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A B S T R A C T

Target identification aims at identifying biomolecules whose function should be therapeu-

tically altered to cure the considered pathology. An algorithm for in silico target identification

using Boolean network attractors is proposed. It assumes that attractors correspond to

phenotypes produced by the modeled biological network. It identifies target combinations

which allow disturbed networks to avoid attractors associated with pathological phenotypes.

The algorithm is tested on a Boolean model of the mammalian cell cycle and its applications

are illustrated on a Boolean model of Fanconi anemia. Results show that the algorithm returns

target combinations able to remove attractors associated with pathological phenotypes and

then succeeds in performing the proposed in silico target identification. However, as with any

in silico evidence, there is a bridge to cross between theory and practice. Nevertheless, it is

expected that the algorithm is of interest for target identification.

� 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

L’identification de cibles vise à identifier des biomolécules dont la fonction devrait être

altérée pour guérir la pathologie considérée. Un algorithme pour l’identification in silico de

cibles au moyen des attracteurs des réseaux booléens est proposé. Il suppose que les

attracteurs correspondent aux phénotypes produits par le réseau biologique modélisé. Il

identifie des combinaisons de cibles qui permettent aux réseaux perturbés d’éviter les

attracteurs associés aux phénotypes pathologiques. L’algorithme est testé sur un modèle

booléen du cycle cellulaire, et ses applications sont illustrées sur un modèle booléen de

l’anémie de Fanconi. Les résultats montrent que l’algorithme retourne des combinaisons

de cibles capables de supprimer les attracteurs associés aux phénotypes pathologiques et

donc réussit l’identification in silico de cibles proposée. En revanche, comme tout résultat

in silico, il y a un pont à franchir entre théorie et pratique. Cependant, il est escompté que

l’algorithme présente un intérêt pour l’identification de cibles.

� 2014 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Drug discovery, as its name indicates, aims at discover-
ing new drugs against diseases. This process can be
segmented into three steps: i) disease model provision,
where experimental models are developed, ii) target
identification, where therapeutic targets are proposed,
and iii) target validation, where the proposed therapeutic
targets are assessed. The present work focuses on the
second step of drug discovery: target identification [1,2].

Given an organism suffering from a disease, target
identification aims at finding where to act among its
multitude of biomolecules in order to alleviate, or
ultimately cure, the physiological consequences of the
disease. These biomolecules on which perturbations
should be applied are called targets and are targeted by
drugs [3]. This raises two questions: which target should
be therapeutically perturbed and what type of perturba-
tion should be applied. Broadly, the functional perturba-
tion of a target by a drug can be either activating or
inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of,
biomolecules for activation or inactivation. Knowing that
targeting several biomolecules is potentially more effec-
tive [4], the number of possibilities is consequently huge.
This rather brute-force screening can be refined with
knowledge about the pathophysiology by identifying
potential targets based on the role they play in it [5]. Even
with this knowledge, experimentally assessing the
selected potential targets in vitro or in vivo is far from
straightforward. Such experiments are costly in time and
resources and exhibit a high risk of failure [6]. Fortunately,
in silico experiments appear as valuable tools in improving
the efficiency of therapeutic research [7] since they are less
costly in time and resources than the traditional in vitro

and in vivo ones. However, the stumbling block of in silico

experiments is that they are built from the available
knowledge: not all is known about everything.

Nevertheless, an impressive and ever increasing
amount of biological knowledge is already available in
the scientific literature, databases and knowledge bases
such as, to name a few, DrugBank [8], KEGG [9], PharmGKB
[10], Reactome [11] and TTD [12]. In addition to the
complexity of integrating an increasing body of knowledge
comes the inherent complexity of biological systems
themselves [13]: this is where computational tools can
help [14]. The interplay between experimental and
computational biology is synergistic rather than compe-
titive [15]. Since in vitro and in vivo experiments produce
factual results, they are trustworthy sources of knowledge.
Once these factual pieces of knowledge are obtained,
computational tools can help to integrate them and infer
new ones. This computationally obtained knowledge can
be subsequently used to direct further in vitro or in vivo

experiments, hence mutually potentiating the whole.
The goal of the present work is to propose a

computational methodology implemented in an algorithm
for target identification using Boolean network attractors.
It assumes that Boolean network attractors correspond to
phenotypes produced by the modeled biological network,
an assumption successfully applied in several works

[16–21] to cite a few. Assuming that a phenotype is an
observable and hence a relatively stable state of a
biological system and assuming that the state of a
biological system results from its dynamics, a phenotype
is likely to correspond to an attractor. This assumption can
be stated for any dynamical model but, in the present
work, only Boolean networks are considered. Reasons are
that, in their most basic form, Boolean networks do not
require parameter values [22] and that parameter values
are not straightforward to estimate due to experimental
limitations, particularly at the subcellular scale, the scale
where drugs interact with their targets. Moreover, since
synchronous Boolean networks are easier to compute than
asynchronous ones [23], only synchronous Boolean net-
works are considered. This does not exclude the possibility,
at a later stage, to extend the algorithm for both
synchronous and asynchronous updating schemes.

For a biological network involved in a disease, two
possible variants are considered: the physiological variant,
exhibited by healthy organisms, which produces physio-
logical phenotypes, and the pathological variant, exhibited
by ill organisms, which produces pathological phenotypes
or which fails to produce physiological ones. A physiolo-
gical phenotype does not impair life quantity/quality while
a pathological phenotype does. It should be noted that the
loss of a physiological phenotype is also a pathological
condition. The physiological and pathological variants
differ in that the latter results from the occurrence of some
alterations known to be responsible for disorders. With a
pathological variant, there are two non-exclusive patho-
logical scenarios: pathological phenotypes are gained or
physiological phenotypes are lost.

The primary goal of the proposed algorithm is to
identify, in a pathological variant, target combinations
together with the perturbations to apply on them, here
called bullets, which render it unable to exhibit patholo-
gical phenotypes. The secondary goal is to classify the
obtained bullets according to their ability at rendering the
pathological variant able to exhibit previously lost
physiological phenotypes, if any.

2. Methods

This section briefly introduces some basic principles,
namely biological networks [24,25] and Boolean networks
[26], defines some concepts and then describes the
proposed algorithm. An example network to illustrate it
plus a case study to illustrate its intended applications are
also described. Finally, some details about implementation
and code availability are mentioned.

2.1. Basic principles

2.1.1. Biological networks

A network can be seen as a digraph G = (V, E) where
V ¼ fv1; . . . ; vng is the set of cardinality n containing
exactly all the nodes vi of the network and where E ¼
fðvi;1; v j;1Þ; . . . ; ðvi;m; v j;mÞg � V2 is the set of cardinality m

containing exactly all the edges ðvi; v jÞ of the network
[27,28]. In practice, nodes represent entities and edges
represent binary relations R � V2 involving them:
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 v j. For example, in gene regulatory networks, nodes
resent gene products and edges represent gene
ression modulations [29].

2. Boolean networks

A Boolean network is a network where nodes are
lean variables xi and where edges (xi, xj) represent the
ary is input of relation: xi is input of xj. Each xi has bi2 v 0,
nputs xi;1; . . . ; xi;bi

. The variables which are not inputs of
ave no direct influence on it. If bi = 0 then xi is a

ameter and does not depend on other variables. At each
ation k2 v k0, kend b of the simulation, the value xi(k) 2 {0,
f each xi is updated to the value xi(k + 1) using a Boolean
ction fi and the values xi;1ðkÞ; . . . ; xi;bi

ðkÞ of its inputs, as
he following pseudocode:

for k2 v k0, kend� 1 b do

x1ðk þ 1Þ ¼ f 1ðx1;1ðkÞ; . . . ; x1;b1
ðkÞÞ

. . .

xnðk þ 1Þ ¼ f nðxn;1ðkÞ; . . . ; xn;bn ðkÞÞ
end for

which can be written in a more concise form:

for k2 v k0, kend� 1 b do

x(k + 1) = f(x(k))

end for

where f = (f1,. . .,fn) is the Boolean transition function
 x = (x1,. . .,xn) is the state vector. In the present work,
is assumed that k0 = 1. The value x(k) = (x1(k),. . .,
)) 2 {0, 1}n of x at k belongs to the state space S = {0,
which is the set of cardinality 2n containing exactly all

 possible states. If the values of all the xi are updated
ultaneously at each k then the network is synchronous,
erwise it is asynchronous. With synchronous Boolean
works, x(k) has a unique possible successor x(k + 1):
chronous Boolean networks are deterministic.
In the particular case where k = k0, x(k0) = x0 is the initial
e and, in deterministic dynamical systems, determines
irely the trajectory w ¼ ðxðk0Þ; . . . ; xðkendÞÞ. Since it is
umed that k0 = 1, w is a sequence of length kend resulting

 the iterative computation of x(k) from k0 to kend. This
ative computation can be seen as the discretization of a
e interval: Boolean networks are discrete dynamical
tems as they simulate discretely the time course of the
e vector.

The set A = {a1,. . .,ap} of cardinality p containing exactly
the attractors ai is called the attractor set. Due to the
erminism of synchronous Boolean networks, all the
actors are cycles. A cycle is a sequence (x1,. . .,xq) of

gth q such that 8j 2 v1, q b , xj+1 = f(xj) and xq+1 = x1: once
 system reaches a state xj belonging to a cycle, it
cessively visits its states xj+1,. . .,xq, x1,. . .,xj for infinity.
he particular case where q = 1, the cycle is called a point

which ai can be reached is called its basin of attraction.
With deterministic dynamical systems, the family of sets
(B1,. . .,Bp) constitutes a partition of S.

2.2. Definitions

Some concepts used in the present work should be
formally defined.

physiological

phenotype

A phenotype which does not impair life

quantity/quality of the organism which

exhibits it.

pathological

phenotype

A phenotype which impairs life quantity/

quality of the organism which exhibits it.

variant

(of a

biological

network)

Given a biological network of interest, a

variant of it is one of its versions, namely

the network plus eventually some mod-

ifications. It should be noted that this does

not exclude the possibility that a variant

can be the network of interest as is.

physiological

variant

A variant which produces only physiologi-

cal phenotypes. It is the biological network

of interest as it should be, namely the one

of healthy organisms.

pathological

variant

A variant which produces at least one

pathological phenotype. It is a dysfunction-

al version of the biological network of

interest, namely a version found in ill

organisms.

physiological

attractor set

The attractor set Aphysio of the physiological

variant.

pathological

attractor

set

The attractor set Apatho of the pathological

variant.

physiological

Boolean

transition

function

The Boolean transition function fphysio of

the physiological variant.

pathological

Boolean

transition

function

The Boolean transition function fpatho of the

pathological variant.

run An iterative computation of x(k) starting

from an x0 until an ai is reached. It returns

w ¼ ðxðk0Þ; . . . ; xðkendÞÞ where kend depends

on when ai is reached and hence on x0.

physiological

attractor

An ai such that ai 2 Aphysio.

pathological

attractor

An ai such that ai =2 Aphysio.

modality The functional perturbation modai applied

on a node v j 2 V of the network, either

activating (modai = 1) or inactivating

(modai = 0): at each k, modai overwrites

f (x(k)) and hence x (k + 1) = moda .

actor. The set Bi� S containing exactly all the x 2 S from
j j i
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target A node targi 2 V of the network on which a

modai is applied.

bullet A couple (ctarg, cmoda) where ctarg = (targ1,

. . ., targr) is a combination without repeti-

tion of targi and where cmoda = (moda1, . . .,

modar) is an arrangement with repetition of

modai, r2 v1, n b being the number of targets

in the bullet. Here, modai is intended to be

applied on targi.

therapeutic

bullet

A bullet which makes Apatho� Aphysio.

silver bullet A therapeutic bullet which makes Apatho -

z Aphysio.

golden bullet A therapeutic bullet which makes

Apatho = Aphysio.

The assumed link between phenotypes and attractors is
the reason why attractors are qualified as either physio-
logical or pathological according to the phenotype they
produce. This is also the reason why, in the present work,
target identification aims at manipulating attractor sets of
pathological variants.

2.3. Steps of the algorithm

The algorithm has two goals: i) finding therapeutic
bullets and ii) classifying them as either golden or silver. A
therapeutic bullet makes the pathological variant unable at
reaching pathological attractors, that is Apatho� Aphysio. If
such a bullet is applied on a pathological variant, the
organism bearing it no longer exhibits the associated
pathological phenotypes. However, a therapeutic bullet
does not necessarily preserve/restore the physiological
attractors. If a therapeutic bullet preserves/restores the
physiological attractors, namely if Apatho = Aphysio, then it is
a golden one but if Apatho z Aphysio then it is a silver one.

Given a physiological and a pathological variant, that is
fphysio and fpatho, the algorithm follows five steps:

1. with fphysio it computes the control attractor set Aphysio

2. it generates bullets and, for each of them, it performs the
three following steps

3. with fpatho plus the bullet, it computes the variant
attractor set Apatho

4. it assesses the therapeutic potential of the bullet by
comparing Aphysio and Apatho to detect pathological
attractors

5. if the bullet is therapeutic then it is classified as either
golden or silver by comparing Aphysio and Apatho for
equality.

These steps can be written in pseudocode as:

1 with fphysio compute Aphysio

2 generate bullet _ set

3 for bullet 2 bullet _ set do

4 with fpatho plus bullet compute Apatho

6 bullet is therapeutic

7 if Apatho = Aphysio then

8 bullet is golden

9 else

10 bullet is silver

11 end if

12 end if

13 end for

The algorithm is described step by step but can be found as
one block of pseudocode in Appendix A.

2.3.1. Step 1: computing Aphysio

First of all, Aphysio has to be computed since it is the
control and, as such, determines what is pathological. To
do so, runs are performed with fphysio and the reached ai

are stored in Aphysio. However, x0 2 S and card S increases
exponentially with n. Even for reasonable values of n,
card S explodes: more than 1 000 000 possible x0 for
n = 20. One solution ensuring that all the ai are reached is
to start a run from each of the possible x0, that is from
each of the x 2 S. Practically, this is unfeasible for an
arbitrary value of n since the required computational
resources can be too demanding. For example, assuming
that a run requires 1 millisecond and that n = 50,
performing a run from each of the 250 x 2 S requires
nearly 36 000 years.

Given that with deterministic dynamical systems
(B1,. . .,Bp) is a partition of S, a solution is to select a subset
D � S of a reasonable cardinality containing the x0 to start
from. In the present work, D is selected randomly from a
uniform distribution. The stumbling block of this solution
is that it does not ensure that at least one x0 per Bi is
selected and then does not ensure that all the ai are
reached. This stumbling block holds only if card D < card S.

Again given that synchronous Boolean networks are
deterministic, if a run visits a state already visited in a
previous run then its destination, that is the reached
attractor, is already found. If so, the run can be stopped and
the algorithm can jump to the next one. To implement this,
previous trajectories are stored in a set H, the history, and
at each k the algorithm checks if 9 w 2 H : xðkÞ 2 w. If this
check is positive then the algorithm jumps to the next run.

Since, with deterministic dynamical systems, attractors
are cycles, the algorithm checks at each k if x(k + 1) is an
already visited state of the current run, namely if 9k0 2 v1,
k b : x(k + 1) = x(k0). If this check is positive then ai = (x(k0),
. . .,x(k)).

This step can be written in pseudocode as:

1 prompt card D

2 card D = min(card D, 2n)

3 generate D � S

4 H = {}

5 Aphysio = {}

6 for x0 2 D do
5 if Apatho� Aphysio then 7 
k = 1
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x(k) = x0

while true do

if 9 w 2 H : xðkÞ 2 w then

break

end if

x(k + 1) = fphysio(x(k))

if 9k0 2 v1, k b : x(k + 1) = x(k0) then

Aphysio = Aphysio [ {(x(k0),. . .,x(k))}

break

end if

k = k + 1

end while

H = H [ {(x(1),. . .,x(k))}

end for

return Aphysio

do step 2

e 2 catches the mistake card D > card S.
It should be noted that the purpose of the present work
ot to propose an algorithm for finding Boolean network
actors since advanced algorithms for such tasks are
ady published [30,31]. The purpose is to introduce a

thodology exploiting Boolean network attractors for
et identification, a methodology which requires de

o these attractors to be found.

2. Step 2: generating bullets

Bullets are candidate perturbations to apply on the
hological variant to make it unable at reaching
hological attractors and hence unable at producing
hological phenotypes. Generating a bullet requires a
ice of targi 2 V and associated modai 2 {0, 1}. In the
sent work, there is no time sequencing in target
agement nor in modality application. This means that,

en a bullet and during a run, all the targi are engaged
ultaneously and constantly and the modai do not
nge. As a consequence, for a given bullet, choosing the
e targi more than once is senseless, while it is possible
choose the same modai for more than one

i. Therefore, a bullet is a combination ctarg without
etition of targi together with an arrangement cmoda with
etition of modai.
If bullets containing r targets have to be generated
n there are n !/(r ! � (n � r) !) possible ctarg and, for
h of them, there are 2r possible cmoda. This raises the
e difficulty than with state space explosion since

re are (n ! �2r)/(r ! � (n � r) !) possible bullets. For
mple, with n = 50 and r = 3, there are more than

 000 possible bullets. Knowing that the algorithm,
explained below, computes one attractor set per
let, the computation time becomes practically unfea-
le.
To overcome this barrier, the algorithm asks for r as
interval vrmin, rmaxb, asks for a maximum number
xtarg of ctarg to generate and asks for a maximum

ber maxmoda of cmoda to test for each ctarg. The

algorithm then generates a set Ctarg of ctarg with
card Ctarg � maxtarg by randomly selecting, from a uni-
form distribution and without repetition, nodes in the
network. In the same way, the algorithm generates a set
Cmoda of cmoda with card Cmoda � maxmoda by randomly
choosing, from a uniform distribution and with repeti-
tion, modalities as either activating (= 1) or inactivating
(= 0).

The result is the bullets: per r2 v rmin, rmax b, a Ctarg

together with a Cmoda. As with state space explosion, the
stumbling block of this method is that it does not ensure
that all the possible ctarg together with all the possible
cmoda are tested. This stumbling block holds only if
maxtarg < n!=ðr! � ðn � rÞ!Þ or maxmoda < 2r .

This step can be written in pseudocode as:

1 prompt rmin; rmax; maxtarg; maxmoda

2 rmax = min(rmax, n)

3 golden _ set = {}

4 silver _ set = {}

5 for r2 v rmin, rmax b do

6 maxr
targ ¼ minðmaxtarg; n!=ðr! � ðn � rÞ!ÞÞ

7 maxr
moda ¼ minðmaxmoda; 2rÞ

8 Ctarg = {}

9 Cmoda = {}

10 while card Ctarg < maxr
targ do

11 generate ctarg =2 Ctarg

12 Ctarg = Ctarg [ {ctarg}

13 end while

14 while card Cmoda < maxr
moda do

15 generate cmoda =2 Cmoda

16 Cmoda = Cmoda [ {cmoda}

17 end while

18 do steps 3 to 5

19 end for

20 return golden _ set, silver _ set

Line 2 catches the mistake r > n. Lines 3 and 4 create sets in
which therapeutic bullets found in step 4 are classified as
either golden or silver in step 5. Lines 6 and 7 catch the
mistake where maxtarg or maxmoda is greater than its
maximum, which depends on r, hence the creation of
maxr

targ and maxr
moda to preserve the initially supplied

value. Lines 11 and 15 ensure that only new ctarg and cmoda

are generated.

2.3.3. Step 3: computing Apatho

Having the control attractor set Aphysio and a bullet
(ctarg, cmoda) 2 Ctarg� Cmoda, the algorithm computes the
variant attractor set Apatho under the bullet by almost the
same way Aphysio is computed in step 1. However, fpatho is
used instead of fphysio and the bullet is applied: at each k,
fj(x(k)) is overwritten by modai 2 cmoda, that is xj(k + 1) =
modai, provided that v j ¼ targi 2 ctarg.
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In order to apply all the generated bullets, the algorithm
uses two nested for loops. For each ctarg 2 Ctarg it uses
successively all the cmoda2 Cmoda. For each (ctarg, cmoda), the
algorithm computes the corresponding Apatho and does
steps 4 and 5.

This step can be written in pseudocode as:

1 for ctarg 2 Ctarg do

2 for cmoda 2 Cmoda do

3 H = {}

4 Apatho = {}

5 for x0 2 D do

6 k = 1

7 x(k) = x0

8 while true do

9 if 9 w 2 H : xðkÞ 2 w then

10 break

11 end if

12 x(k + 1) = fpatho(x(k))

13 for targi 2 ctarg do

14 for v j 2 V do

15 if v j ¼ targi then

16 xj(k + 1) = modai

17 end if

18 end for

19 end for

20 if 9k0 2 v1, k b : x(k + 1) = x(k0) then

21 Apatho = Apatho [ {(x(k0), . . ., x(k))}

22 break

23 end if

24 k = k + 1

25 end while

26 H = H [ {(x(1), . . ., x(k))}

27 end for

28 do step 4 and 5

29 end for

30 end for

Lines 13–19 are where bullets are applied.

2.3.4. Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated
ones, for each (ctarg, cmoda) tested in step 3 and once the
corresponding Apatho is obtained, the algorithm compares
it with Aphysio to check if Apatho� Aphysio. This check
ensures that, under the bullet, all the pathological
attractors are removed and if new attractors appear then
they are physiological ones. If this check is positive, then
the bullet is therapeutic and the algorithm pursues with
step 5.

This step can be written in pseudocode as:

1 if Apatho� Aphysio then

2 do step 5

3 end if

2.3.5. Step 5: assessing therapeutic bullets

Therapeutic bullets are qualified as either golden or
silver according to their ability at making the pathological
variant reaching the physiological attractors. All thera-
peutic bullets, being golden or silver, remove the
pathological attractors without creating new ones, that
is Apatho� Aphysio. However, this does not imply that
therapeutic bullets preserve/restore the physiological
attractors. A golden bullet preserves/restores the physio-
logical attractors: Apatho = Aphysio while a silver bullet does
not: Apatho z Aphysio.

In this setting, golden bullets are perfect therapies
while silver bullets are not. However, since precious things
are rare and just as gold is rarer than silver, finding golden
bullets is less likely than finding silver ones. Indeed, given
that more constraints are required for a therapeutic bullet
to be a golden one, it is more likely that the found
therapeutic bullets are silver ones, except in one case:
card Aphysio = 1.

Theorem 1. If card Aphysio = 1 then all therapeutic bullets are

golden.

Proof.

ðtherapeutic bulletÞ ) ðApatho� AphysioÞ (1)

ð1Þ ) ðApatho 2 PðAphysioÞÞ (2)

ðcard Aphysio ¼ 1Þ ) ðAphysio ¼ fagÞ (3)

ð3Þ ) ðPðAphysioÞ ¼ f;; faggÞ (4)

ðð2Þ ^ ð4ÞÞ ) ððApatho ¼ fagÞ _ ðApatho ¼ ;ÞÞ (5)

ðdeterministic dynamical systemsÞ ) ðA 6¼ ;Þ (6)

ð6Þ ) ðApatho 6¼ ;Þ (7)

ðð5Þ ^ ð7ÞÞ ) ðApatho ¼ fagÞ (8)

ðð3Þ ^ ð8ÞÞ ) ðApatho ¼ AphysioÞ (9)

ð9Þ ) ðtherapeutic bullet is goldenÞ (10)

&

Practically, in the present setting, an organism bearing a
pathological variant treated with a therapeutic bullet no
longer exhibits the associated pathological phenotypes.
Moreover, if the therapeutic bullet is golden then the
organism exhibits the same phenotypes than its healthy
counterpart. However, if the therapeutic bullet is silver
then the organism fails to exhibit at least one physiological
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notype. With a silver bullet this is a matter of choice:
at is the less detrimental between a silver bullet and no
rapeutic bullet at all.
This step can be written in pseudocode as:

if Apatho = Aphysio then

golden _ set = golden _ set [ {(ctarg, cmoda)}

else

silver _ set = silver _ set [ {(ctarg, cmoda)}

end if

 Example network

To illustrate the algorithm, it is used on a Boolean model
the mammalian cell cycle published by Faure et al.

]. This model is chosen for several reasons: i)
chronous updating is performed: to date, the algorithm
uses on synchronous Boolean networks, ii) a mamma-

 biological system is modeled: the closer to human
siology the model is, the better it illustrates the
nded applications, iii) the cell cycle is a at the heart of
cer: this gives relevancy to the example network, iv)

 network comprises ten nodes: easily computable in
 of its state space and v) attractors are already
puted: useful to validate the algorithm in finding

m.
Below are the Boolean functions of the example
work where, for the sake of readability, xi stands for
) and xi+ stands for xi(k + 1).

raphical representation of the example network is
wn in Fig. 1.
Having the example network, two variants of it
 needed: the physiological one and the pathological
. The physiological variant is the network as is
ile the pathological variant is the network plus
onstitutive activation/inactivation of at least one of
nodes. For simplicity, and given the relatively small

ber of entities, only one is chosen: the retinoblas-
a protein Rb, for which a constitutive inactivation is
lied. To implement this, the corresponding fi

omes:

Rbðk þ 1Þ ¼ 0

in fpatho. Rb is chosen because its inactivation occurs in
many cancers [32]. As a consequence, a network bearing a
constitutive inactivation of it should be a relevant example
of a pathological variant.

2.5. Case study

To illustrate the intended usage of the proposed
methodology, the algorithm is used on a Boolean model
of the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway
published by Rodriguez et al. [33]. This model is chosen for
several reasons: i) two pathological conditions are studied:
required for a case study of an in silico target identification,
ii) the physiological and pathological variants are clearly
described: required by the algorithm iii) it is nearly three
times bigger than the example network: representative of
a more comprehensive biological model while remaining
computationally tractable, iv) synchronous updating is
used: to date, the algorithm focuses on synchronous
Boolean networks and v) attractors are already interpreted
in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair and
more precisely to interstrand cross-links (ICLs) removal. As
expected with any DNA repair impairment, individuals
suffering from FA/BRCA pathway malfunction are sub-
jected to increased risk of cancer, such as in Fanconi
anemia, a rare genetic disorder causing bone marrow
failure, congenital abnormalities and increased risk of
cancer [34–36].

Rodriguez et al. propose a Boolean model comprising
the FA/BRCA pathway and three types of DNA damages
commonly observed in Fanconi anemia, namely ICLs,
double-strand breaks (DSBs) and DNA adducts (ADDs).
DSBs and ADDs can be created during ICLs repair before
being removed, therefore leaving an undamaged DNA
ready for the cell cycle. For a complete description of the
model, please see [33]. The Boolean functions can be found
in Appendix B.

The physiological variant is the FA/BRCA pathway
model as is. To it, Rodriguez et al. propose two pathological
variants, here called patho1 and patho2, modeling two

Dþ ¼ CycD

¼ ð : CycD ^ : CycE ^ : CycA ^ : CycBÞ _ ð p27 ^ : CycD ^ : CycBÞ
þ ¼ ð : Rb ^ : CycA ^ : CycBÞ _ ð p27 ^ : Rb ^ : CycBÞ
Eþ ¼ E2F ^ : Rb

Aþ ¼ ðE2F ^ : Rb ^ : Cdc20 ^ : ðCdh1 ^ UbcH10ÞÞ _ ðCycA ^ : Rb ^ : Cdc20 ^ : ðCdh1 ^ UbcH10ÞÞ
7þ ¼ ð : CycD ^ : CycE ^ : CycA ^ : CycBÞ _ ð p27 ^ : ðCycE ^ CycAÞ ^ : CycB ^ : CycDÞ
20þ ¼ CycB

1þ ¼ ð : CycA ^ : CycBÞ _ Cdc20 _ ð p27 ^ : CycBÞ
cH10þ ¼ : Cdh1 _ ðCdh1 ^ UbcH10 ^ ðCdc20 _ CycA _ CycBÞÞ
Bþ ¼ : Cdc20 ^ : Cdh1
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mutations involving genes of the FA/BRCA pathway. These
mutations are observed in patients suffering from Fanconi
anemia [37]. The first one involves the FANCA gene,
corresponding to the FAcore variable, and the second one
involves the FANCD1/BRCA2 or FANCN/PALB2 gene,
corresponding to the FANCD1N variable. These mutations
are of loss-of-function kind: to simulate them the
corresponding fi becomes

FAcoreðk þ 1Þ ¼ 0

for FANCA gene null mutation in fpatho1 and

FANCD1Nðk þ 1Þ ¼ 0

for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in

2.6. Implementation

The algorithm is implemented in Fortran 95 compiled
with GFortran.1 The code is available on GitHub2 at https://
github.com/arnaudporet/kali-targ under a BSD 3-Clause
License.3

3. Results

This section exposes results produced with the algo-
rithm on the example network to illustrate how it works.

Fig. 1. Graphical representation of the example network adapted from [18]. CDKs (cyclin-dependent kinases) are the catalytic partners of cyclins and, in this

model, are not explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins. Furthermore, inhibition of E2F by Rb is modeled

by opposing Rb to the effects of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a complete description of the model, please see

[18]. CycD: CDK4/6-cyclin D complex, input of the model, initiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin E

complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription

factors divided into activator and repressor members, in this model E2F represents activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC

(Anaphase Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.

1 https://www.gnu.org/software/gcc/fortran/
2 https://github.com/
3 https://raw.githubusercontent.com/arnaudporet/kali-targ/master/
BSD_3-Clause
fpatho2.

http://github.com/arnaudporet/kali-targ
http://github.com/arnaudporet/kali-targ
http://www.gnu.org/software/gcc/fortran/
http://github.com/
http://raw.githubusercontent.com/arnaudporet/kali-targ/master/BSD_3-Clause
http://raw.githubusercontent.com/arnaudporet/kali-targ/master/BSD_3-Clause
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t, results produced with the algorithm on the case
dy are exposed to illustrate its intended applications in
et identification.

 Results of step 1

Owing to the relatively small size of the example
work, card D is set to card S = 1024. Since card D = card S,
the attractors are found. The algorithm returns the
owing attractors:

CycD 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0

E2F 0 1 1 1 0 0 0

CycE 0 0 1 1 1 0 0

CycA 0 0 0 1 1 1 1

p27 0 0 0 0 0 0 0

Cdc20 1 0 0 0 0 0 1

Cdh1 1 1 1 1 0 0 0

UbcH10 1 1 0 0 0 1 1

CycB 0 0 0 0 0 1 1

a2 ¼

CycD 0

Rb 1

E2F 0

CycE 0

CycA 0

p27 1

Cdc20 0

Cdh1 1

UbcH10 0

CycB 0

h of them attracting 50% of the x 2 S under fphysio.
Attractors are presented as matrices where, for an
actor of length q, lines correspond to the xi(k), k2 v1, q b

 columns to x(k). Aphysio = {a1, a2}, which corresponds to
ults obtained by Faure et al.. By the way, a1 and a2 are

 two physiological attractors. In terms of phenotypes, a1

responds to the cell cycle while a2 corresponds to
escence.

 Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only
rapeutic bullets found in step 4 and classified in step
e returned. The algorithm is launched with rmin = 1 and

x = 2. Again due to the relatively small size of the
mple network, maxtarg and maxmoda are set to their
ximum, namely maxtarg ¼ 45 and maxmoda ¼ 4. As a
sequence, all the possible bullets made of 1 to 2 targets

 tested. The algorithm returns the following therapeutic
lets:

þCycD silver

þCycD � p27 silver

�CycD þRb silver

þCycD �Rb silver

ere + means therapeutic activation and � therapeutic
ctivation. It should be noted that no golden bullets are
nd, an unsurprising result since they are rarer than
er ones. Given these results, the therapeutic activa-

 of Rb alone, which is pathologically inactivated, is
 enough to remove the pathological attractors: as
n in the third bullet, the therapeutic activation of Rb

st be accompanied by the therapeutic inactivation of
D.

To better illustrate what is performed to obtain these
therapeutic bullets, below is Apatho without any bullet:

a3 ¼

CycD 0 0 0 0 0 0 0 0

Rb 0 0 0 0 0 0 0 0

E2F 1 1 1 1 0 0 0 0

CycE 0 1 1 1 1 0 0 0

CycA 0 0 1 1 1 1 1 0

p27 1 1 1 0 0 0 0 0

Cdc20 0 0 0 0 0 0 1 1

Cdh1 1 1 1 1 0 0 0 1

UbcH10 1 0 0 0 0 1 1 1

CycB 0 0 0 0 0 1 1 0

a4 ¼

CycD 1 1 1 1 1 1 1

Rb 0 0 0 0 0 0 0

E2F 1 1 1 0 0 0 0

CycE 0 1 1 1 0 0 0

CycA 0 0 1 1 1 1 0

p27 0 0 0 0 0 0 0

Cdc20 0 0 0 0 0 1 1

Cdh1 1 1 1 0 0 0 1

UbcH10 1 0 0 0 1 1 1

CycB 0 0 0 0 1 1 0

each of these two attractors attracting 50% of the x 2 S

under fpatho.
It should be noted that a4 = a1 2 Aphysio: a4 is a

physiological attractor. It is possible that the pathological
variant produces physiological attractors: Apatho is not the
set containing exactly all the pathological attractors, it is
the attractor set of the pathological variant. As a
consequence, Aphysio\ Apatho 6¼ ; is possible. However,
a3 =2 Aphysio: it is a pathological attractor and is what a
therapeutic bullet, being golden or silver, is intended to
avoid.

Again to better illustrate what is performed to obtain
these therapeutic bullets, below is Apatho under the third
bullet:

CycD 0

Rb 1

E2F 0

CycE 0

CycA 0

p27 1

Cdc20 0

Cdh1 1

UbcH10 0

CycB 0

which is a2. As expected for a therapeutic bullet, the
pathological attractor a3 is removed. However, the
physiological attractor a1 is not restored: the third bullet
is silver. Consequently, with this bullet no cell cycle occurs
and the only reachable phenotype is quiescence. While
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disabling the cell cycle of cancer cells is beneficial, what
about disabling the cell cycle of healthy cells. As mentioned
above, with silver bullets this is a matter of choice.

3.3. Results on the case study

With the case study, card S = 228 = 268 435 456: com-
puting attractors from all the x 2 S becomes too demand-
ing. Indeed, it should be recalled that the algorithm
computes one attractor set per bullet, namely Apatho under
the tested bullet. As a consequence, card D is set to a more
reasonable value: card D = 10 000. Despite that
card D < card S, it seems sufficient for the algorithm to
find all the attractors, just as Rodriguez et al. whose
computation covers the whole state space. Below are the
computed attractors:

� Aphysio = {a1}
� Apatho1 = {a1}
� Apatho2 = {a1, a2}, a1 and a2 attracting respectively 29.5%

and 70.5% of the x 2 D under fpatho2

and their biological interpretation:

� a1: cell cycle progression
� a2: cell cycle arrest

A detailed expression of these attractors can be found in
Appendix C.

In physiological conditions, in case of damaged DNA,
cells repair it before performing the cell cycle, or die if
repair fails. Such checkpoints enable cells to ensure
genomic integrity by preventing damaged DNA to be
replicated and then propagated [38,39]. Otherwise, genetic
instability may appear, potentially leading to cancer
[40]. The results show that the physiological variant is
able to ensure genomic integrity since its unique attractor
is a1, where ICL = DSB = ADD = 0: DNA damages are
repaired, if any, and the cell cycle can safely occur.
Interestingly, the same physiological phenotype is com-
puted for patho1 where Apatho1 = Aphysio. This suggests that
cells bearing FANCA gene null mutation are nonetheless
able to repair DNA.

With patho2, a pathological attractor appears: a2,
where DSB = 1. This suggests that cells bearing FANCD1/
BRCA2 or FANCN/PALB2 gene null mutation are unable to
repair DSBs, explaining why a2 corresponds to cell cycle
arrest: DNA remains damaged. It should be noted that
a1 2 Apatho2, suggesting that from certain x0, that is under
certain conditions, such cells could be able to repair DNA.
However, a1 attracts only 29.5% of the x 2 D under fpatho2,
indicating that the pathological phenotype associated
with a2 is more likely to occur.

Altogether, according to computed attractors and their
phenotypic interpretation, and limited to the scope studied
by the model of Rodriguez et al., FANCA gene null mutation
may not induce pathological phenotypes. However, with
FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, two
phenotypes are predicted: a physiological one and a
pathological one, the latter being the most likely to be

on patho2 to find bullets able to remove the pathological
attractor a2.

By comprehensively testing all bullets made of 1 to
3 targets, the algorithm returns the following results:

number of
all possible
bullets

number of
therapeutic
bullets

r = 1 56 1 (1.786%)

r = 2 1 512 20 (1.323%)

r = 3 26 208 191 (0.729%)

all therapeutic bullets being golden since card Aphysio = 1
(see Theorem 1). A list of the computed therapeutic bullets
can be found in Appendix D. Given that in a1, what the
pathological variant is forced to reach by means of
therapeutic bullets, almost all variables are valued at 0,
it is unsurprising that all targets in the computed
therapeutic bullets have to be inhibited, that is set to 0.

Occurrence of each node in the found therapeutic
bullets, in percentage of the total number of tested bullets,
can be found in Appendix E. Below is the top five:

ATM 87.736%

ICL 22.170%

BRCA1 18.396%

DSB 11.792%

MRN 10.377%

In the present case study, DNA damages such as ICLs
and DSBs are the pathological events. Unsurprisingly, the
algorithm suggests them to be targeted: this is a logical
consequence. However, DNA damages are not biomole-
cules in themselves and directly targeting them by means
of drugs appears senseless. What is relevant are the
biomolecules of the FA/BRCA pathway suggested as
therapeutic targets. Interestingly, ATM dominates all the
other candidates, predicting ATM to be a pivotal ther-
apeutic target for the patho2 condition, namely the FA/
BRCA pathway bearing FANCD1/BRCA2 or FANCN/PALB2
gene null mutation, as observed in Fanconi anemia.

4. Conclusion

Under the assumption that dynamical system attractors
and biological network phenotypes are linked when the
former models the latter, the results show that the
algorithm succeeds in performing the proposed in silico

target identification. It returns therapeutic bullets for a
pathological variant of the mammalian cell cycle relevant
in diseases such as cancer and for a pathological variant
modeling Fanconi anemia. Consequently, the algorithm
can be used on other synchronous Boolean models of
biological networks involved in diseases for in silico target
identification. However, both the physiological and patho-

logical variants have to be known. This can constitute a
exhibited. As a consequence, the algorithm has to operate
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it of the proposed methodology since all the patho-
siologies are not known. On the other hand, this can
stitute a motivation to unravel pathophysiologies of
rly understood diseases.

Target identification, whether performed in silico or not,
 step belonging to a wider process: drug discovery.
ing demonstrated a potential target in silico, or even in

o, is far from having a drug. Further work and many
rs are necessary before obtaining a drug which is
ctive in vivo. For example, and among other character-

cs, such a drug has to be absorbed by the organism, has
each its target and has to be non-toxic at therapeutic
ages. Furthermore, as with any in silico evidence, it
uld be validated in vitro and ultimately in vivo: there is a
ge to cross between theory and practice. For example,
eting ATM should restore a physiological running of the

BRCA pathway bearing FANCD1/BRCA2 or FANCN/
B2 gene null mutation. However, if ATM operates in
er pathways, targeting it may disrupt them, hence
ating new pathological conditions. Nevertheless, it is
ected that the algorithm is of interest for target
ntification.
While finding Boolean network attractors of biological
works is not the purpose of the present work, it is a
essary step which is in itself a challenging field of
putational biology. As a consequence, incorporating

ances made in this field could be a relevant improve-
nt. Another possible improvement could be to extend

 algorithm for asynchronous Boolean networks since
h models are likely to more accurately describe the
amics of biological systems. Indeed, in biological

tems, events may be subjected to stochasticity, may
 occur simultaneously or may not belong to the same
e scale, three points that synchronous updating does

 take into account. Yet another possible improvement
ld be to use finer logics, such as multivalued ones.
eed, one of the main limitations of Boolean models is
t their variables can take only two values. In reality,
gs are not necessarily binary and variables should be

e to take more possible values. Multivalued logics
ble it in a discrete manner where variables can take a
te number of values between 0 (false) and 1 (true). For
mple, one can state that Rb is partly impaired rather
n totally. Such a statement is not implementable with
lean models but is with multivalued ones such as,

example, a three-valued logic where true = 1,
derate = 0.5 and false = 0.
Finally, considering basin cardinalities of pathological
actors could be an interesting extension of the
posed criteria for selecting therapeutic bullets. In that
e, the therapeutic potential of bullets could be assessed
estimating their ability at reducing the basin of

hological attractors, as performed by Fumia et al. with
ir Boolean model of cancer pathways [19]. Such a
erion enable to consider the particular case where
hological attractors are removed, that is where
hological basins are reduced to the empty set, but also
 other cases where pathological basins are not
essarily reduced to the empty set. Such a less restrictive
ction of therapeutic bullets would enable to consider

Appendix A

The algorithm in one block of pseudocode.

1 prompt card D

2 card D = min(card D, 2n)

3 generate D � S

4 H = {}

5 Aphysio = {}

6 for x0 2 D do

7 k = 1

8 x(k) = x0

9 while true do

10 if 9 w 2 H : xðkÞ 2 w then

11 break

12 end if

13 x(k + 1) = fphysio(x(k))

14 if 9k0 2 v1, k b : x(k + 1) = x(k0) then

15 Aphysio = Aphysio [ {(x(k0), . . ., x(k))}

16 break

17 end if

18 k = k + 1

19 end while

20 H = H [ {(x(1), . . ., x(k))}

21 end for

22 return Aphysio

23 prompt rmin; rmax; maxtarg; maxmoda

24 rmax = min(rmax, n)

25 golden _ set = {}

26 silver _ set = {}

27 for r2 v rmin, rmax b do

28 maxr
targ ¼ minðmaxtarg; n!=ðr! � ðn � rÞ!ÞÞ

29 maxr
moda ¼ minðmaxmoda; 2rÞ

30 Ctarg = {}

31 Cmoda = {}

32 while card Ctarg < maxr
targ do

33 generate ctarg =2 Ctarg

34 Ctarg = Ctarg [ {ctarg}

35 end while

36 while card Cmoda < maxr
moda do

37 generate cmoda =2 Cmoda

38 Cmoda = Cmoda[ {cmoda}

39 end while

40 for ctarg 2 Ctarg do

41 for cmoda2 Cmoda do

42 H = {}

43 Apatho = {}

44 for x0 2 D do
re possibilities for counteracting diseases. 45 
k = 1
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46 x(k) = x0

47 while true do

48 if 9 w 2 H : xðkÞ 2 w then

49 break

50 end if

51 x(k + 1) = fpatho(x(k))

52 for targi 2 ctarg do

53 for v j 2 V do

54 if v j ¼ targi then

55 xj(k + 1) = modai

56 end if

57 end for

58 end for

59 if 9k0 2 v1, k b : x(k + 1) = x(k0) then

60 Apatho = Apatho [ {(x(k0), . . ., x(k))}

61 break

62 end if

63 k = k + 1

64 end while

65 H = H [ {(x(1), . . ., x(k))}

66 end for

67 if Apatho� Aphysio then

68 if Apatho = Aphysio then

69 golden _ set = golden _ set [ {(ctarg, cmoda)}

70 else

71 silver _ set = silver _ set [ {(ctarg, cmoda)}

72 end if

73 end if

74 end for

75 end for

76 end for

77 return golden _ set, silver _ set



Appendix B

Boolean functions of the case study where, for the sake of readability, xi stands for xi(k) and xi+ stands for xi(k + 1).

ICLþ ¼ ICL ^ : DSB
FANCMþ ¼ ICL ^ : CHKREC
FAcoreþ ¼ FANCM ^ ðATR _ ATMÞ ^ : CHKREC
FANCD2Iþ ¼ FAcore ^ ððATM _ ATRÞ _ ðH2AX ^ DSBÞÞ ^ : USP1
MUS81þ ¼ ICL
FANCJBRCA1þ ¼ ðICL _ ssDNARPAÞ ^ ðATM _ ATRÞ
XPFþ ¼ ðMUS81 ^ : FANCMÞ _ ðMUS81 ^ p53 ^ : ðFAcore ^ FANCD2I ^ FAN1ÞÞ
FAN1þ ¼ MUS81 ^ FANCD2I
ADDþ ¼ ðADD _ ðMUS81 ^ ðFAN1 _ XPFÞÞÞ ^ : PCNATLS
DSBþ ¼ ðDSB _ FAN1 _ XPFÞ ^ : ðNHEJ _ HRRÞ
PCNATLSþ ¼ ðADD _ ðADD ^ FAcoreÞÞ ^ : ðUSP1 _ FAN1Þ
MRNþ ¼ DSB ^ ATM ^ : ððKU ^ FANCD2IÞ _ RAD51 _ CHKRECÞ
BRCA1þ ¼ DSB ^ ðATM _ CHK2 _ ATRÞ ^ : CHKREC
ssDNARPAþ ¼ DSB ^ ððFANCD2I ^ FANCJBRCA1Þ _ MRNÞ ^ : ðRAD51 _ KUÞ
FANCD1Nþ ¼ ðssDNARPA ^ BRCA1Þ _ ðFANCD2I ^ ssDNARPAÞ ^ : CHKREC
RAD51þ ¼ ssDNARPA ^ FANCD1N ^ : CHKREC
HRRþ ¼ DSB ^ RAD51 ^ FANCD1N ^ BRCA1 ^ : CHKREC
USP1þ ¼ ððFANCD1N ^ FANCD2IÞ _ PCNATLSÞ ^ : FANCM
KUþ ¼ DSB ^ : ðMRN _ FANCD2I _ CHKRECÞ
DNAPKþ ¼ ðDSB ^ KUÞ ^ : CHKREC
NHEJþ ¼ ðDSB ^ DNAPK ^ XPF ^ : ððFANCJBRCA1 ^ ssDNARPAÞ _ CHKRECÞÞ _ ððDSB ^ DNAPK ^ KUÞ ^ : ðATM ^ ATRÞÞ
ATRþ ¼ ðssDNARPA _ FANCM _ ATMÞ ^ : CHKREC
ATMþ ¼ ðATR _ DSBÞ ^ : CHKREC
p53þ ¼ ðððATM ^ CHK2Þ _ ðATR ^ CHK1ÞÞ _ DNAPKÞ ^ : CHKREC
CHK1þ ¼ ðATM _ ATR _ DNAPKÞ ^ : CHKREC
CHK2þ ¼ ðATM _ ATR _ DNAPKÞ ^ : CHKREC
H2AXþ ¼ DSB ^ ðATM _ ATR _ DNAPKÞ ^ : CHKREC
CHKRECþ ¼ ððPCNATLS _ NHEJ _ HRRÞ ^ : DSBÞ _ ðð : ADDÞ ^ ð : ICLÞ ^ ð : DSBÞ ^ : CHKRECÞ

A. Poret, J.-P. Boissel / C. R. Biologies 337 (2014) 661–678 673



Appendix C

Computed attractors for the case study.

a1 ¼

ICL 0 0
FANCM 0 0
FAcore 0 0

FANCD2I 0 0
MUS81 0 0

FANCJBRCA1 0 0
XPF 0 0

FAN1 0 0
ADD 0 0
DSB 0 0

PCNATLS 0 0
MRN 0 0

BRCA1 0 0
ssDNARPA 0 0
FANCD1N 0 0

RAD51 0 0
HRR 0 0
USP1 0 0
KU 0 0

DNAPK 0 0
NHEJ 0 0
ATR 0 0
ATM 0 0
p53 0 0

CHK1 0 0
CHK2 0 0
H2AX 0 0

CHKREC 0 1

a2 ¼

ICL 0
FANCM 0
FAcore 0

FANCD2I 0
MUS81 0

FANCJBRCA1 1
XPF 0

FAN1 0
ADD 0
DSB 1

PCNATLS 0
MRN 1

BRCA1 1
ssDNARPA 1
FANCD1N 0

RAD51 0
HRR 0
USP1 0
KU 0

DNAPK 0
NHEJ 0
ATR 1
ATM 1
p53 1

CHK1 1
CHK2 1
H2AX 1

CHKREC 0
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Appendix D

Therapeutic bullets found for the case study.

SATM golden

SATM SCHK2 golden

SHRR SATM golden

SssDNARPA SATM golden

SBRCA1 SATM golden

SMRN SATM golden

SFAN1 SATM golden

SICL SDSB golden

SFAcore SATM golden

SUSP1 SATM golden

SATM SH2AX golden

SADD SATM golden

SRAD51 SATM golden

SXPF SATM golden

SFANCM SATM golden

SFANCD1N SATM golden

SATM SCHK1 golden

SICL SATM golden

SATM Sp53 golden

SFANCJBRCA1 SATM golden

SFANCD2I SATM golden

SICL SFANCD1N SATM golden

SICL SFAcore SDSB golden

SBRCA1 SUSP1 SATM golden

SBRCA1 SssDNARPA SATM golden

SBRCA1 SATM SCHK1 golden

SADD SATM SH2AX golden

SFAN1 SMRN SATM golden

SATM SCHK2 SH2AX golden

SICL SDSB SMRN golden

SXPF SMRN SATM golden

SFAcore SFANCD2I SATM golden

SFANCM SATM SCHK2 golden

SRAD51 SATM Sp53 golden

SICL SssDNARPA SATM golden

SFANCM SATR SATM golden

SRAD51 SATM SH2AX golden

SADD SFANCD1N SATM golden

SICL SUSP1 SATM golden

SFANCM SMRN SATR golden

SMRN SUSP1 SATM golden

SFAN1 SHRR SATM golden

SBRCA1 SATM SH2AX golden

SFANCJBRCA1 SADD SATM golden

SMRN SssDNARPA SATM golden

SFAcore SssDNARPA SATM golden

SFAcore SFANCD1N SATM golden

SFANCD2I SBRCA1 SATM golden

SADD SMRN SATM golden

SATM Sp53 SCHK2 golden

SRAD51 SATM SCHK2 golden

SFANCM SATM SH2AX golden

SADD SPCNATLS SATM golden

SFANCJBRCA1 SATM Sp53 golden

SFANCM SMRN SATM golden

SFANCJBRCA1 SATM SCHK2 golden

SFANCD2I SUSP1 SATM golden

SADD SATM SCHK2 golden

SFANCD2I SFANCD1N SATM golden

SMRN SHRR SATM golden

SICL SDSB SUSP1 golden

SFAN1 SFANCD1N SATM golden

SFAN1 SATM SH2AX golden

SFANCJBRCA1 SFAN1 SATM golden

SssDNARPA SATM SH2AX golden

SATM SCHK1 SCHK2 golden

SADD SHRR SATM golden

SATM Sp53 SCHK1 golden

SFAcore SATM SH2AX golden

SFANCD2I SATM SCHK2 golden

SFAN1 SRAD51 SATM golden

SFANCD2I SRAD51 SATM golden

SFANCJBRCA1 SXPF SATM golden

SICL SFANCJBRCA1 SDSB golden

SssDNARPA SHRR SATM golden

SMRN SBRCA1 SATM golden

SFANCM SFAN1 SATM golden

SssDNARPA SATM Sp53 golden

SFAN1 SATM SCHK2 golden

SFANCD2I SssDNARPA SATM golden

SFANCD2I SFAN1 SATM golden

SXPF SHRR SATM golden

SFAN1 SBRCA1 SATM golden

SADD SATM SCHK1 golden

SFAcore SHRR SATM golden

SXPF SATM SCHK1 golden

SADD SBRCA1 SATM golden

SICL SFAN1 SDSB golden

SADD SATM Sp53 golden

SICL SMUS81 SATM golden

SFAcore SRAD51 SATM golden

SATM SCHK1 SH2AX golden

SICL SMRN SATM golden
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SssDNARPA SATM SCHK2 golden

SXPF SRAD51 SATM golden

SFANCM SATM SCHK1 golden

SICL SDSB SKU golden

SICL SMRN SATR golden

SssDNARPA SRAD51 SATM golden

SFANCJBRCA1 SssDNARPA SATM golden

SXPF SATM Sp53 golden

SFAcore SMRN SATM golden

SHRR SATM SH2AX golden

SHRR SATM Sp53 golden

SFANCJBRCA1 SFANCD1N SATM golden

SFANCM SADD SATM golden

SFAcore SATM SCHK2 golden

SICL SATM SCHK1 golden

SMRN SFANCD1N SATM golden

SADD SssDNARPA SATM golden

SMRN SRAD51 SATM golden

SFANCD1N SATM Sp53 golden

SFANCD1N SRAD51 SATM golden

SBRCA1 SATM SCHK2 golden

SADD SRAD51 SATM golden

SICL SDSB SFANCD1N golden

SICL SRAD51 SATM golden

SICL SATM SCHK2 golden

SFANCD1N SATM SH2AX golden

SMRN SATM SH2AX golden

SFAcore SFAN1 SATM golden

SICL SXPF SATM golden

SFANCD2I SADD SATM golden

SFANCD2I SATM SH2AX golden

SICL SATR SATM golden

SFANCM SHRR SATM golden

SUSP1 SATM SH2AX golden

SICL SDSB SRAD51 golden

SICL SATM SH2AX golden

SFANCD1N SUSP1 SATM golden

SFANCM SFANCD2I SATM golden

SFANCD2I SMRN SATM golden

SFAcore SADD SATM golden

SICL SFAcore SATM golden

SFANCM SssDNARPA SATM golden

SXPF SATM SH2AX golden

SFAcore SUSP1 SATM golden

SHRR SATM SCHK1 golden

SBRCA1 SRAD51 SATM golden

SFAN1 SADD SATM golden

SFANCJBRCA1 SMRN SATM golden

SFANCM SUSP1 SATM golden

SFANCJBRCA1 SATM SH2AX golden

SFANCM SFAcore SATM golden

SHRR SUSP1 SATM golden

SICL SFANCM SATM golden

SICL SDSB SssDNARPA golden

SFAN1 SUSP1 SATM golden

SFANCM SFANCJBRCA1 SATM golden

SssDNARPA SATM SCHK1 golden

SFAcore SFANCJBRCA1 SATM golden

SFANCD2I SHRR SATM golden

SFANCD2I SFANCJBRCA1 SATM golden

SXPF SssDNARPA SATM golden

SUSP1 SATM SCHK1 golden

SICL SDSB SATM golden

SICL SADD SDSB golden

SUSP1 SATM SCHK2 golden

SXPF SBRCA1 SATM golden

SRAD51 SATM SCHK1 golden

SFANCD1N SATM SCHK2 golden

SRAD51 SHRR SATM golden

SICL SATM Sp53 golden

SICL SDSB SDNAPK golden

SFANCM SFANCD1N SATM golden

SBRCA1 SFANCD1N SATM golden

SICL SHRR SATM golden

SFANCJBRCA1 SHRR SATM golden

SUSP1 SATM Sp53 golden

SXPF SATM SCHK2 golden

SICL SDSB SCHK2 golden

SICL SXPF SDSB golden

SssDNARPA SFANCD1N SATM golden

SFANCJBRCA1 SRAD51 SATM golden

SICL SDSB SATR golden

SHRR SATM SCHK2 golden

SADD SUSP1 SATM golden

SFANCM SRAD51 SATM golden

SFANCJBRCA1 SATM SCHK1 golden

SFANCM SATM Sp53 golden

SXPF SFANCD1N SATM golden

SFAcore SBRCA1 SATM golden

SICL SDSB SNHEJ golden

SBRCA1 SATM Sp53 golden

SBRCA1 SHRR SATM golden

SFANCJBRCA1 SUSP1 SATM golden

SssDNARPA SUSP1 SATM golden

SICL SDSB SH2AX golden

SFANCM SBRCA1 SATM golden

SMRN SATM SCHK1 golden

SICL SFANCJBRCA1 SATM golden
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SFANCD1N SATM SCHK1 golden

SICL SDSB SBRCA1 golden

SMRN SATM SCHK2 golden

SFANCJBRCA1 SBRCA1 SATM golden

SFAN1 SssDNARPA SATM golden

SMRN SATM Sp53 golden

SFANCD1N SHRR SATM golden

SICL SMUS81 SDSB golden

SICL SDSB Sp53 golden

SXPF SUSP1 SATM golden

SXPF SADD SATM golden

SATM Sp53 SH2AX golden

SICL SFANCM SDSB golden

SICL SDSB SHRR golden

SICL SBRCA1 SATM golden

SRAD51 SUSP1 SATM golden

SICL SFAN1 SATM golden

SICL SADD SATM golden

SICL SDSB SCHK1 golden

SICL SFANCD2I SDSB golden

SICL SFANCD2I SATM golden
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Appendix E

Occurrence of each node in the found therapeutic bullets,

in percentage of the total number of tested bullets.

ATM 87.736%

ICL 22.170%

BRCA1 18.396%

DSB 11.792%

MRN 10.377%

FANCM 9.906%

ADD 9.906%

FANCJBRCA1 9.434%

ssDNARPA 9.434%

FANCD1N 9.434%

RAD51 9.434%

HRR 9.434%

USP1 9.434%

CHK2 9.434%

H2AX 9.434%

FAcore 8.019%

FANCD2I 8.019%

FAN1 8.019%

p53 8.019%

CHK1 8.019%

XPF 7.547%

ATR 2.358%

MUS81 0.943%

PCNATLS 0.472%

KU 0.472%

DNAPK 0.472%

NHEJ 0.472%

CHKREC 0%
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