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ABSTRACT

Target identification aims at identifying biomolecules whose function should be therapeu-
tically altered to cure the considered pathology. An algorithm for in silico target identification
using Boolean network attractors is proposed. It assumes that attractors correspond to
phenotypes produced by the modeled biological network. It identifies target combinations
which allow disturbed networks to avoid attractors associated with pathological phenotypes.
The algorithm is tested on a Boolean model of the mammalian cell cycle and its applications
are illustrated on a Boolean model of Fanconi anemia. Results show that the algorithm returns
target combinations able to remove attractors associated with pathological phenotypes and
then succeeds in performing the proposed in silico target identification. However, as with any
in silico evidence, there is a bridge to cross between theory and practice. Nevertheless, it is
expected that the algorithm is of interest for target identification.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

L'identification de cibles vise a identifier des biomolécules dont la fonction devrait étre
altérée pour guérir la pathologie considérée. Un algorithme pour I'identification in silico de
cibles au moyen des attracteurs des réseaux booléens est proposé. Il suppose que les
attracteurs correspondent aux phénotypes produits par le réseau biologique modélisé. Il
identifie des combinaisons de cibles qui permettent aux réseaux perturbés d’éviter les
attracteurs associés aux phénotypes pathologiques. L’algorithme est testé sur un modéle
booléen du cycle cellulaire, et ses applications sont illustrées sur un modéle booléen de
I'anémie de Fanconi. Les résultats montrent que I'algorithme retourne des combinaisons
de cibles capables de supprimer les attracteurs associés aux phénotypes pathologiques et
donc réussit I'identification in silico de cibles proposée. En revanche, comme tout résultat
in silico, il y a un pont a franchir entre théorie et pratique. Cependant, il est escompté que
l'algorithme présente un intérét pour I'identification de cibles.

© 2014 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Drug discovery, as its name indicates, aims at discover-
ing new drugs against diseases. This process can be
segmented into three steps: i) disease model provision,
where experimental models are developed, ii) target
identification, where therapeutic targets are proposed,
and iii) target validation, where the proposed therapeutic
targets are assessed. The present work focuses on the
second step of drug discovery: target identification [1,2].

Given an organism suffering from a disease, target
identification aims at finding where to act among its
multitude of biomolecules in order to alleviate, or
ultimately cure, the physiological consequences of the
disease. These biomolecules on which perturbations
should be applied are called targets and are targeted by
drugs [3]. This raises two questions: which target should
be therapeutically perturbed and what type of perturba-
tion should be applied. Broadly, the functional perturba-
tion of a target by a drug can be either activating or
inactivating, regardless the way the drug achieves it.

One solution is to test all, or at least a large number of,
biomolecules for activation or inactivation. Knowing that
targeting several biomolecules is potentially more effec-
tive [4], the number of possibilities is consequently huge.
This rather brute-force screening can be refined with
knowledge about the pathophysiology by identifying
potential targets based on the role they play in it [5]. Even
with this knowledge, experimentally assessing the
selected potential targets in vitro or in vivo is far from
straightforward. Such experiments are costly in time and
resources and exhibit a high risk of failure [6]. Fortunately,
in silico experiments appear as valuable tools in improving
the efficiency of therapeutic research [7] since they are less
costly in time and resources than the traditional in vitro
and in vivo ones. However, the stumbling block of in silico
experiments is that they are built from the available
knowledge: not all is known about everything.

Nevertheless, an impressive and ever increasing
amount of biological knowledge is already available in
the scientific literature, databases and knowledge bases
such as, to name a few, DrugBank [8], KEGG [9], PharmGKB
[10], Reactome [11] and TTD [12]. In addition to the
complexity of integrating an increasing body of knowledge
comes the inherent complexity of biological systems
themselves [13]: this is where computational tools can
help [14]. The interplay between experimental and
computational biology is synergistic rather than compe-
titive [15]. Since in vitro and in vivo experiments produce
factual results, they are trustworthy sources of knowledge.
Once these factual pieces of knowledge are obtained,
computational tools can help to integrate them and infer
new ones. This computationally obtained knowledge can
be subsequently used to direct further in vitro or in vivo
experiments, hence mutually potentiating the whole.

The goal of the present work is to propose a
computational methodology implemented in an algorithm
for target identification using Boolean network attractors.
It assumes that Boolean network attractors correspond to
phenotypes produced by the modeled biological network,
an assumption successfully applied in several works

[16-21] to cite a few. Assuming that a phenotype is an
observable and hence a relatively stable state of a
biological system and assuming that the state of a
biological system results from its dynamics, a phenotype
is likely to correspond to an attractor. This assumption can
be stated for any dynamical model but, in the present
work, only Boolean networks are considered. Reasons are
that, in their most basic form, Boolean networks do not
require parameter values [22] and that parameter values
are not straightforward to estimate due to experimental
limitations, particularly at the subcellular scale, the scale
where drugs interact with their targets. Moreover, since
synchronous Boolean networks are easier to compute than
asynchronous ones [23], only synchronous Boolean net-
works are considered. This does not exclude the possibility,
at a later stage, to extend the algorithm for both
synchronous and asynchronous updating schemes.

For a biological network involved in a disease, two
possible variants are considered: the physiological variant,
exhibited by healthy organisms, which produces physio-
logical phenotypes, and the pathological variant, exhibited
by ill organisms, which produces pathological phenotypes
or which fails to produce physiological ones. A physiolo-
gical phenotype does not impair life quantity/quality while
a pathological phenotype does. It should be noted that the
loss of a physiological phenotype is also a pathological
condition. The physiological and pathological variants
differ in that the latter results from the occurrence of some
alterations known to be responsible for disorders. With a
pathological variant, there are two non-exclusive patho-
logical scenarios: pathological phenotypes are gained or
physiological phenotypes are lost.

The primary goal of the proposed algorithm is to
identify, in a pathological variant, target combinations
together with the perturbations to apply on them, here
called bullets, which render it unable to exhibit patholo-
gical phenotypes. The secondary goal is to classify the
obtained bullets according to their ability at rendering the
pathological variant able to exhibit previously lost
physiological phenotypes, if any.

2. Methods

This section briefly introduces some basic principles,
namely biological networks [24,25] and Boolean networks
[26], defines some concepts and then describes the
proposed algorithm. An example network to illustrate it
plus a case study to illustrate its intended applications are
also described. Finally, some details about implementation
and code availability are mentioned.

2.1. Basic principles

2.1.1. Biological networks
A network can be seen as a digraph G=(V, E) where

V ={vy,...,vy} is the set of cardinality n containing
exactly all the nodes v; of the network and where E =
{Wi1,Vj1)s s Wim,Vim)} C V2 is the set of cardinality m

containing exactly all the edges (v;,v;) of the network
[27,28]. In practice, nodes represent entities and edges
represent binary relations RCV? involving them:



A. Poret, ].-P. Boissel/C. R. Biologies 337 (2014) 661-678 663

v;Rv;. For example, in gene regulatory networks, nodes
represent gene products and edges represent gene
expression modulations [29].

2.1.2. Boolean networks

A Boolean network is a network where nodes are
Boolean variables x; and where edges (x;, x;) represent the
binary is input of relation: x; is input of x;. Each x; has b;e [0,
nlinputsx;y,...,X;p. The variables which are not inputs of
x; have no direct influence on it. If b;=0 then x; is a
parameter and does not depend on other variables. At each
iteration ke [[ ko, kenq ] Of the simulation, the value x;(k) € {0,
1} of each x; is updated to the value x;(k + 1) using a Boolean
function f; and the values x; 1 (k), ..., x;, (k) of its inputs, as
in the following pseudocode:

1 for ke[ ko, kena— 1] do
2 xi(k+1) = fr(x11(k), ..., X1, (k))
3 ..
4 Xn(k+1) = fo(xn1(k), ..., Xnp, (k)
5 end for
which can be written in a more concise form:
1 for ke[ ko, keng — 1] do
2 x(k+1)=fx(k))
3 end for

where f=(f,...fn) is the Boolean transition function
and x=(xq,...,X,) is the state vector. In the present work,
it is assumed that kg=1. The value x(k)=(x,(k),...,
xn(k)) €{0, 1}" of x at k belongs to the state space S={0,
1}" which is the set of cardinality 2" containing exactly all
the possible states. If the values of all the x; are updated
simultaneously at each k then the network is synchronous,
otherwise it is asynchronous. With synchronous Boolean
networks, x(k) has a unique possible successor x(k+1):
synchronous Boolean networks are deterministic.

In the particular case where k = ko, x(ko) = Xg is the initial
state and, in deterministic dynamical systems, determines
entirely the trajectory w = (X(ko),...,X(kenq))- Since it is
assumed that ko = 1, wis a sequence of length kepq resulting
from the iterative computation of x(k) from kg to kenq. This
iterative computation can be seen as the discretization of a
time interval: Boolean networks are discrete dynamical
systems as they simulate discretely the time course of the
state vector.

The set A={a;,. . .,ap} of cardinality p containing exactly
all the attractors a; is called the attractor set. Due to the
determinism of synchronous Boolean networks, all the
attractors are cycles. A cycle is a sequence (Xy,...Xq) of
length g such that Vj €1, q ], X1 =f(x;) and X4.1 =x;: once
the system reaches a state x; belonging to a cycle, it
successively visits its states Xj.1,....Xq, X1,. . .,X; for infinity.
In the particular case where g = 1, the cycle is called a point
attractor. The set B; C S containing exactly all the x € S from

which ag; can be reached is called its basin of attraction.
With deterministic dynamical systems, the family of sets
(Bs,- . .,Bp) constitutes a partition of S.

2.2. Definitions

Some concepts used in the present work should be
formally defined.

physiological A phenotype which does not impair life

phenotype quantity/quality of the organism which
exhibits it.

pathological A phenotype which impairs life quantity/

phenotype quality of the organism which exhibits it.

variant Given a biological network of interest, a

(of a variant of it is one of its versions, namely

biological the network plus eventually some mod-

network) ifications. It should be noted that this does
not exclude the possibility that a variant
can be the network of interest as is.

physiological A variant which produces only physiologi-

variant cal phenotypes. It is the biological network
of interest as it should be, namely the one
of healthy organisms.

pathological A variant which produces at least one

variant pathological phenotype. It is a dysfunction-
al version of the biological network of
interest, namely a version found in ill
organisms.

physiological  The attractor set Aphysio Of the physiological

attractor set variant.

pathological The attractor set Apano Of the pathological

attractor variant.

set

physiological The Boolean transition function fpnysio Of

Boolean the physiological variant.

transition

function

pathological The Boolean transition function fj,eno Of the

Boolean pathological variant.

transition

function

run An iterative computation of x(k) starting
from an X, until an q; is reached. It returns
w = (x(ko), ..., X(kena)) where kenq depends
on when gq; is reached and hence on x,.

physiological  An g; such that a; € Aphysio.

attractor

pathological An g; such that a;¢ Apnysio-

attractor

modality The functional perturbation moda; applied

on a node v;cV of the network, either
activating (moda;=1) or inactivating
(moda;=0): at each k, moda; overwrites
fj(x(k)) and hence xj(k + 1) =moda;.
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target A node targ; € V of the network on which a
moda; is applied.
bullet A couple (Crarg, Cmoda) Where Ciarg = (targy,

..., targ,) is a combination without repeti-
tion of targ; and where ¢4, = (moday, ...,
moda,) is an arrangement with repetition of
moda;, r€ [1, n ] being the number of targets
in the bullet. Here, moda; is intended to be
applied on targ;.

therapeutic A bullet which makes Apatho € Aphysio-

bullet

silver bullet A therapeutic bullet which makes Apano -

gAphysio'
golden bullet A therapeutic bullet which makes
Apatho = Aphysio-

The assumed link between phenotypes and attractors is
the reason why attractors are qualified as either physio-
logical or pathological according to the phenotype they
produce. This is also the reason why, in the present work,
target identification aims at manipulating attractor sets of
pathological variants.

2.3. Steps of the algorithm

The algorithm has two goals: i) finding therapeutic
bullets and ii) classifying them as either golden or silver. A
therapeutic bullet makes the pathological variant unable at
reaching pathological attractors, that is Apatho € Aphysio- If
such a bullet is applied on a pathological variant, the
organism bearing it no longer exhibits the associated
pathological phenotypes. However, a therapeutic bullet
does not necessarily preserve/restore the physiological
attractors. If a therapeutic bullet preserves/restores the
physiological attractors, namely if Apatho = Aphysio, then it is
a golden one but if Apatho S Aphysio then it is a silver one.

Given a physiological and a pathological variant, that is
Sphysio and fpacho, the algorithm follows five steps:

1. with fohysio it computes the control attractor set Aphysio

2. it generates bullets and, for each of them, it performs the
three following steps

3. with fpamo plus the bullet, it computes the variant
attractor set Apatho

4. it assesses the therapeutic potential of the bullet by
comparing Apnysio and Apatno to detect pathological
attractors

5. if the bullet is therapeutic then it is classified as either
golden or silver by comparing Aphysic and Apatho for
equality.

These steps can be written in pseudocode as:

With fonysio cOmpute Apnysio

generate bullet _set

for bullet € bullet _set do
with fpamo plus bullet compute Apatno
if Apatho € Aphysio then

g oA W N =

6 bullet is therapeutic
7 if Apatho =Aphysio then
8 bullet is golden

9 else

10 bullet is silver

11 end if

12 end if

13  end for

The algorithm is described step by step but can be found as
one block of pseudocode in Appendix A.

2.3.1. Step 1: computing Appysio

First of all, Apnysio has to be computed since it is the
control and, as such, determines what is pathological. To
do so, runs are performed with fynysio and the reached a;
are stored in Aphysio. However, xo € S and card S increases
exponentially with n. Even for reasonable values of n,
cardS explodes: more than 1000000 possible x, for
n=20. One solution ensuring that all the g; are reached is
to start a run from each of the possible xo, that is from
each of the xeS. Practically, this is unfeasible for an
arbitrary value of n since the required computational
resources can be too demanding. For example, assuming
that a run requires 1millisecond and that n=50,
performing a run from each of the 2°°xeS requires
nearly 36 000 years.

Given that with deterministic dynamical systems
(B1....,Bp) is a partition of S, a solution is to select a subset
D C S of a reasonable cardinality containing the xg to start
from. In the present work, D is selected randomly from a
uniform distribution. The stumbling block of this solution
is that it does not ensure that at least one xo per B; is
selected and then does not ensure that all the a; are
reached. This stumbling block holds only if card D < card S.

Again given that synchronous Boolean networks are
deterministic, if a run visits a state already visited in a
previous run then its destination, that is the reached
attractor, is already found. If so, the run can be stopped and
the algorithm can jump to the next one. To implement this,
previous trajectories are stored in a set H, the history, and
at each k the algorithm checks if IweH : x(k) e w. If this
check is positive then the algorithm jumps to the next run.

Since, with deterministic dynamical systems, attractors
are cycles, the algorithm checks at each k if x(k+1) is an
already visited state of the current run, namely if 3k’ €[1,
k1:x(k+1)=x(k'). If this check is positive then a;=(x(k'),
Gx(k)).

This step can be written in pseudocode as:

prompt card D
card D = min(card D, 2")
generate DCS
H={}
Aphysio = {
for xo € D do
k=1

N O b W=
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8 x(k)=xo

9 while true do

10 if 3weH: x(k) € w then

11 break

12 end if

13 X(k + 1) = fonysio(X(k))

14 if 3k €[1, k]:x(k+1)=x(k') then
15 Aphysio = Aphysio U {(x(K'),.. .x(k))}
16 break

17 end if

18 k=k+1

19 end while

20 H=Hu{(x(1),....x(k))}

21 end for

22 return Appysio

23 do step 2

Line 2 catches the mistake card D > card S.

It should be noted that the purpose of the present work
is not to propose an algorithm for finding Boolean network
attractors since advanced algorithms for such tasks are
already published [30,31]. The purpose is to introduce a
methodology exploiting Boolean network attractors for
target identification, a methodology which requires de
facto these attractors to be found.

2.3.2. Step 2: generating bullets

Bullets are candidate perturbations to apply on the
pathological variant to make it unable at reaching
pathological attractors and hence unable at producing
pathological phenotypes. Generating a bullet requires a
choice of targ;cV and associated moda; € {0, 1}. In the
present work, there is no time sequencing in target
engagement nor in modality application. This means that,
given a bullet and during a run, all the targ; are engaged
simultaneously and constantly and the moda; do not
change. As a consequence, for a given bullet, choosing the
same targ; more than once is senseless, while it is possible
to choose the same moda; for more than one
targ;. Therefore, a bullet is a combination ¢y without
repetition of targ; together with an arrangement ¢4, With
repetition of moda;.

If bullets containing r targets have to be generated
then there are n!/(r!-(n—r)!) possible cere and, for
each of them, there are 2" possible cy0qa. This raises the
same difficulty than with state space explosion since
there are (n!-2")/(r!-(n—r)!) possible bullets. For
example, with n=50 and r=3, there are more than
150000 possible bullets. Knowing that the algorithm,
as explained below, computes one attractor set per
bullet, the computation time becomes practically unfea-
sible.

To overcome this barrier, the algorithm asks for r as
an interval [rmin, "maxl], asks for a maximum number
MaXerg Of Crarg to generate and asks for a maximum
number maxXpeda Of Cmoda to test for each cearg. The

algorithm then generates a set Cirg Of Crarg With
card Crarg < MaXparg by randomly selecting, from a uni-
form distribution and without repetition, nodes in the
network. In the same way, the algorithm generates a set
Cmoda Of Cmoda With card Cppgqa < MaXmoda by randomly
choosing, from a uniform distribution and with repeti-
tion, modalities as either activating (= 1) or inactivating
(=0).

The result is the bullets: per re[rmin, "maxl @ Crarg
together with a Cy0qa. As With state space explosion, the
stumbling block of this method is that it does not ensure
that all the possible crg together with all the possible
Cmoda are tested. This stumbling block holds only if
MaXarg <N!/(r!- (N —1)!) Or MaXmeda < 2"

This step can be written in pseudocode as:

1 prompt 7ppin, 'max, MaXrarg, MaXmoda
2 Tmax = MIN(F'max, 1)

3 golden _set={}

4 silver _set = {}

5 for re [ min, Tmax | dO

6 Max{,,, = Min(MaXarg, 1!/ (1! (n—1)))
7 max’ .. = min(MaXmoda, 2")

8 Ctarg = {}

9 Cinoda=1{}

10 while card Cearg < maxg,,, do

11 generate Cearg ¢ Crarg

12 Ctarg = Crarg U {Crarg}

13 end while

14 while card Cp,oq, < maxl, ;. do
15 generate Cmoda ¢ Cmoda

16 Cimoda = Cmoda U {Cmoda}

17 end while

18 do steps3to 5

19 end for

20 return golden _set, silver _set

Line 2 catches the mistake r > n. Lines 3 and 4 create sets in
which therapeutic bullets found in step 4 are classified as
either golden or silver in step 5. Lines 6 and 7 catch the
mistake where maxgrg Or MaXmed, iS greater than its
maximum, which depends on r, hence the creation of
maxp,, and max] . to preserve the initially supplied
value. Lines 11 and 15 ensure that only neéw Crarg and Cmoda

are generated.

2.3.3. Step 3: computing Apatho

Having the control attractor set Appysioc and a bullet
(Cargr Cmoda) € Crarg X Cmoda, the algorithm computes the
variant attractor set Apamo under the bullet by almost the
same way Apnysio iS computed in step 1. However, fpatho iS
used instead of fynysio and the bullet is applied: at each k,
fi(x(k)) is overwritten by moda; € Cmoda, that is x;(k+1)=
moda;, provided that v; = targ; € Crarg.
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In order to apply all the generated bullets, the algorithm
uses two nested for loops. For each Ciarg € Crarg it uses
successively all the cmoda € Cmoda- FOr €ach (Cearg, Cmoda), the
algorithm computes the corresponding Apatho and does
steps 4 and 5.

This step can be written in pseudocode as:

1 for Ciarg € Crarg do

2 for Cioda € Cinoda dO

3 H={}

4 Apatho = {}

5 for xoc D do

6 k=1

7 x(k)=xo

8 while true do

9 if 3weH : x(k) € w then
10 break

11 end if

12 x(k + 1)=fpatho(x(k))

13 for targ; € crarg do

14 for v;eV do

15 if v; = targ; then

16 xj(k +1)=moda;
17 end if

18 end for

19 end for

20 if 3k’ €[1, k]:x(k+1)=x(k') then
21 Apatho = Apatho U{(x(K'), ..., x(k))}
22 break

23 end if

24 k=k+1

25 end while

26 H=Hu{(x(1), ..., x(k))}
27 end for

28 do step 4 and 5

29 end for

30 end for

Lines 13-19 are where bullets are applied.

2.3.4. Step 4: identifying therapeutic bullets

To identify therapeutic bullets among the generated
ones, for each (Crarg, Cmoda) tested in step 3 and once the
corresponding Apacno is Obtained, the algorithm compares
it with Appysio to check if Apatho € Aphysio- This check
ensures that, under the bullet, all the pathological
attractors are removed and if new attractors appear then
they are physiological ones. If this check is positive, then
the bullet is therapeutic and the algorithm pursues with
step 5.

This step can be written in pseudocode as:

1 if Apatho Cc Aphysio then
2 do step 5
3 end if

2.3.5. Step 5: assessing therapeutic bullets

Therapeutic bullets are qualified as either golden or
silver according to their ability at making the pathological
variant reaching the physiological attractors. All thera-
peutic bullets, being golden or silver, remove the
pathological attractors without creating new ones, that
is Apatho C Aphysio- However, this does not imply that
therapeutic bullets preserve/restore the physiological
attractors. A golden bullet preserves/restores the physio-
logical attractors: Apatho = Aphysio While a silver bullet does
not: Apatho g Aphysio-

In this setting, golden bullets are perfect therapies
while silver bullets are not. However, since precious things
are rare and just as gold is rarer than silver, finding golden
bullets is less likely than finding silver ones. Indeed, given
that more constraints are required for a therapeutic bullet
to be a golden one, it is more likely that the found
therapeutic bullets are silver ones, except in one case:
card Appysio = 1.

Theorem 1. If card Apnysio = 1 then all therapeutic bullets are
golden.

Proof.

(therapeutic bullet) = (Apno € Apnysio) (1)
(1) = (Apatho € P(Aphysio)) (2)
(card Aphysio = 1) = (Aphysio = {a}) (3)
(3) = (P(Aphysio) = {0, {a}}) (4)
((2)A(4) = ((Apatho = {a}) V (Apatno = 1)) (5)
(deterministic dynamical systems)= (A #0) (6)
(6) = (Apatho # 0) (7)
((5)A (7)) = (Apatno = {a}) (8)
((3) A (8)) = (Apatho = Apnysio) 9)
(9) = (therapeutic bullet is golden) (10)
O

Practically, in the present setting, an organism bearing a
pathological variant treated with a therapeutic bullet no
longer exhibits the associated pathological phenotypes.
Moreover, if the therapeutic bullet is golden then the
organism exhibits the same phenotypes than its healthy
counterpart. However, if the therapeutic bullet is silver
then the organism fails to exhibit at least one physiological
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phenotype. With a silver bullet this is a matter of choice:
what is the less detrimental between a silver bullet and no
therapeutic bullet at all.

This step can be written in pseudocode as:

if Apatho =Aphysio then

golden _set = golden _ set U {(Ctarg, Cmoda)}
else

silver _ set = silver _set U {(Ctarg, Cmoda)}
end if

ga b~ W N =

2.4. Example network

To illustrate the algorithm, it is used on a Boolean model
of the mammalian cell cycle published by Faure et al.
[18]. This model is chosen for several reasons: i)
synchronous updating is performed: to date, the algorithm
focuses on synchronous Boolean networks, ii) a mamma-
lian biological system is modeled: the closer to human
physiology the model is, the better it illustrates the
intended applications, iii) the cell cycle is a at the heart of
cancer: this gives relevancy to the example network, iv)
the network comprises ten nodes: easily computable in
face of its state space and v) attractors are already
computed: useful to validate the algorithm in finding
them.

Below are the Boolean functions of the example
network where, for the sake of readability, x; stands for
xi(k) and x;. stands for x;(k +1).

Rb(k+1)=0

in fpatho. Rb is chosen because its inactivation occurs in
many cancers [32]. As a consequence, a network bearing a
constitutive inactivation of it should be a relevant example
of a pathological variant.

2.5. Case study

To illustrate the intended usage of the proposed
methodology, the algorithm is used on a Boolean model
of the Fanconi Anemia/Breast Cancer (FA/BRCA) pathway
published by Rodriguez et al. [33]. This model is chosen for
several reasons: i) two pathological conditions are studied:
required for a case study of an in silico target identification,
ii) the physiological and pathological variants are clearly
described: required by the algorithm iii) it is nearly three
times bigger than the example network: representative of
a more comprehensive biological model while remaining
computationally tractable, iv) synchronous updating is
used: to date, the algorithm focuses on synchronous
Boolean networks and v) attractors are already interpreted
in terms of phenotypes.

The FA/BRCA pathway is dedicated to DNA repair and
more precisely to interstrand cross-links (ICLs) removal. As
expected with any DNA repair impairment, individuals
suffering from FA/BRCA pathway malfunction are sub-
jected to increased risk of cancer, such as in Fanconi
anemia, a rare genetic disorder causing bone marrow
failure, congenital abnormalities and increased risk of
cancer [34-36].

CycD, = CycD

Rb, = (=CycDA - CycEN = CycAN —CycB) Vv (p27 A = CycD A = CycB)

E2F . = (=RbA =CycAA —CycB)V (p27 A =Rb A - CycB)

CycE, = E2FA—-Rb

CycA, = (E2FA =RbA - Cdc20 A —(Cdh1 AUbcH10)) Vv (CycAA —=Rb A = Cdc20 A = (Cdh1 AUbcH10))
p27, = (=CycDA = CycEN = CycAN - CycB) Vv (p27 A = (CycE A CycA) A = CycB A = CycD)

Cdc20, = CycB

Cdh1. = (=CycAN = CycB) v Cdc20V (p27 A —~CycB)

UbcH10, = ~—Cdhlv (Cdh1 AUbcH10 A (Cdc20V CycAV CycB))

CycB, = ~-Cdc20A - Cdhl

A graphical representation of the example network is
shown in Fig. 1.

Having the example network, two variants of it
are needed: the physiological one and the pathological
one. The physiological variant is the network as is
while the pathological variant is the network plus
a constitutive activation/inactivation of at least one of
its nodes. For simplicity, and given the relatively small
number of entities, only one is chosen: the retinoblas-
toma protein Rb, for which a constitutive inactivation is
applied. To implement this, the corresponding f;
becomes:

Rodriguez et al. propose a Boolean model comprising
the FA/BRCA pathway and three types of DNA damages
commonly observed in Fanconi anemia, namely ICLs,
double-strand breaks (DSBs) and DNA adducts (ADDs).
DSBs and ADDs can be created during ICLs repair before
being removed, therefore leaving an undamaged DNA
ready for the cell cycle. For a complete description of the
model, please see [33]. The Boolean functions can be found
in Appendix B.

The physiological variant is the FA/BRCA pathway
model as is. To it, Rodriguez et al. propose two pathological
variants, here called pathol and patho2, modeling two
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CycD

LA

|  CycE

if v

1] 1

Rb E2F

UbcH10

d CycA p27 —

Cdc20 | Cdhl

T

CycB

Fig. 1. Graphical representation of the example network adapted from [18]. CDKs (cyclin-dependent kinases) are the catalytic partners of cyclins and, in this
model, are not explicitly shown since the activity of CDK-cyclin complexes essentially depends on cyclins. Furthermore, inhibition of E2F by Rb is modeled
by opposing Rb to the effects of E2F on its targets. The same applies to inhibition of CycE and CycA by p27. For a complete description of the model, please see
[18]. CycD: CDK4/6-cyclin D complex, input of the model, initiates the cell cycle, activated by positive signals such as growth factors; CycE: CDK2-cyclin E
complex; CycA: CDK2-cyclin A complex; CycB: CDK1-cyclin B complex; Rb: retinoblastoma protein, a tumor suppressor; E2F: a family of transcription
factors divided into activator and repressor members, in this model E2F represents activator members; p27: p27/Kip1, a CKI (CDK inhibitor); Cdc20: an APC
(Anaphase Promoting Complex, an E3 ubiquitin ligase) activator; Cdh1: an APC activator; UbcH10: an E2 ubiquitin conjugating enzyme.

mutations involving genes of the FA/BRCA pathway. These
mutations are observed in patients suffering from Fanconi
anemia [37]. The first one involves the FANCA gene,
corresponding to the FAcore variable, and the second one
involves the FANCD1/BRCA2 or FANCN/PALB2 gene,
corresponding to the FANCD1N variable. These mutations
are of loss-of-function kind: to simulate them the
corresponding f; becomes

FAcore(k+1) =0

for FANCA gene null mutation in fpatho1 and

FANCDIN(k +1) =0

for FANCD1/BRCA2 or FANCN/PALB2 gene null mutation in
fpathoz-

2.6. Implementation

The algorithm is implemented in Fortran 95 compiled
with GFortran.! The code is available on GitHub? at https://
github.com/arnaudporet/kali-targ under a BSD 3-Clause
License.?

3. Results

This section exposes results produced with the algo-
rithm on the example network to illustrate how it works.

1 https://www.gnu.org/software/gcc/fortran/

2 https://github.com/

3 https://raw.githubusercontent.com/arnaudporet/kali-targ/master/
BSD_3-Clause
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Next, results produced with the algorithm on the case
study are exposed to illustrate its intended applications in
target identification.

3.1. Results of step 1

Owing to the relatively small size of the example
network, card D is set to card S = 1024. Since card D = card S,
all the attractors are found. The algorithm returns the
following attractors:

oD 1111111 CyeD 0
Rb 0000O0O0O Rb 1
E2F 0111000 E2F 0
GyE 001 1100 CycE 0

o QA 0001111 A 0

! p27 0 0 0 0 0 0 0 °* p27 1
Cd20 1 0 0 0 0 0 1 Cdc20 0
Gdhi 1111000 cdhl 1
UbcH10 1 1 0 0 0 1 1 UbcH10 0
CyeB 0 00O0O0 11 yeB 0

each of them attracting 50% of the x € S under fynysio-

Attractors are presented as matrices where, for an
attractor of length g, lines correspond to the x(k), ke [1, q]
and columns to x(k). Apnysio = {1, a2}, which corresponds to
results obtained by Faure et al.. By the way, a; and a, are
the two physiological attractors. In terms of phenotypes, a,
corresponds to the cell cycle while a, corresponds to
quiescence.

3.2. Results of steps 2 to 5

Results of steps 2 to 5 are grouped since only
therapeutic bullets found in step 4 and classified in step
5 are returned. The algorithm is launched with r;, =1 and
Tmax = 2. Again due to the relatively small size of the
example network, maxirg and maxpeg, are set to their
maximum, namely maxrg =45 and Maxmeda = 4. As a
consequence, all the possible bullets made of 1 to 2 targets
are tested. The algorithm returns the following therapeutic
bullets:

+CycD silver
+CycD  —p27 silver
—CycD  +Rb  silver
+CycD  —Rb  silver

where + means therapeutic activation and — therapeutic
inactivation. It should be noted that no golden bullets are
found, an unsurprising result since they are rarer than
silver ones. Given these results, the therapeutic activa-
tion of Rb alone, which is pathologically inactivated, is
not enough to remove the pathological attractors: as
seen in the third bullet, the therapeutic activation of Rb
must be accompanied by the therapeutic inactivation of
CycD.

To better illustrate what is performed to obtain these
therapeutic bullets, below is Apato Without any bullet:

CyeD 0 00O0O0O0GOO
Rb 0 000O0O0O0O
E2F 11110000
CyE 01111000

g QA 00111110
p27 1 11 0 00 0 0
Cd20 0 0 0 0 0 0 1 1
cdhi 1111000 1
UbcH10 1 0 0 0 0 1 1 1
GyB 000O0O0T1T10
oD 1111111
Rb 0000O0O0O
E2F 1110000
GwE 01 11000

L. A 0011110

T p27 00 00O0O0O
Cd20 0 0 0 0 0 1 1
cdhl 11100 0 1
UbcHI0 1 0 0 0 1 1 1
CyeB 0000110

each of these two attractors attracting 50% of the xcS
under fpatho-

It should be noted that as=a; €Apnysio: G4 is a
physiological attractor. It is possible that the pathological
variant produces physiological attractors: Apacho is not the
set containing exactly all the pathological attractors, it is
the attractor set of the pathological variant. As a
consequence, ApnysioApatho 7@ is possible. However,
as ¢ Apnysio: it is a pathological attractor and is what a
therapeutic bullet, being golden or silver, is intended to
avoid.

Again to better illustrate what is performed to obtain
these therapeutic bullets, below is Apamo under the third
bullet:

CycD
Rb
E2F
CycE
CycA
p27
Cdc20
Cdh1
UbcH10
CycB

OO~ O = 0O 00 ~=oO0

which is a;. As expected for a therapeutic bullet, the
pathological attractor as is removed. However, the
physiological attractor a; is not restored: the third bullet
is silver. Consequently, with this bullet no cell cycle occurs
and the only reachable phenotype is quiescence. While
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disabling the cell cycle of cancer cells is beneficial, what
about disabling the cell cycle of healthy cells. As mentioned
above, with silver bullets this is a matter of choice.

3.3. Results on the case study

With the case study, card S=228=268 435 456: com-
puting attractors from all the x € S becomes too demand-
ing. Indeed, it should be recalled that the algorithm
computes one attractor set per bullet, namely Apamo under
the tested bullet. As a consequence, card D is set to a more
reasonable value: cardD=10000. Despite that
card D < card S, it seems sufficient for the algorithm to
find all the attractors, just as Rodriguez et al. whose
computation covers the whole state space. Below are the
computed attractors:

L4 Aphysio = {al}

i Apathm = {al}

o Apatho2 = {01, a2}, a; and a, attracting respectively 29.5%
and 70.5% of the x € D under fpatno2

and their biological interpretation:

e ay: cell cycle progression
e ay: cell cycle arrest

A detailed expression of these attractors can be found in
Appendix C.

In physiological conditions, in case of damaged DNA,
cells repair it before performing the cell cycle, or die if
repair fails. Such checkpoints enable cells to ensure
genomic integrity by preventing damaged DNA to be
replicated and then propagated [38,39]. Otherwise, genetic
instability may appear, potentially leading to cancer
[40]. The results show that the physiological variant is
able to ensure genomic integrity since its unique attractor
is a;, where ICL=DSB=ADD=0: DNA damages are
repaired, if any, and the cell cycle can safely occur.
Interestingly, the same physiological phenotype is com-
puted for pathol where Apatho1 = Aphysio- This suggests that
cells bearing FANCA gene null mutation are nonetheless
able to repair DNA.

With patho2, a pathological attractor appears: a,,
where DSB = 1. This suggests that cells bearing FANCD1/
BRCA2 or FANCN/PALB2 gene null mutation are unable to
repair DSBs, explaining why a, corresponds to cell cycle
arrest: DNA remains damaged. It should be noted that
a1 € Apatho2, Suggesting that from certain xo, that is under
certain conditions, such cells could be able to repair DNA.
However, a; attracts only 29.5% of the x € D under fyatho2,
indicating that the pathological phenotype associated
with a, is more likely to occur.

Altogether, according to computed attractors and their
phenotypic interpretation, and limited to the scope studied
by the model of Rodriguez et al., FANCA gene null mutation
may not induce pathological phenotypes. However, with
FANCD1/BRCA2 or FANCN/PALB2 gene null mutation, two
phenotypes are predicted: a physiological one and a
pathological one, the latter being the most likely to be
exhibited. As a consequence, the algorithm has to operate

on patho2 to find bullets able to remove the pathological
attractor a,.

By comprehensively testing all bullets made of 1 to
3 targets, the algorithm returns the following results:

number of number of
all possible therapeutic
bullets bullets
r=1 56 1(1.786%)
r=2 1512 20 (1.323%)
r=3 26208 191 (0.729%)

all therapeutic bullets being golden since card Appysio =1
(see Theorem 1). A list of the computed therapeutic bullets
can be found in Appendix D. Given that in a;, what the
pathological variant is forced to reach by means of
therapeutic bullets, almost all variables are valued at 0,
it is unsurprising that all targets in the computed
therapeutic bullets have to be inhibited, that is set to 0.

Occurrence of each node in the found therapeutic
bullets, in percentage of the total number of tested bullets,
can be found in Appendix E. Below is the top five:

ATM 87.736%
ICL 22.170%
BRCA1 18.396%
DSB 11.792%
MRN 10.377%

In the present case study, DNA damages such as ICLs
and DSBs are the pathological events. Unsurprisingly, the
algorithm suggests them to be targeted: this is a logical
consequence. However, DNA damages are not biomole-
cules in themselves and directly targeting them by means
of drugs appears senseless. What is relevant are the
biomolecules of the FA/BRCA pathway suggested as
therapeutic targets. Interestingly, ATM dominates all the
other candidates, predicting ATM to be a pivotal ther-
apeutic target for the patho2 condition, namely the FA/
BRCA pathway bearing FANCD1/BRCA2 or FANCN/PALB2
gene null mutation, as observed in Fanconi anemia.

4. Conclusion

Under the assumption that dynamical system attractors
and biological network phenotypes are linked when the
former models the latter, the results show that the
algorithm succeeds in performing the proposed in silico
target identification. It returns therapeutic bullets for a
pathological variant of the mammalian cell cycle relevant
in diseases such as cancer and for a pathological variant
modeling Fanconi anemia. Consequently, the algorithm
can be used on other synchronous Boolean models of
biological networks involved in diseases for in silico target
identification. However, both the physiological and patho-
logical variants have to be known. This can constitute a
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limit of the proposed methodology since all the patho-
physiologies are not known. On the other hand, this can
constitute a motivation to unravel pathophysiologies of
poorly understood diseases.

Target identification, whether performed in silico or not,
is a step belonging to a wider process: drug discovery.
Having demonstrated a potential target in silico, or even in
vitro, is far from having a drug. Further work and many
years are necessary before obtaining a drug which is
effective in vivo. For example, and among other character-
istics, such a drug has to be absorbed by the organism, has
to reach its target and has to be non-toxic at therapeutic
dosages. Furthermore, as with any in silico evidence, it
should be validated in vitro and ultimately in vivo: there is a
bridge to cross between theory and practice. For example,
targeting ATM should restore a physiological running of the
FA/BRCA pathway bearing FANCD1/BRCA2 or FANCN/
PALB2 gene null mutation. However, if ATM operates in
other pathways, targeting it may disrupt them, hence
creating new pathological conditions. Nevertheless, it is
expected that the algorithm is of interest for target
identification.

While finding Boolean network attractors of biological
networks is not the purpose of the present work, it is a
necessary step which is in itself a challenging field of
computational biology. As a consequence, incorporating
advances made in this field could be a relevant improve-
ment. Another possible improvement could be to extend
the algorithm for asynchronous Boolean networks since
such models are likely to more accurately describe the
dynamics of biological systems. Indeed, in biological
systems, events may be subjected to stochasticity, may
not occur simultaneously or may not belong to the same
time scale, three points that synchronous updating does
not take into account. Yet another possible improvement
could be to use finer logics, such as multivalued ones.
Indeed, one of the main limitations of Boolean models is
that their variables can take only two values. In reality,
things are not necessarily binary and variables should be
able to take more possible values. Multivalued logics
enable it in a discrete manner where variables can take a
finite number of values between 0 (false) and 1 (true). For
example, one can state that Rb is partly impaired rather
than totally. Such a statement is not implementable with
Boolean models but is with multivalued ones such as,
for example, a three-valued logic where true=1,
moderate = 0.5 and false = 0.

Finally, considering basin cardinalities of pathological
attractors could be an interesting extension of the
proposed criteria for selecting therapeutic bullets. In that
case, the therapeutic potential of bullets could be assessed
by estimating their ability at reducing the basin of
pathological attractors, as performed by Fumia et al. with
their Boolean model of cancer pathways [19]. Such a
criterion enable to consider the particular case where
pathological attractors are removed, that is where
pathological basins are reduced to the empty set, but also
the other cases where pathological basins are not
necessarily reduced to the empty set. Such a less restrictive
selection of therapeutic bullets would enable to consider
more possibilities for counteracting diseases.

Appendix A

The algorithm in one block of pseudocode.

1 prompt card D

2 card D =min(card D, 2")

3 generate DCS

4 H={}

5 Aphysio = {}

6 for xo €D do

7 k=1

8 x(k) =xo

9 while true do

10 if dweH : x(k) €ew then
11 break

12 end if

13 X(k + 1) = fonysio(X(k))

14 if 3K €1, k]:x(k+1)=x(k') then
15 Aphysio =Aphysio u {(X(k,), ce X(k))}
16 break

17 end if

18 k=k+1

19 end while

20 H=Hu{(x(1), ..., x(k))}

21 end for

22 return Apnysio

23 prompt i, 'max, MaXtarg, MaXmoda
24 Tmax = MiN(rmax, 1)

25 golden _set ={}

26 silver _set={}

27 for rc [ rmin, 'max ] do

28 Max{,,, = Min(MaXearg, !/ (1! (n —r1)!))
29 max’ .. = min(maXmoda, 2")
30 Crarg={}

31 Cmoda=1{}

32 while card Carg < max{Elrg do
33 generate Cearg ¢ Crarg

34 Ctarg = Crarg U {Ctarg}

35 end while

36 while card Cpoq, < maxl, 4, do
37 generate Cmoda ¢ Cmoda

38 Cimoda = Cmoda U {Cmoda}

39 end while

40 for ciarg € Crarg do

41 for Cmoda € Cmoda do

42 H={}

43 Apatho = {

44 for xo € D do

45 k=1
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46 x(k)=xo

47 while true do

48 if 3weH : x(k) €w then

49 break

50 end if

51 X(k +1) = fparno(x(k))

52 for targ; € crarg do

53 for v;eV do

54 if v; = targ; then

55 Xj(k + 1) =moda;

56 end if

57 end for

58 end for

59 if 3k’ €1, k]: x(k+1)=x(k') then
60 Apatho =Apatho U{(x(k’), ..., x(k))}
61 break

62 end if

63 k=k+1

64 end while

65 H=Hu{(x(1), ..., x(k))}

66 end for

67 if Apatho € Aphysio then

68 if Apatho =Aphysio then

69 golden _set = golden _ set U {(Ctarg, Cmoda)}
70 else

71 silver _ set = silver _set U {(Ctarg, Cmoda)}
72 end if

73 end if

74 end for

75 end for

76 end for

77 return golden _ set, silver _set
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Appendix B

Boolean functions of the case study where, for the sake of readability, x; stands for x;(k) and x;. stands for x;(k + 1).

ICL, = ICLA -DSB

FANCM, = ICLA —CHKREC

FAcore., = FANCM A (ATRv ATM) A ~ CHKREC

FANCD2I, = FAcore A (ATM v ATR) v (H2AX ADSB)) A ~USP1

MUSS81, = I

FANCIBRCA1, = (ICLV ssDNARPA) A (ATM v ATR)

XPF, = (MUS81 A ~FANCM)V (MUS81 A p53 A — (FAcore A FANCD2I A FAN1))
FAN1, = MUS81 AFANCD2I

ADD, = (ADDV (MUS81 A (FAN1 v XPF))) A - PCNATLS

DSB.. = (DSBVFAN1VXPF) A - (NHEJ v HRR)

PCNATLS, = (ADDV (ADD A FAcore)) A — (USP1V FAN1)

MRN, = DSBAATM A —((KU AFANCD2I) v RAD51 v CHKREC)

BRCA1, = DSBA(ATM v CHK2 v ATR) A —~ CHKREC

ssSDNARPA, = DSB A ((FANCD2I A FANCJBRCA1) v MRN) A - (RAD51 v KU)
FANCDIN, = (ssDNARPAABRCA1)v (FANCD2I A ssDNARPA) A — CHKREC

RAD51., = ssDNARPA A FANCD1IN A —~ CHKREC

HRR, = DSBARAD51 AFANCD1N ABRCA1 A —~CHKREC

USP1, = ((FANCD1N AFANCD2I) v PCNATLS) A —~ FANCM

KU, = DSBA —(MRN v FANCD2I v CHKREC)

DNAPK , = (DSBAKU) A —CHKREC

NHEJ . = (DSB ADNAPK A XPF A — ((FANCJBRCA1 A ssDNARPA) v CHKREC)) v ((DSB A DNAPK AKU) A — (ATM A ATR))
ATR. = (ssDNARPA\ FANCM v ATM) A —~ CHKREC

ATM., = (ATRVDSB) A - CHKREC

P53, = (((ATM ACHK2) v (ATR A CHK1)) v DNAPK) A ~ CHKREC

CHK1, = (ATM VATRV DNAPK) A —~ CHKREC

CHK2., = (ATM VATRV DNAPK) A —~ CHKREC

H2AX = DSB A (ATM v ATR v DNAPK) A -~ CHKREC

CHKREC, = ((PCNATLSV NHEJ v HRR) A —DSB) V ((~ADD) A (~ICL) A (~DSB) A — CHKREC)
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Computed attractors for the case study.

ICL
FANCM
FAcore
FANCD2I
MUS81
FANCJBRCA1
XPF
FAN1
ADD
DSB
PCNATLS
MRN
BRCA1
SSDNARPA
FANCD1N
RAD51
HRR
UsP1
KU
DNAPK
NHEJ
ATR
ATM
p53
CHK1
CHK?2
H2AX
CHKREC

a =

[cloloooololololololololoNeloeNeNoNoeNoloNoloNololNoNo o)

== lelolololololoololololololooloNoloNoo oo NoNo Nl

a; =

ICL
FANCM
FAcore
FANCD2I
MUS81
FANCJBRCA1
XPF
FAN1
ADD
DSB
PCNATLS
MRN
BRCA1
sSDNARPA
FANCD1N
RAD51
HRR
USP1
KU
DNAPK
NHEJ
ATR
ATM
p53
CHK1
CHK?2
H2AX
CHKREC

O = =R P 20000000~ ~=,_,ORrO0O0O0O~RLO0OO0O0OO
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Therapeutic bullets found for the case study.
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—ATM
—ATM
—HRR
—ssDNARPA
—BRCA1
—MRN
—FAN1
—ICL
—FAcore
—USP1
—ATM
—ADD
—RAD51
—XPF
—FANCM
—FANCD1N
—ATM
—ICL
—ATM
—FANCJBRCA1
—FANCD2I
—ICL

—ICL
—BRCA1
—BRCA1
—BRCA1
—ADD
—FAN1
—ATM
—ICL
—XPF
—FAcore
—FANCM
—RAD51
—ICL
—FANCM
—RAD51
—ADD
—ICL
—FANCM
—MRN
—FAN1
—BRCA1
—FANCJBRCA1

—CHK2
—ATM
—ATM
—ATM
—ATM
—ATM
—DSB
—ATM
—ATM
—H2AX
—ATM
—ATM
—ATM
—ATM
—ATM
—CHK1
—ATM
—p53
—ATM
—ATM
—FANCD1N
—FAcore
—USP1
—ssDNARPA
—ATM
—ATM
—MRN
—CHK2
—DSB
—MRN
—FANCD2I
—ATM
—ATM
—ssDNARPA
—ATR
—ATM
—FANCD1N
—USP1
—MRN
—USP1
—HRR
—ATM
—ADD

—ATM
—DSB
—ATM
—ATM
—CHK1
—H2AX
—ATM
—H2AX
—MRN
—ATM
—ATM
—CHK2
—p53
—ATM
—ATM
—H2AX
—ATM
—ATM
—ATR
—ATM
—ATM
—H2AX
—ATM

golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden
golden

—MRN
—FAcore
—FAcore
—FANCD2I
—ADD
—ATM
—RAD51
—FANCM
—ADD
—FANCJBRCA1
—FANCM
—FANCJBRCA1
—FANCD2I
—ADD
—FANCD2I
—MRN
—ICL
—FAN1
—FAN1
—FANCJBRCA1
—SsSDNARPA
—ATM
—ADD
—ATM
—FAcore
—FANCD2I
—FAN1
—FANCD2I
—FANCJBRCA1
—ICL
—sSDNARPA
—MRN
—FANCM
—ssDNARPA
—FAN1
—FANCD2I
—FANCD2I
—XPF
—FAN1
—ADD
—FAcore
—XPF
—ADD

—ICL

—ADD

—ICL
—FAcore
—ATM

—ICL

—ssDNARPA
—SsSDNARPA
—FANCD1N
—BRCA1
—MRN
—p53
—ATM
—ATM
—PCNATLS
—ATM
—MRN
—ATM
—USP1
—ATM
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Appendix E

Occurrence of each node in the found therapeutic bullets,
in percentage of the total number of tested bullets.

ATM 87.736%
ICL 22.170%
BRCA1 18.396%
DSB 11.792%
MRN 10.377%
FANCM 9.906%
ADD 9.906%
FANCJBRCA1 9.434%
ssDNARPA 9.434%
FANCD1N 9.434%
RAD51 9.434%
HRR 9.434%
USP1 9.434%
CHK2 9.434%
H2AX 9.434%
FAcore 8.019%
FANCD2I 8.019%
FAN1 8.019%
p53 8.019%
CHK1 8.019%
XPF 7.547%
ATR 2.358%
MUS81 0.943%
PCNATLS 0.472%
KU 0.472%
DNAPK 0.472%
NHE] 0.472%
CHKREC 0%
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