signal;
� facilitate its use in medical applications or in life

sciences.

The biological signals can come from electrophysiologic
signal sensors like ECG, arterial pulse sensors, etc., or from
molecular devices like mass or NMR spectrometry, etc.,
and have to be modelled and compressed for an efficient
medical use by clinicians and to retain only the pertinent
information about the mechanisms at the origin of the
recorded signal for the researchers in life sciences, or
restored to be interpreted, e.g., in telemedicine. If the
recorded signal is periodic in time and/or space,
the classical compression processes like Fourier and
wavelet transforms give good results concerning the
compression rate, but bring in general no supplementary
information about the interactions between elements of
the living system producing the studied signal. Here, we
define a new transform called Dynalet based on Liénard
differential equations, which are susceptible to model the
mechanism that is the source of the signal and we propose
to apply this new technique to real signals like ECG, arterial
pulse and mass or NMR spectrometry. We will recall in
Section 2 the classical Fourier and wavelet Haley trans-
forms from the point of view of differential equations, and
then, we present in Section 3 the prototype of the Liénard
equations, i.e. the van der Pol equation. In Section 4, we will
define the Dynalet transform, and then describe in Sections
5 to 8 the biological applications.

2. Fourier and Haley wavelet transforms

The Fourier transform comes from the desire of Joseph
Fourier [1], in 1807, to represent in a simple way functions
used in physics, notably in the frame of heat propagation

modelling. He used a base of functions made of the
solutions to the simple not-damped pendulum differential
equation (cf. the trajectory on Fig. 1):

dx=dt ¼ y; dy=dt ¼ �v2x;

whose general solution is: x(t) = k cosvt, y(t) = �kv sinvt.
By using the polar coordinates u and r defined from the

variables x and z = �y/v, we get the new differential
system:

du=dt ¼ v; dr=dt ¼ 0;

with u = arctan(z/x) and r2 = x2 + z2. The polar system is
conservative, its Hamiltonian function being defined by
H(u,r) = vr. The general solution x(t) = k cosvt, z(t) = k

sinvt has two degrees of freedom, k and v, respectively the
amplitude and the frequency of the signal, and constitutes
an orthogonal base, by choosing for v the multiples (called
harmonics) of a fundamental frequency v0.

After the seminal theoretical works by Meyer [2,4],
Daubechies [3] and Mallat [5], Haley [6] used in 1997 a
simple wavelet transform for representing signals in
astrophysics. He used a base of functions made of the
solutions to the damped pendulum differential equation
(cf. the trajectory on Fig. 1):

dx=dt ¼ y; dy=dt ¼ � v2 þ t2
� �

x � 2ty;

whose general solution is: x(t) = k e�
ttcosvt, y(t) = �k

e�
tt(vsinvt + tcosvt).
By using the polar coordinates u and r defined from the

variables x and z = �y/v – tx/v, we get the differential
system:

du=dt ¼ v; dr=dt ¼ �tr

The polar system is dissipative (or gradient), its
potential function being defined by P(u,r) = �vu + tr2/2.
The general solution x(t) = k e�

ttcosvt, z(t) = k e�
ttsinvt has

three degrees of freedom, k, v and t, the last parameter

retenir que la partie pertinente, explicative des mécanismes ayant généré le signal, en vue

d’un stockage dans des bases de données scientifiques ou dans des gisements de dossiers

médicaux personnalisés. Lorsque le signal enregistré est périodique, les procédés de

compression classiques que sont les transformées de Fourier et ondelettes donnent de bons

résultats au niveau du taux de compression et de la qualité de la restitution, mais n’apportent

en général aucune information nouvelle concernant les interactions existant entre les

éléments du système vivant ayant produit le signal étudié. On définit ici une nouvelle

transformation, nommée Dynalet, fondée sur les équations différentielles ordinaires de

Liénard, susceptibles de modéliser le mécanisme générateur du signal ; nous proposons

d’appliquer cette nouvelle technique de modélisation et de compression à des signaux

biologiques périodiques réels, comme l’ECG et le pouls, ainsi qu’aux données protéiques

provenant de la spectrométrie moléculaire RMN. Dans chaque application, la reconstruction

du signal d’origine (oscillations ou pic) utilisant la transformée Dynalet est comparée à celle

de Fourier, en comptant le nombre de paramètres à régler pour un rapport signal sur bruit

déterminé. Dans le cas du signal protéique, après la reconstruction visuelle des pics du

spectre RMN, nous proposons de les périodiser et de les donner à entendre, l’ensemble de ce

processus applicatif étant alors appelé « stéthoscope » protéique.

� 2014 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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ng the exponential time constant responsible for the
dulum’s damping.

he van der Pol system

For the Dynalet transform, we propose to use a base of
ctions made of the solutions to the relaxation
dulum’s differential equation (cf. the trajectory on

. 1, top right), which is a particular example of the most
eral Liénard differential equation:

dt ¼ y; dy=dt ¼ �R xð Þx þ Q xð Þy;

ich is specified in the van der Pol case by choosing
) = v2 et Q(x) = m(1–x2/b2). Its general solution is not
braic, but can be approximated by a family of

ynomials [7–11]. The van der Pol system is a poten-
–Hamiltonian system, defined by the potential PvdP and

iltonian HvdP functions (Fig. 2, top left), HvdP being for
mple approximated at order 4, when v = b = 1, by:

P x; yð Þ ¼ x2þy2
� �

=2 � mxy=2 þ myx3=8 � mxy3=8;

ich allows us to obtain the equation of its limit-cycle
. 1, bottom): HvdP(x,y) � 2.024 [8,11]. The van der Pol

tem has three degrees of freedom, b, v and m, the last
armonic parameter being responsible for the asymp-
c stability of the pendulum’s limit-cycle, which has a
nt, but not revolution symmetry. These parameters
eive different interpretations:

 appears as an anharmonic term: when m = 0, the
quation is that of the simple pendulum, i.e., a sine wave
scillator, whose amplitude depends on the initial
nditions. Relaxation oscillations are observed even
ith small initial conditions (Figs. 1 and 2), with a period

T equal to 2p/Imb near the bifurcation value m = 0,
where b is eigenvalue of the Jacobian matrix J of the van
der Pol equation at the origin:

J ¼ 0 1
�v2 m

� �
:

The characteristic polynomial of J is equal to: b2–
mb + v2 = 0, hence b = (m � (m2–4v2)1/2)/2 and T � 2p/
v + pm4/2v3:

� b looks as a term of control: when x > b and y > 0, the
derivative of y is negative, acting as a moderator on the
velocity. The maximum of the oscillations amplitude is
about 2b, whatever the initial conditions and values of
the other parameters are. More precisely, the amplitude
ax(m) of x is estimated by 2b < ax(m) < 2.024b, for every
m > 0, and when m is small, ax(m) is estimated by:
ax(m) � (2 + m2/6)b/(1 + 7 m2/96) [12,13]. The amplitude
ay(m) is obtained for dy/dt = 0, i.e. is approximately for
x = b, then ay(m) is the dominant root of the following
algebraic equation: HvdP(b,ay(m)) = 2.024;
� v is a frequency parameter: when v >> m/2 >> 1, the

period T of the limit-cycle is determined mainly by the
time during which the system stays around the cubic
function where both x and y are O(1/m), T being roughly
estimated to be T � 2p/v, and the system can be
rewritten as: dx/dt = z, dz/dt = �v2x + m(1–x2/
m2)z � �v2x + mz, with the change of variables:
x = mx/b, z = my/b.

4. The Dynalet transform

The Dynalet transform consists in identifying a Liénard
system based on the interactions mechanisms between its

1. (Color online.) Top left: a simple pendulum trajectory. Top middle: a damped pendulum trajectory. Top right: van der Pol limit-cycle (m = 10,

b = 1). Middle: relaxation oscillation of the van der Pol oscillator with m = 5, v = b = 1. Bottom: representation of the harmonic contour lines

(x,y) = 2.024 for different values of m.
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variables (well expressed by its Jacobian matrix) analogous
to those of the experimentally studied system, whose
limit-cycle is the nearest (in the sense of the D set or of the
mean quadratic distances between sets of van der Pol
points and experimental points having the same phase,
sampled respectively from the original signal and the van
der Pol limit-cycle) to the signal in the phase plane (xOy),
where y = dx/dt. We can notice that the Jacobian interac-
tion graph of the van der Pol system contains a couple of
positive and negative tangent circuits (called regulon [10]).
Practically, for performing the Dynalet transform, it is
necessary to choose:

� the parameters v and m such as the period of the van der
Pol limit-cycle equals the mean period of the original
signal;
� a translation of the origin of axes, in order to fix the first

van der Pol point on its limit-cycle identified, by
convention, at the first signal point (corresponding to
the mean baseline value of the original signal);
� a homothety on these axes defining their scales, by

minimizing the distance between two sets of points from
both van der Pol and original signals.

By repeating this process for the difference between
the original signal and the van der Pol limit-cycle, it is

of the fundamental reconstructed signal and of its
harmonics.

The potential and Hamiltonian parts PvdP and HvdP used for
this transform can be calculated following [7–9]. For example,
for m = 1 (respectively [resp.] m = 2), the corresponding
polynomials are respectively P1 and H1 (P2 and H2), defined by:

P1 x; yð Þ ¼ �3x2=4 þ y2=4 þ 3x4=32 þ y4=96 þ x2y2=16
and H1 x; yð Þ ¼ x2 þ y2

� �
=2 � 3xy=2 þ 3yx3=8 � y3x=24 � 2

res p:P2 x; yð Þ¼�3x2=4 þ y2=4 þ 3x4=32 þ y4=96 þ x2y2=16
�
and H2 x; yð Þ¼ x2 þ y2

� �
=2�3xy=8 þ 3yx3=8� y3x=24 � 1=2Þ

Using this potential–Hamiltonian decomposition, it is
possible to calculate an approximate solution S(ki,mi)(t) of
the van der Pol differential system corresponding to the ith
harmonics of the Dynalet transform, as a polynomial of
order 2 + i verifying:

dx=dt ¼ y and dy=dt ¼ �x þ mi 1 � k2
i x2

� �
y

We will search for example for the approximate
solution x(t) = S(1,1)(t) as a polynomial of order 3 in the
case m = 1:

x tð Þ ¼ c0 þ c1t þ c2t2 þ c3t3; y tð Þ ¼ c1 þ 2c2t þ 3c3t2

The polynomial coefficients ci’s above represent both
the potential and Hamiltonian parts of the van der Pol

Fig. 2. (Color online.) Top left: representation of the potential P and Hamiltonian H on the phase plane axis (xOy). Bottom left: limit-cycle of the van der Pol

equation for different values of m (from [16]). Right: isochronal landscape surrounding the van der Pol limit-cycle (m = 2, v = b = 1; period T � 7.642).
system and they can be obtained by identification with P1
possible to get successively a polynomial approximation
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 H1 derivatives [7–11]: dx/dt = �@P1/@x + @H1/@y, dy/
 �@P1/@y–@H1/@x. Then, we get:

=2 þ c1
2=2 � 3c0c1=2 þ 3c0

3c1=8 � c0c1
3=24 ¼ 2;

3 � 9c3
2=2 � 9c0c2

3 þ 9c0c2
3=4 þ 27c0

2c3
2=8 � 3

0c2c3
2=4 � c2

4=24 ¼ 0

2c3 � 27c2
3=2 þ 9c3

2 � 3c3
2 � 3c2c3

2=2 � c2
4=24 ¼ 0;

ich implies c0 = 2, c1 = 0, c2� 0.46 and c3� 0.04, i.e.,
roximately the values given in [14]. Because of the
metry of the limit-cycle, all the solutions {S(kj,m/2j)}j2IN

 orthogonal and we can decompose any continuous
ction f on this base, thanks to the Weierstrass theorem.
A first example of application of the Dynalet technique

 be represented by the mitosis rhythm in lateral cells of
 caudal fin in zebrafish [16]: by using the relaxation waves

 van der Pol oscillator (Fig. 3), we can fit better the mitosis
ve (represented by the intracellular BrDU concentration
lution on Fig. 4) than when using a sine function.

ardiovascular applications

We propose to apply this new technique to real signals
 ECG and pulse rhythm. In these both cases, the
thmic cardiovascular activity results from the summa-

 of cellular oscillators (Fig. 5) located in the cardiac
us node, which are subject to the control of the bulbar
diovascular moderator and cardio-accelerator centres,
ich modulate the sinus signal, integrating the influence
the inspiratory bulbar centre, which causes the

The Dynalet transform consists in identifying a Liénard
system that expresses interactions between its variables
through its Jacobian matrix analogous to those of the
experimentally studied system, whose limit-cycle is the
nearest (in the sense of the distance D between sets, or of
the mean quadratic distance between points of same
phase) to the signal pattern in the phase plane (xOy), where
y = dx/dt.

Practically, if the Liénard system is a van der Pol system,
it is necessary to execute the following transforms for
getting Dynalet approximation from original signal:

� to estimate the parameters v and m such as the period of
the van der Pol signal is equal to the mean empirical
period (calculated for the original signal);
� do a translation of the origin of axes in the phase plane;
� do a homothetic change of the coordinates, in order to

match the van der Pol signal to the original signal.

Then the whole approximation procedure done for the
ECG signal (Fig. 6a) involves the following steps:

� suppress the time intervals when the signal was
under the critical plateau value L of the Levy time
l(e) equal to the time interval during which the
signal has passed between 0 and e. This step allows
obtaining the QRS complex of the experimental ECG
(Fig. 6b and c);
� fix the value of the parameter m such as the period of the

4. Left: BrdU concentration evolution representing the mitosis rhythm in lateral cells of caudal fin in zebrafish [16], with indication of the nadir (time of

minimum) of the cycle (red arrow), showing a rather good fit with the sine function (red) and a better fit with the van der Pol relaxation wave (blue).

t: same curve for the axial cells, showing a phase shift of the nadir, due to the spatial bell shaped form of the caudal fin.

3. Representation of different waves from van der Pol oscillator simulations (from [15]), from the symmetric type (left, for m = 0.4, v = 1, b = 4) to the

xation type (right, for m = 4, v = 1, b = 4).
an der Pol signal is equal to the QRS complex duration;
earance of harmonics in the cellular rhythm. v



Fig. 5. (Color online.) a: van der Pol signal [15] fitting (in blue) the single cardiac cell activity [17] (in white); b: ECG signals recorded for different

electrophysiologic derivations (from [18]), with indication (in red) of the baseline.

Fig. 6. (Color online.) a: ECG signal (V2 derivation); b: decomposition into two temporal profiles respectively of period T and T/2, whose corresponding

functions are orthogonal for the integral on [0,T[of the vector product; c: representation of different van der Pol limit-cycles, for different values of m (from

m = 0.01 in red, to m = 4, with v = b = 1); d: Fourier decomposition of the ECG signal (V5 derivation), showing the reconstruction process until the 17th

harmonics; e: representation of a relaxation wave from van der Pol oscillator simulations [15], for m = 2.24, v = 1.6, b = 3.

J. Demongeot et al. / C. R. Biologies 337 (2014) 609–624614
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erform a translation of the origin of the (xOy) phase
lane and a scaling on the coordinates of the van der Pol
gnal, so as to adjust them to the maximum of the x

RS complex;

� finish the approximation with a parameter optimization
(parameters v and b), by matching the QRS complex
points to the van der Pol limit-cycle in order to minimize
the distance D between the interiors of the QRS points

7. (Color online.) a: Initial position in the phase plane xOy of the van der Pol limit-cycle (in green clear) and ECG signal (in red) and final fit between van

Pol (in dark green) and ECG signal after transformation on the X and Y axes (translation and scaling); first row: b: fundamental component extraction

 the original experimental ECG signal (in red), (i) by identifying the phase 0 value on the original V1 derivation in the phase plane xOy, where y = dx/dt,

 a sample of 100 points extracted from the mean signal, on the van der Pol limit-cycle having the same period as the pitch of the mean ECG signal; c:

ch for getting the fundamental Dynalet component (F in blue) and first harmonic (H1 in green), with a transformation in the (xOy) phase plane consisting

anslating/scaling x and y axes (as indicated in the left table of a), in order to obtain the best fit for the cost function based on the D distance between

pled empirical mean points (blue curve) and the set of points of same phase extracted from the van der Pol limit-cycle; d: subtracting the fundamental
 the first harmonic component (F + H1 in violet) from the sampled original ECG signal (in blue).
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set and the van der Pol limit-cycle (denoted respectively
by ECG and VDP, with interiors ECG0 and VDP0) in the
phase plane:

D ECG0; VDP0ð Þ ¼ Area ECG0nVDP0ð Þ [ VDP0nECG0ð Þ½ �;

by using a Monte-Carlo method for estimating the area
of the interiors of the linear approximation of empirical
points of the Experimental QRS complex and of the van
der Pol limit-cycle, calculated from a sample of points in
the phase plane, respectively {Ei}i = 1,100 and {Pi}i = 1,100. It is
also possible to minimize the mean quadratic distance
between the points of the van der Pol limit-cycle and the
empirical points having the same phase;
� repeat the procedure for obtaining the successive

harmonics in order to respect, for example, a fixed
threshold of 20 dB for the signal-to-noise ratio (SNR) and
10% for the quadratic relative error (QRE);
� calculate a polynomial approximation of the signal from

the quadratic estimate of the van der Pol limit-cycle
corresponding to the previous step, e.g., if v = b = 1:

HvdP x; yð Þ ¼ x2 þ y2
� �

=2 � mxy=2 þ myx3=8 � mxy3=8

¼ 2:024:

6. Application to ECG

Let now compare the performance of the Dynalet
reconstruction of the ECG V1 signal (given on Fig. 8c) with
a Fourier transform having the same number of parameters,
that is 5, i.e., the origin abscissa translation, two values of m
(period) and two abscissa scaling ratios for the fundamental

and first harmonic of the Dynalet transform; the period, the
origin abscissa translation and three values of sine
coefficients for the Fourier transform F(x) (Fig. 7), whose
equation is:

F xð Þ ¼ 0:42142 cos 2px=176ð Þ þ 0:40773 sin 2px=176ð Þ

þ 0:34225 � 0:10539 cos 4px=176ð Þ

For defining a quantitative assessment of the error
between the abscissae of the K original signal observations
Xi’s (obtained after extraction of the baseline) and their Fourier
or Dynalet approximations ji’s, we use the notions of mean
square error (MSEX) and signal-to-noise ratio (SNRX) where:

MSEX ¼
X

i¼1;K
Xi � jið Þ2=

X
i¼1;K

X2
i ;

SNRX ¼ �10 log10MSEX

The calculation made for the QRS signal of Figs. 7 and 8
shows, for example, a good Dynalet fit for ordinates values:

SNRY Dynalet ¼ 40 dB;

SNRY Fourier ¼ 15:7 dB;

MSEY Dynalet ¼ 27 � 10�5; MSEY Fourier ¼ 22 � 10�4

In the reconstitution of Figs. 7 and 8, MSEX Fourier = 0.08,
SNRX Fourier = 22 dB and MSEX Dynalet = 0.09, SNRX Dyna-

let = 21 dB. We can notice that this Fourier transform needs
six parameters (including the value of the period), while
the Dynalet transform requires only five parameters
(Fig. 8).

Fig. 8. (Color online.) a: First coefficients of the Fourier transform of the QRS complex: the fundamental and two first harmonics are labelled; b: original QRS

complex of the ECG (green) and Fourier (blue) reconstruction with two harmonics matching; c: experimental ECG V1; d: evolution of the Lévy time l(e)

corresponding to the time interval during which the signal passed between 0 and e.
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he pulse signal

Concerning the pulse signal, the pulse wave is approxi-
ted, after identification and extraction of the inter-beats
eline, by using successively the sine functions family
urier transform) and the family of the limit-cycles of the

 der Pol equation. In the example of the Fig. 11, MSE
p. SNR) is equal, for the amplitude X, to 0.066 for a
rier transform having two harmonics with six para-
ters, and 0.09 for a Dynalet decomposition with one
monic defined by only five parameters (resp. 24 dB and
B). For the velocity Y = dX/dt, MSE (resp. SNR) is equal to

092 for a Fourier transform with two harmonics and
095 for a Dynalet decomposition with 1 harmonic
ned by five parameters (resp. 40.8 dB and 40.4 dB).

Given the fact that the Dynalet transform uses asymp-
cally stable trajectories (limit-cycles) with a differential
ation closer to the mechanism of genesis of electro-
siological signals than the simple pendulum used by the
rier transform, the above-obtained performances for the
se signal show that the compression rate for Dynalet
sform is as efficient as for Fourier transform, while also

ng more explanatory, than for the Fourier transform.

hysiologic applications

One of the reasons explaining the efficacy of the van der
 equation in representing the cardiac activity lies in the

 that since 50 years and the first models by Noble
,20], 45 models of the cardiac rhythm have been
posed [21], many of them being based on Hodking–
xley model, which is closely related to the van der Pol
ation (Fig. 9). The van der Pol system is indeed
logous to the 2D-version of the Hodgkin–Huxley
ation, called the FitzHugh–Nagumo equation, by

t changing the second variable y for the new variable
y–mx(1–x/H3)(1 + x/H3).
The explanatory power of the Dynalets in the case of

and respiratory rhythms are regulated through interaction
loops (called ‘‘regulons’’ in [22]) having one activation, one
inhibition and one auto-catalysis, in interaction with the
same structure controlling the respiration:

� the bulbar cardio-moderator CM (resp. cardio-accelera-
tor CAC) inhibits (resp. activates) the sinus node (S);
� the sinus node activates (resp. inhibits) the CM (resp.

CAC) via the peripheral chemoreceptors, and auto-
activates itself;
� the expiratory neurons (E) inhibit the inspiratory ones (I);
� the inspiratory neurons activate expiratory ones (Fig. 10).

Biological rhythms other than the ECG or pulse can be
interpreted and compressed using Liénard equations and
the Dynalet transform, like the respiratory rhythm or the
single cardiac cell activity, which represent good examples
of a relaxation wave (Fig. 5a and [23,24]), as well as pulse
activity (Fig. 11). In summary, the main advantages of the
Dynalet transform on the Fourier transform in the case of
periodic physiologic signals are:

� the limit-cycles of the Liénard systems, like those of the
van der Pol system, are asymptotically stable, unlike
those of the simple pendulum of Fourier transform,
which are asymptotically unstable because the simple

9. Overview of van der Pol equation in a biological models’ landscape. Interaction graph of these systems contains in general a couple of positive and

tive tangent circuits (called ‘‘regulons’’ in [22]).

Fig. 10. Interaction graph of cardiac (CM, CAC, S) and respiratory (E, I)
ems.
siologic signals comes also from the fact that cardiac syst
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pendulum is a conservative Hamiltonian system. In both
cases, these trajectories have algebraic approximations;
� the approximating system in the case of the Dynalet

transform explains the mechanism genesis of the signal;
for example, in the case of the heart, the van der Pol system
has the same interaction structure as the cardiac system;
� the trajectories of the Dynalets can break the rotation

symmetry of the simple pendulum, which makes them
more likely to approximate the asymmetrical biological
waves, like the relaxation waves.

9. Non-periodic protein spectrum signal

In addition to the compression of periodic signals,
another application of the Dynalet transform is the

compression of a non-periodic signal. If the mechanism
of signal generation is of Liénard type, for example a
relaxation in a magnetic field in case of NMR spectroscopy
[25] (giving signals of type T1 and T2, which are functions
of lifetime of a given energy state, hence of a relaxation
rate) or in an electric field in the case of mass spectro-
scopy [26] (giving signals of relaxation occurring by
fragmentation of a molecule, in order to produce ions of
lower masses), and even if the signal is a response in the
form of isolated peaks, it can approximated by the
Dynalet processing. If the peaks are very asymmetric
(Figs. 12 and 13), of relaxation type, it is possible to obtain
by periodization an approximate polynomial representa-
tion of any desired order in the space of the solutions to a
Liénard equation. A good example of this type of
application is given by the approximation of the spectrum

Fig. 11. (Color online.) a: Dynalet reconstruction of the pulse wave with a fundamental (F) and one harmonic (H1); b: original experimental pulse wave

recorded at the level of the dorsalis pedis artery; c: representation of a sequence of pulse waves in the phase plane (amplitude, velocity); d: original pulse

(red) and van der Pol (green) signal matching, after an abscissa translation of the origin of the xOy referential and extraction of the points of the base line; e:

second matching of the fundamental with a new van der Pol signal of triple period; f: coefficients of the Fourier transform with one harmonics; g: original

pulse wave (green) and Fourier reconstruction with one harmonic (blue).
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 protein, observable by NMR spectroscopy or by mass
ctrometry.

 Dynalet transform of a peak from a protein NMR
ctroscopy signal

By focusing on the peak indicated by a red arrow red on
 12, we will perform both the Dynalet transform (Fig. 14)

 the Fourier transform (Fig. 15). We recall that the level of
 mean square error (MSEX) and of the signal-to-noise ratio
RX) of these transforms is calculated from the formulas:

EX ¼
X

i¼1;K
Xi � jið Þ2=

X
i¼1;K

X2
i ;

X ¼ �10 log10MSEX ;

ich shows that the Dynalet transform fits better than
 Fourier transform for the X values with only one
monics (five coefficients for the Dynalet transform and
for the Fourier transform):

EX Fourier ¼ 0:0188; SNRX Fourier ¼ 11:8 dB
EX Dynalet ¼ 0:0038; SNRX Dynalet ¼ 18:8 dB

Following [27], the quality of the reconstitution of the
al can be qualified of low, but it is in general sufficient

performing an efficient surveillance of chronic diseases
h protein defects using e-health systems at home (i.e.,
ng a fusion of actimetric data with metabolic informa-

 fixing the gravity level of the disease as the
gressive entrance into complications):

 40 dB SNR = excellent signal;
5 dB to 40 dB SNR = very good signal;
5 dB to 25 dB SNR = low signal;

� 10 dB to 15 dB SNR = very low signal;
� 5 dB to 10 dB SNR = no signal.

The Fourier transform allows to obtain the reconstruc-
tion of a compressed signal XF(t) with one harmonic
(Fig. 15), equal to:

XF tð Þ ¼ 145150:1852 � 133273:71744 cos 2pt=34ð Þ

� 33520:19548 sin 4pt=34ð Þ

þ 24299:279 sin 2pt=34ð Þ

þ 14877:05422 cos 4pt=34ð Þ

One can see on Fig. 15 the quality of the reconstruction
of the original data (in green) by the one harmonic Fourier
transform (in blue).

11. Toward a protein ‘‘stethoscope’’

The identification of proteins by their spectrum allows
for example the construction of complex genetic control
networks, such as those found in the regulation of the
immune system [28–31], where key proteins are effectors
of the genetic expression (activators or inhibitors) and may
be subject to pathologic conditions, leading to up- or
down-expressions. These regulatory interactions lead to
abnormal protein or protein complexes concentrations in
excess or lacking, and spectroscopy peaks indicating these
pathologic defects can be treated by the Dynalet approach.
Of course, other alternative techniques for estimating
protein spectra already exist, like kernel functional
estimation tools [32–37], but there are not related to
the mechanism of production of the protein signal (Fig. 16).

12. (Color online.) a: Original protein NMR spectroscopy signal; b: extraction of a peak P0 called ‘‘proteosol’’ (because it sounds like a sol) allowing it to be

ted and processed by the Dynalet transform (red arrow). All the peaks (like P1) surrounding the ‘‘proteosol’’ peak P0 are also processed and can be heard.



Fig. 13. (Color online.) a: Original protein NMR spectroscopy signal; b: extraction of a peak P0 called ‘‘proteosol’’ (because it sounds like a sol) allowing it to

be isolated and processed by the Dynalet transform (red arrow). All the peaks (like P1) surrounding the ‘‘proteosol’’ peak P0 are also processed and can be

heard.

J. Demongeot et al. / C. R. Biologies 337 (2014) 609–624620
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The Dynalet transform applied to protein data can be
sidered as a real protein ‘‘stethoscope’’, which would

e sense to numerous metabolic data, which, although
y heavy in terms of information (about 5 Go per patient

 modern hospital), are in general not queried and used
clinicians (especially in emergency) and hence remain
he big patient centred data bases, often true cemeteries

 of unused data.

In the beginning of the 19th century, René Laennec
invented the modern stethoscope and described the
thoracic sounds in his Traité de l’auscultation médiate

(1819) [38], converting into a synthetic functional
information for the ear what physicians were previously
describing at numerous anatomic and physiologic levels
with their eyes, hence creating the modern medical
diagnosis based on the auscultation.

14. (Color online.) a: Original empirical protein signal of Fig. 12 (in red) matching the van der Pol limit-cycle (in dark green); b: first harmonic signal

ching the first harmonic of the van der Pol signal; c: fundamental temporal original signal (in red) matching the van der Pol signal (in green); d:

15. (Color online.) a: Fourier coefficients (fundamental and harmonic); b: reconstruction of the original data (in green) by the one harmonics Fourier
sform (in blue).
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We propose to follow the same methodology, by
representing the spectral information from NMR and
mass spectroscopy into signals converted into sounds
(for example, the signal reconstructed on Fig. 14 sounds
like a non-harmonic ‘‘sol’’ of the chromatic scale, for
which reason we have called it ‘‘proteosol’’), expecting
that this ‘‘protein melody’’, whose peaks (see supple-
mentary material to hear the peaks indicated on Fig. 13)
are well enhanced by the human ear at the cochlear level,
serve to differentiate pathologies from the normality and
remain in the memory of the clinicians (e.g., in the
context of a rapid medical decision in an emergency
service or of a discussion about a complex case in a cancer
staff) as quantitatively correlated and semantically
associated with precise metabolic diseases, in order to
compensate:

� the complexity of the interactions between proteins and
with their substrate and regulation molecules;
� the overflow of information provided by numerous

devices like NMR and mass spectroscopy.

12. Conclusion

Generalizing compression tools like Fourier or wavelets
transforms is possible, if we consider that non-symme-
trical biological signals are often produced by relaxation
mechanisms. In this case, we can propose for the
dynamical systems modelling these biological signals
Liénard-type differential equations, like the van der Pol
equation (or its ‘‘sister’’ equation, the FitzHugh–Nagumo
equation, Fig. 9) classically used to model relaxation waves
and, more generally, non-symmetrical biological relaxa-
tion systems often produced by mechanisms based on
interactions of regulon type (i.e., possessing at least one
couple of positive and negative tangent circuits inside their
Jacobian interaction graph [22]) [23,24].

The corresponding new transform, called the Dynalet
transform, has been built in the same spirit as the wavelet
transform [2–6,39] (used for example for representing
solutions to turbulent systems, like Burger’s equation
[40,41]), the Hanusse transform [42], or the methodology
proposed for estimating Tailored to the Problem Specificity

Fig. 16. (Color online.) a: Protein spectral data from mass spectrometry showing the response of a patient with cancer [32]; b: that of a normal patient [32];

c: the periodization of the spectrum signals and their transformation into an audible sound.
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(Thesis), University J. Fourier, Grenoble, France, 2013.

[17] G. Bub, L. Glass, A. Shrier, Coupling dependent wavefront stability in
heterogeneous cardiac cell cultures, Biophys. J. 84 (2003) 408a.

[18] http://wikimedia.org/wikipedia/commons/7/70/ECG_12derivations.
[19] D. Noble, A modification of the Hodgkin-Huxley equations applicable to

Purkinje fibre action and pacemaker potential, J. Physiol. 160 (1962)
317–352.

[20] R.E. McAllister, D. Noble, R.W. Tsien, Reconstruction of the electrical
activity of cardiac Purkinje fibres, J. Physiol. 251 (1975) 1–59.

[21] F.H. Fenton, E.M. Cherry, Models of cardiac cell, Scholarpedia 3 (2008)
1868.

[22] J. Demongeot, J. Aracena, F. Thuderoz, T.P. Baum, O. Cohen, Genetic
regulation networks: circuits, regulons and attractors, C. R. Biologies
326 (2003) 171–188.

[23] B. van der Pol, J. van der Mark, Le battement du cœur considéré comme
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