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Since the pioneering work of Volterra [1] and Lotka [2]
the mid-1920s, there has been increasing interest in
estigating the dynamical behaviors of predator–prey
dels in both ecology and mathematical ecology [3–
. In particular, one of the important dynamical
dator–prey behaviors, such as periodic phenomena

 bifurcation has become even more interesting

[6–10,12–24]. In 1980, Freeman [25] proposed a most
popular predator–prey model with Michaelis–Menten-
type functional response:

dx1

dt
¼ rx1 1 � x1

K

� �
� cx1x2

m þ x1
;

dx2

dt
¼ x2 �d þ fx1

m þ x1

� �
;

x 0ð Þ > 0; y 0ð Þ > 0;

8>>>><
>>>>:

(1)

where x1, x2 denote the population of preys and predators
at time t, respectively. r, K, c, m, d, and f are positive
constants that denote the prey’s intrinsic growth rate,
carrying capacity, capturing rate, half-saturation constant,
predator death rate, maximal predator growth rate,
respectively. For more details about the model, the reader
is referred to [25].

Considering that in many situations, predators must
search and share or compete for food, Arditi and Ginzburg
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A B S T R A C T

In this paper, a delayed predator–prey model with Hassell–Varley-type functional

response is investigated. By choosing the delay as a bifurcation parameter and analyzing

the locations on the complex plane of the roots of the associated characteristic equation,

the existence of a bifurcation parameter point is determined. It is found that a Hopf

bifurcation occurs when the parameter t passes through a series of critical values. The

direction and the stability of Hopf bifurcation periodic solutions are determined by using

the normal form theory and the center manifold theorem due to Faria and Maglhalaes

(1995). In addition, using a global Hopf bifurcation result of Wu (1998) for functional

differential equations, we show the global existence of periodic solutions. Some numerical

simulations are presented to substantiate the analytical results. Finally, some biological

explanations and the main conclusions are included.
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[3] introduced and studied the following ratio-dependent-
type functional response model:

dx1

dt
¼ rx1 1 � x1

K

� �
� cx1x2

mx2 þ x1
;

dx2

dt
¼ x2 �d þ fx1

mx2 þ x1

� �
;

x 0ð Þ > 0; y 0ð Þ > 0

8>>>>>><
>>>>>>:

(1.2)

Since the functional response depends on the predator
density in a different way, Hassel and Varley [26] recon-
structed the predator–prey model with Hassell–Varly-type
functional response, which takes the following form:

dx1

dt
¼ rx1 1 � x1

K

h i
� cx1x2

mxg
2 þ x1

;

dx2

dt
¼ x2 �d þ fx1

mxg
2 þ x1

" #
;

x 0ð Þ> 0; y 0ð Þ> 0;

8>>>>>>>><
>>>>>>>>:

(1.3)

where g 2 (0,1) is called the HV constant. Generally, the
consumptions of prey by the predator throughout its past
history governs the present birth rate of the predator.
Motivated by this point of view, Wang [27] introduced and
investigated the periodic solutions to the following
delayed predator–prey model:

dx1 tð Þ
dt

¼ x1 tð Þ a tð Þ � b tð Þx1 t � t tð Þð Þ � c tð Þx2 tð Þ
mxg

2 tð Þ þ x1 tð Þ

" #
;

dx2 tð Þ
dt

¼ x2 tð Þ �d tð Þ þ r tð Þx1 tð Þ
mxg

2 þ x1

" #
;

x 0ð Þ0; y 0ð Þ > 0

8>>>>>>>>><
>>>>>>>>>:

(1.4)

with the following initial condition:

x1 tð Þ ¼ ’ uð Þ; u 2 ½�d; 0�; ’ 0ð Þ ¼ ’0 > 0;

x2 tð Þ ¼ c uð Þ; u 2 ½�d; 0�; c 0ð Þ ¼ c0 > 0;

(
(1.5)

where d ¼ supt 2 ½0;v� t tð Þf g; ’; c 2 C �d; 0½ �ð Þ with the norm
xk k ¼ supt 2 �d;0½ � x tð Þj j. It is worth pointing out that during

the course of the predator–prey interaction when pre-
dators do not form groups, one can assume that the HV
constant is equal to 1, that is, g = 1. Moreover, it is more
reasonable to incorporate the delay into Hassell–Varly-
type functional response. From the point of view of biology,
we will consider the following model with delayed
Hassell–Varly-type functional response:

dx1

dt
¼ x1 a � bx1 t � tð Þ � cx2 t � tð Þ

mx2 t � tð Þ þ x1 t � tð Þ

� �
;

dx2

dt
¼ x2 �d þ rx1 t � tð Þ

mx2 t � tð Þ þ x1 t � tð Þ

� �
8>>><
>>>:

(1.6)

In this paper, we will devote our attention to
investigating the properties of a Hopf bifurcation of system
(1.6), that is to say, we shall take the delay t as the
bifurcation parameter and show that when t passes
through a certain critical value, the positive equilibrium
loses its stability and a Hopf bifurcation will take place.
Furthermore, when the delay t takes a sequence of critical
values containing the above critical value, the positive
equilibrium of system (1.6) will undergo a Hopf bifurca-
tion. In particular, by using the normal form theory and the
center manifold reduction due to Faria and Maglhalaes
[28], the formulae for determining the direction of Hopf
bifurcations and the stability of bifurcating periodic
solutions are obtained. In addition, the existence of
periodic solutions for t far away from the Hopf bifurcation
values is also established by means of the global Hopf
bifurcation result of Wu [29].

In order to obtain the main results of our paper,
throughout this paper, we assume that the coefficients of
system (1.6) satisfy the following condition:

H1. am2 + cd � cr > 0, r > d

This paper is organized as follows. In Section 2, the
stability of the positive equilibrium and the existence of
a Hopf bifurcation at the positive equilibrium are
studied. In Section 3, the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions on the
center manifold are determined. In Section 4, numerical
simulations are carried out to illustrate the validity of
the main results. In Section 5, some conditions that
guarantee the global existence of the bifurcating
periodic solutions to the model are given. Biological
explanations and some main conclusions are drawn in
Section 6.

2. Stability of the equilibrium and existence of the local
Hopf bifurcation

In the section, by analyzing the characteristic equation
of the linearized system of system (1.6) at the positive
equilibrium, we investigate the stability of the positive
equilibrium and the existence of the local Hopf bifurca-
tions occurring at the positive equilibrium.

Considering the biological meaning, we only study the
property of a unique positive equilibrium (i.e., coexistence
equilibrium). It is easy to see that under the hypothesis
(H1), system (1.6) has a unique positive equilibrium
E� x�1; x�2
� 	

, where

x�1 ¼
am2 þ cd � cr

abm
; x�2 ¼

r � dð Þ am2 þ cd � cr
� 	

abdm2

Let u1 tð Þ ¼ x1 tð Þ � x�1; u2 tð Þ ¼ x2 tð Þ � x�2; then, system
(1.6) takes the following form:



d
8>><
>>:
wit

l2

tran
in [

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:
wh

m1

m3

m5

m7

m9

n2

n5

n7

n10
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Then, we obtain the linearized system of (2.1)

u1

dt
¼ m1u1 t � tð Þ þ m2u2 t � tð Þ;

du2

dt
¼ n1u1 t � tð Þ þ n2u2 t � tð Þ

(2.2)

h characteristic equation:

� m1 þ n2ð Þl e�lt þ m1n2 � m2n1ð Þ e�2lt ¼ 0 (2.3)

In order to investigate the distribution of roots of the
scendental equation (2.3), the following Lemma stated

30] is helpful.

Lemma 2.1. [30] For the transcendental equation

P l; e�lt1 ; � � � ; e�ltm

� �
¼ ln þ p 0ð Þ

1 ln�1 þ � � � þ p 0ð Þ
n�1l þ p 0ð Þ

n

þ p 1ð Þ
1 ln�1 þ � � � þ p 1ð Þ

n�1l þ p 1ð Þ
n

h i
e�lt1 þ � � �

þ p
mð Þ

1 ln�1 þ � � � þ p
mð Þ

n�1l þ p
mð Þ

n

h i
e�ltm ¼ 0;

as t1; t2; t3; � � � ; tmð Þ vary, the sum of orders of the zeros of
P l; e�lt1 ; � � � ; e�ltm
� 	

in the open right half plane can change,

and only a zero appears on or crosses the imaginary axis.
Regarding t as the parameter, we can apply Lemma

2.1 to (2.3), which is a special case of

P l; e�lt1 ; � � � ; e�ltm

� �

du1

dt
¼ m1u1 t � tð Þ þ m2u2 t � tð Þ þ m3u2

1 t � tð Þ þ m4u2
2 t � tð Þ

þ m5u1 t � tð Þu2 t � tð Þ þ m6u1ðtÞu1 t � tð Þ þ m7u1 tð Þu2 t � tð Þ

þ m8u1 tð Þu2
1 t � tð Þ þ m9u1 tð Þu2

2 t � tð Þ þ h:o:t:;

du2

dt
¼ n1u1 t � tð Þ þ n2u2 t � tð Þ þ n3u2

1 t � tð Þ þ n4u2
2 t � tð Þ

þ n5u1 t � tð Þu2 t � tð Þ þ n6u1 t � tð Þu2 tð Þ þ n7u2 tð Þu2ðt � tÞ

þ n8u1 t � tð Þu2
2 t � tð Þ þ n9u2

1 t � tð Þu2 t � tð Þ þ n10u2 tð Þu2
2 t � tð Þ

þ n11u1 t � tð Þu2ðtÞu2 t � tð Þ þ n12u2
1 t � tð Þu2 tð Þ þ h:o:t:;

(2.1)

ere

¼ cx�2
mx�2 þ x�1

�b

� �
x�1; m2 ¼

mcx�2
ðmx�2 þ x�1Þ

2
� c

mx�2 þ x�1

  !
x�1;

¼ � cx�1x�2

mx�2 þ x�1
� 	3

; m4 ¼
mcx�1

mx�2 þ x�1
� 	2

� m2cx�2

mx�2 þ x�1
� 	3

;

¼ c

mx�2 þ x�1
� 	2

� 2mcx�2

mx�2 þ x�1
� 	2

; m6 ¼
cx�2

mx�2 þ x�1
�b;

¼ mcx�2

mx�2 þ x�1
� 	2

� c

mx�2 þ x�1
; m8 ¼ � cx�2

mx�2 þ x�1
� 	3

;

¼ mc

mx�2 þ x�1
� 	2

� m2cx�2

mx�2 þ x�1
� 	3

; n1 ¼
rx�2

mx�2 þ x�1
� rx�1x�2

mx�2 þ x�1
� 	2

;

¼ � mrx�1x�2

mx�2 þ x�1
� 	2

; n3 ¼ � rx�2

mx�2 þ x�1
� 	2

; n4 ¼ � m2rx�1x�2

mx�2 þ x�1
� 	3

;

¼ 2mrx�1x�2

mx�2 þ x�1
� 	3

� mrx�2

mx�2 þ x�1
� 	2

; n6 ¼
r

mx�2 þ x�1
� rx�1

mx�2 þ x�1
� 	2

;

¼ � mrx�1

mx�2 þ x�1
� 	2

; n8 ¼ � m2rx�2

mx�2 þ x�1
� 	3

; n9 ¼
2mrx�2

mx�2 þ x�1
� 	3

;

¼ � m2rx�1

mx�2 þ x�1
� 	3

; n11 ¼
2mrx�1

mx�2 þ x�1
� 	3

� mr

mx�2 þ x�1
� 	2

; n12 ¼ � r

mx�2 þ x�1
� 	2
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Obviously, if m1n2 6¼ m2n1, then, l = 0 is not a root of
(2.3). For t = 0 the characteristic equation (2.3) becomes:

l2 � m1 þ n2ð Þl þ m1n2 � m2n1 ¼ 0 (2.4)

It is easy to see that Eq. (2.4) have two negative real
roots if the following condition:

H2. m1 + n2 < 0, m1n2 � m2n1 > 0

holds.

Multiplying e
lt

on both sides of (2.3), it is obvious to
obtain:

l2elt � m1 þ n2ð Þl þ m1n2 � m2n1ð Þ e�lt ¼ 0 (2.5)

For v0> 0, iv0 is a root of (2.5) if and only if

�v2
0 eiv0t � m1 þ n2ð Þiv þ m1n2 � m2n1ð Þ e�iv0t ¼ 0 (2.6)

Separating the real and imaginary parts of (2.6), we get:

m1n2 � m2n1 � v2
0

� 	
cosv0t ¼ 0;

v2
0 þ m1n2 � m2n1

� 	
sinv0t ¼ m1 þ n2ð Þv0

8<
: (2.7)

If the condition (H2) holds, we can easily check that
cosv0t 6¼ 0. Then, it follows from (2.7) that:

m1n2 � m2n1 ¼ v2
0

which leads to:

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1n2 � m2n1
p

(2.8)

From the second equation of (2.7), we can easily obtain:

tk ¼
1

v0
arcsin

ðm1 þ n2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m1n2 � m2n1
p

2ðm1n2 � m2n1Þ
þ 2kp

� �
; k

¼ 0; 1; 2; � � � : (2.9)

From (2.7), we know that (2.3) has a simple pair of
purely imaginary roots �iv0 at tk k ¼ 0; 1; 2; � � �ð Þ

Let lk tð Þ ¼ ak tð Þ þ ivk tð Þ be the root of Eq. (2.3)
satisfying ak tkð Þ ¼ 0; vk tkð Þ ¼ v0

Assume that

H3. 4 m1n2 � m2n1ð Þ2

þ m1 þ n2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 m1n2 � m2n1ð Þ2 � m1 þ n2ð Þ2

q
> 2 m1 þ n2ð Þ2

Then, the following transversality condition holds.
Lemma 2.2. If (H1), (H2) and (H3) are satisfied, then

dak tð Þ
dt t ¼ tkj > 0

Proof. Differentiating the equation (2.3) with respect to
t leads to:

dl
dt

� ��1

¼ 2l elt þ m1 þ n2ð Þt � 2 m1n2 � m2n1ð Þt e�lt

2 m1n2 � m2n1ð Þt e�ltl � m1 þ n2ð Þl

When t = tk, iv0 is a purely imaginary root of (2.3). We
then easily get:

dak tð Þ
dt

� ��1

jt¼tk

¼ 4v4
0 cos2v0tk � 2v3

0 m1 þ n2ð Þ cosv0tk

½2v3
0 sinv0tk�

2 þ ½2v3
0 cosv0tk � m1 þ n2ð Þvk�

2

(2.10)

From (2.7), we have:

sinv0tk ¼
m1 þ n2

2v0
; cosv0tk ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4v2

0 � m1 þ n2ð Þ2
q

2v0

Hence,

dak tð Þ
dt

� ��1

jt¼tk
¼

v2
0 4 m1n2 � m2n1ð Þ � 2 m1 þ n2ð Þ2
h i2

2v3
0sinv0tk

� �2 þ 2v3
0cosv0tk � m1 þ n2ð Þvk

� �2

�
v2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 m1n2 � m2n1ð Þ � m1 þ n2ð Þ2

q
2v3

0sinv0tk

� �2 þ 2v3
0cosv0tk � m1 þ n2ð Þvk

� �2
Under the condition (H3), we know that

dak tð Þ
dt

t ¼ tkj > 0;

completing the proof. Lemma 2.2 implies that the roots lk

(t) of characteristic equation (2.3) near tk crosses the
imaginary axis from the left to the right as t continuously
varies from a number less than tk to one greater than tk by
Rouché’s theorem [31].

Applying Lemma 2.1, we obtain the following results:
Lemma 2.3. If (H1), (H2) and (H3) are satisfied, then

(i) if t 2 ½0; t0Þ, all roots Eq. (2.3) have negative real parts;

(ii) if t = t0, all roots of Eq. (2.3) except �iv0 have negative

real parts;

(iii) if t 2 [tk, tk+1) for k = 0, 1, 2, ..., Eq. (2.3) have 2 (k + 1)

roots with positive real parts.

Spectral properties of Eq. (2.3) immediately lead to the
properties of the zero solutions to system (2.2), and
equivalently, of the positive equilibrium E� for system (1.6).

Theorem 2.4. Suppose that (H1), (H2) and (H3) are

satisfied. Then, the positive equilibrium E� of system (1.6) is

asymptotically stable when t 2 ½0; t0Þ, and unstable when

t > t0. Moreover, at t = tk, k = 0, 1, 2, ..., � iv0 are a simple pair

imaginary roots of (2.3), and (1.6) undergoes a Hopf bifurcation

near E�.

3. Direction and stability of the Hopf bifurcation

In the previous section, we have obtained conditions for
Hopf bifurcations to occur when t = tk. In this section, we
will employ the algorithm of Faria and Maglhalaes [28] to
compute explicitly the normal forms of system (1.6) on the
center manifold. After that, we will investigate the
direction of the Hopf bifurcation and stability of the
bifurcating periodic orbits from the positive equilibrium E�
of system (1.6) at these critical values of tk. We know that
Eq. (2.3) has a pair of purely imaginary roots �iv0 when
t = tk and system (1.6) undergoes a Hopf bifurcation from



E�. 

sys

Ma

the
diff

in t

du

dt

wh

L tð 

F fð 

wh

C �½ ð 

rem
h uð 

tion

f 7!

h uð 

wh
sati
and
du
dt ¼

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

F1ð

F2ð
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Let m = t–tk, then m = 0 is the Hopf bifurcation value of
tem (1.6).
Throughout this section, we refer to Faria and
glhalaes [28] for the meaning of the notations involved.
Normalizing the delay t by the time-scaling t ! t/t, then

 system (2.1) can be rewritten as a functional
erential equation in C ½�1; 0�; R2

� �
:

Let u = (u1(t), u2(t))T, then, system (3.1) can be rewritten
he following vector form:

¼ L tð Þ utð Þ þ F ut; tð Þ; (3.2)

ere

Þ fð Þ ¼ t
m1f1 �1ð Þ þ m2f2 �1ð Þ
n1f1 �1ð Þ þ n2f2 �1ð Þ

� �
;

; tÞ ¼ t
F1 f; tð Þ
F2 f; tð Þ

� �

ere f ¼ f1; f2ð ÞT 2 C �1; 0½ �ð Þ; R2
�
; and

Obviously, L(t) is a continuous linear function mapping
1; 0�Þ; R2

�
into R2. By the Riesz representation theo-

, there exists a 2 � 2 matrix function
; tÞ; �1 � u � 0, whose elements are of bounded varia-

 such that

 F C ; fð Þ (3.3)

In fact, we can choose

; tÞ ¼ �t
m1 m2

n1 n2

� �
d u þ 1ð Þ; (3.4)

ere d denotes Dirac delta function. Then, (3.3) is
sfied. If f is any a given function in C �1; 0½ �ð Þ; R2

�
 u(f) is the unique solution to the linearized equation

then the solution operator T tð Þ : C �1; 0½ �; R2
� �

!
C �1; 0½ �ð Þ; R2

�
is defined by

T tð Þf ¼ ut fð Þ; t 	 0 (3.5)

From Lemma 7.1.1 in Hale [32], we know that T tð Þ; t 	 0,
is a strongly continuous semigroup of linear transforma-
tion on 0½ ; 1Þ and the infinitesimal generator A(t) of T(t),
t 	 0 is given by

A tð Þf uð Þ ¼ ḟ uð Þ þ X0 uð Þ L tð Þ fð Þ � ḟ 0ð Þ
h i

for f 2 C �1; 0½ �ð Þ; R2
�
; (3.6)

where

X0 uð Þ ¼ 0; �1 � u < 0;
I; u ¼ 0


(3.7)

For c 2 C �1; 0½ �ð Þ; R2
� ���

, define

A�c sð Þ ¼ �ċ sð Þ þ X0 �sð Þ
Z 0

�1
c �tð Þdh t; tkð Þ þ ċ 0ð Þ

" #

(3.8)

and a linear inner product

< c; f > ¼ c̄ 0ð Þf 0ð Þ �
Z 0

�1

Z u

j¼0
cT j � uð Þdh uð Þf jð Þdj;

(3.9)

where h uð Þ ¼ h u; 0ð Þ the A ¼ A 0ð Þ and A* are adjoint
operators. By the discussions in Section 2, we know that
�iv0tk are eigenvalues of A(0), and they are also eigenvalues
of A* corresponding to iv0tk and –iv0tk, respectively. Let
L ¼ �iv0tk; iv0tkf g and denote by P the invariant space of

du1

dt
¼ t½m1u1 t � 1ð Þ þ m2u2 t � 1ð Þ þ m3u2

1 t � 1ð Þ þ m4u2
2 t � 1ð Þ

þ m5u1 t � 1ð Þu2 t � 1ð Þ þ m6u1 tð Þu1 t � 1ð Þ þ m7u1 tð Þu2 t � 1ð Þ

þ m8u1 tð Þu2
1 t � 1ð Þ þ m9u1 tð Þu2

2 t � 1ð Þ þ h:o:t:�;

du2

dt
¼ t½n1u1 t � 1ð Þ þ n2u2 t � 1ð Þ þ n3u2

1 t � 1ð Þ þ n4u2
2 t � 1ð Þ

þ n5u1 t � 1ð Þu2 t � 1ð Þ þ n6u1 t � 1ð Þu2 tð Þ þ n7u2 tð Þu2 t � 1ð Þ

þ n8u1 t � 1ð Þu2
2 t � 1ð Þ þ n9u2

1 t � 1ð Þu2 t � 1ð Þ þ n10u2 tð Þu2
2 t � 1ð Þ

þ n11u1 t � 1ð Þu2ðtÞu2 t � 1ð Þ þ n12u2
1 t � 1ð Þu2 tð Þ þ h:o:t:�

(3.1)

f; t Þ ¼ m3f
2
1 �1ð Þ þ m4f

2
2 �1ð Þ þ m5f1 �1ð Þu2 �1ð Þ þ m6f1 0ð Þf1 �1ð Þ

þ m7f1 0ð Þf2 �1ð Þ þ m8f1 0ð Þf2
1 �1ð Þ þ m9f1 0ð Þf2

2 �1ð Þ þ h:o:t:;

f; t Þ ¼ n3f
2
1 �1ð Þ þ n4f

2
2 �1ð Þ þ n5f1 �1ð Þf2 �1ð Þ þ n6f1 �1ð Þf2 0ð Þ

þ n7f2 0ð Þf2 �1ð Þ þ n8f1 �1ð Þf2
2 �1ð Þ þ n9f

2
1 �1ð Þf2 �1ð Þ

þ n10f2 0ð Þf2
2 �1ð Þ þ n11f1 �1ð Þf2 0ð Þf2 �1ð Þ þ n12f

2
1 �1ð Þf2 0ð Þ þ h:o:t::
k) associated with L, where the dimension of P equals
 L tð Þut of Eq. (3.2) with the initial function f at zero, A(t
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to 2. Now, we can decompose the space C :¼ C �1; 0½ �ð Þ; R2
�

as C = P
Q by applying the formal adjoint theory for
functional differential equations in [32].

Consider the complex coordinates and still denote
C �1; 0½ �ð Þ; R2

�
as C. Suppose that F = (F1, F2) is a basis of P

and

F1ðuÞ ¼ eiv0tkuð1; j; ÞT ; F2ðuÞ ¼ F1ðuÞ; �1 � u � 0;

where

j ¼ iv0 eiv0tk � m1

m2
:

Also, the two eigenvectors C1, C2 of A* corresponding
to the eigenvalues iv0tk, –iv0tk, respectively, construct a
basis C = (C1, C2)T of the adjoint space P* of P and

C1 uð Þ ¼ Ee�iv0tks 1; hð ÞT ; C2 uð Þ ¼ C1 uð Þ; 0 � s � 1;

where

h ¼ � iv0 eiv0tk þ m1

n1
;

E ¼ 1

1 þ j̄h þ m1 eiv0tk þ m2h eiv0tk þ m2 eiv0tk þ n2j̄h eiv0tk

:

Thus, C ; Fð Þ ¼ C j; Fi

� 	
; i; j ¼ 1; 2

� 	
¼ I2; where I2 is a

second-order identical matrix. It is known that Ḟ ¼ FB,
where

B ¼
iv0tk 0

0 �iv0tk

0
@

1
A:

Take the enlarged phase space C by considering the
space
BC :¼ f : �1; 0½ � ! C2jf is continuous on �1; 0½ � and

n
limu ! 0�f uð Þ existsg: The projection f 7! F C ; fð Þ of C

upon P, associated with the decomposition C = P
Q, is now
replaced by p : BC ! P such that p f þ X0að Þ ¼
F C ; fð Þ þ C 0ð Þa½ �.

Thus, we have the decomposition BC = P
Kerp. Using
the decomposition ut ¼ fx tð Þ þ yt; x tð Þ 2 C2; yt 2 Kerp \ C1

¼ Q1, and by Theorem 7.6.1 in [32], we can decompose
(3.2) as

dx

dt
¼ Bx þ c 0ð ÞF0 Fx þ y; mð Þ;

dy

dt
¼ A t̃ð Þ Q1

��� y þ I � pð ÞX0F0 Fx þ y; mð Þ;

8>><
>>: (3.10)

where F0 f; mð Þ ¼ L mð Þ fð Þ þ F f; tk þ mð Þ. In view of the
Taylor expansion, we denote, respectively,

C 0ð ÞF0 Fx þ y; mð Þ and I � pð ÞX0F0 Fx þ y; mð Þ as:

C 0ð ÞF0 Fx þ y; mð Þ ¼ 1

2
f 1
2 x; y; mð Þ þ 1

3
f 1
3 x; y; mð Þ þ � � � ;

I � pð ÞX0F0 Fx þ y; mð Þ ¼ 1

2
f 2
2 x; y; mð Þ þ 1

3
f 2
3 x; y; mð Þ þ � � � ;

8><
>:

(3.11)

where f 1
j x; y; mð Þ and f 2

j x; y; mð Þ are homogeneous poly-
nomials in (x, y, m) of degree j, j = 2, 3,. . ., with coefficients
in C2 and Kerp, respectively. The normal form method gives
a normal form on the center manifold of the origin for
(3.10) as

ẋ ¼ Bx þ 1

2
g1

2 x; 0; mð Þ þ 1

3
g1

3 x; 0; mð Þ þ � � � ; (3.12)

where g1
j x; 0; mð Þ are homogeneous polynomials in (x, m) of

degree j, j = 2, 3,. . .

In what follows, we first define the operators M1
j as

M1
j pð Þ x; mð Þ ¼ Dx p x; mð ÞBx � B p x; mð Þ; j 	 2 (3.13)

In particular, M1
j mlxqek

� 	
¼ iv0tk q1 � q2 þ �1ð Þk

� �
mlxqek; l þ q1 þ q2 ¼ j; k ¼ 1; 2 for j ¼ 2; 3; q ¼ q1; q2ð Þ
2 N2

0 ; l 2 N0 and e1; e2f g is the canonical basis for
C2. Therefore, we have

Ker M1
2

� 	
¼ span

x1m

0

  !
;

0

x2m

  !( )
;

Ker M1
3

� 	
¼ span

x2
1x2

0

  !
;

x1m
2

0

  !
;

0

x1x2
2

  !
;

0

x2m
2

  !( )

By (3.10), we have

f 1
2 x; y; mð Þ ¼ 2C 0ð Þ L mð Þ Fx þ yð Þ þ F2 Fx þ y; tkð Þ½ �

(3.14)

Noting that L(m) = m / tkL(tk), we have

f 1
2 x; 0; uð Þ ¼

2A1x1m þ 2A1mx2 þ a20x2
1 þ 2a11x1x2 þ a02x2

2

2Ā1x1m þ 2Ā2x2mx2 þ ā20x2
1 þ 2ā11x1x2 þ ā02x2

2

0
@

1
A

(3.15)

where

Since the second-order terms in (m, x) on the center
manifold are given by

1

2
g1

2 x; 0; mð Þ ¼ 1

2
ProjKer M1

2ð Þ f 1
2 x; 0; mð Þ; (3.17)

it follows that

1

2
g1

2 x; 0; mð Þ ¼ A1x1m
Ā1x2m

� �
; (3.18)

A1 ¼ E m1 e�iv0tk þ m2 e�iv0tkj þ h n1 e�iv0tk þ n2 e�iv0tkj
� �h i

;

A2 ¼ E m1 eiv0tk þ m2 eiv0tk j̄ þ h n1 eiv0tk þ n2 eiv0tk j̄
� �h i

;

a20 ¼ 2Etk m3 e�2iv0tk þ m4 e�2iv0tkj2 þ m5 e�2iv0tkj þ m6 e�iv0tk þ m7 e�iv0tkj
h i

;

a11 ¼ 2Etk m3 þ m4jjj2 þ m5Re jf g þ m6Re eiv0tk

n o
þ m7 eiv0tk j̄

h i
;

a02 ¼ 2Etk m3 e2iv0tk þ m4 e2iv0tk þ m5 e2iv0tk j̄ þ m6 eiv0tk þ m7 eiv0tk j̄
h i

(3.16)
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ere A1 defined by (3.16).
In the following, we shall compute the cubic term
x; 0; m Þ. First, we note that

x; 0; m Þ 2 Ker M1
3

� 	
¼ Span

x2
1x2

0

  !
;

x1m
2

0

  !
;

0

x1x2
2

� �
;

0

x2m
2

� �( )

However, the terms O 0 xj jm2
� 	

are irrelevant to
ermine the generic Hopf bifurcation. Hence, it is only

ded to compute the coefficients of x2
1x2

0

� �
and

0

1x2
2

�
. Let

 span
x1m

0

� �
;

0
x2m

� � �
;

n we have

x; 0; mð Þ ¼ 1

3!
ProjKer M1

3ð Þ f
1

3 x; 0; mð Þ

¼ 1

3!
Projs f

1

3 x; 0; 0ð Þ þ O 0 xj jm2
� 	

;

ere

x; 0; 0 Þ ¼ f 1
3 x; 0; 0ð Þ þ 3

2
Dx f 1

2

� 	
U1

2 � DxU1
2g1

2

� 	� �
x;0;0ð Þ

þ 3

2
Dy f 1

2

� 	
h

� �
x;0;0ð Þ

he third-order term of the equation, which is obtained
r computing the second-order terms of the normal
, U1

2 x; 0ð Þ is the solution to equation
U1

2 x; 0ð Þ ¼ f 1
2 x; 0; 0ð Þ, and h = (h1, h2)T is a second

ogeneous polynomial in (x1, x1, m) with coefficients in

From (3.1) and (3.2) and from (3.18) we can easily see
t g1

2 x; 0; 0ð Þ ¼ 0 and

js f 1
3 x; 0; 0ð Þ ¼ 3a21x2

1x2

3ā21x1x2
2

� �
;

ere

¼ E 2m8 þ 2m9jjj2
� �

þ Eh 2n8jjj2 e�iv0tk þ 2n9j e�iv0tk

�
þ 2n10jjj2j þ n11 jjj2 e�iv0tk þ j2 þ j̄

� �
þ 2n12j

Therefore, we have DxU1
2

� 	
g1

2

� �
x;0;0ð Þ ¼ 0. In the sequel,

 only need to compute U1
2 x; 0ð Þ and h(x)(u).

From (3.15), we have:

x; 0; 0 Þ ¼ a20x2
1 þ 2a11x1x2 þ a02x2

2

ā02x2
1 þ 2ā11x1x2 þ ā20x2

2

� �

In view of the definition of M1
2, the equation

M1
2U1

2 x; 0ð Þ ¼ f 1
2 x; 0; 0ð Þ can be written as the following

partial differential equations:

x1
@u1

@x1
�x2

@u1

@x2
�u1 ¼

1

iv0tk
a20x2

1 þ 2a11x1x2 þ a02x2
2

� 	
;

x1
@u2

@x1
�x2

@u2

@x2
þu2 ¼

1

iv0tk
ā02x2

1 þ 2ā11x1x2 þ ā20x2
2

� 	
8>><
>>:

(3.19)

From (3.19), we can easily obtain:

U1
2 x; 0ð Þ ¼

1

iv0tk
a20x2

1 � 2a11x1x2 �
1

3
a02x2

2

� �
1

iv0tk

1

3
ā02x2

1 þ 2ā11x1x2 � ā20x2
2

� �
0
BB@

1
CCA

Thus, we obtain:

Projs Dx½ f 1
2

	
U1

2

� �
x;0;0ð Þ

¼

2 i

v0tk
a20a11 � 2ja11j2 �

1

3
ja02j2

� �
x2

1x2

	
�2 i

v0tk
ā20ā11 � 2ja11j2 �

1

3
ja02j2

� �
x2

1x2

	
0
BBB@

1
CCCA

In what follows, we shall compute Projs Dx f 1
2

	
h

� �
x;0;0ð Þ.

From (3.14), we know

f 1
2 x; y; 0ð Þ ¼ 2C 0ð ÞF Fx þ y; tkð Þ

¼ 2tk

E m3e2
1 þ m4e2

2 þ m5e1e2 þ m6e1e3 þ m7e2e3

� 	
þEh n3e2

1 þ n5e2
2 þ n6e1e4 þ n7e2e4

� 	
Ē m3e2

1 þ m4e2
2 þ m5e1e2 þ m6e1e3 þ m7e2e3

� 	
þĒh̄ n3e2

1 þ n5e2
2 þ n6e1e4 þ n7e2e4

� 	

0
BBBBBBB@

1
CCCCCCCA
;

(3.20)

where

e1 ¼ e�iv0tk x1 þ eiv0tk x2 þ y1 �1ð Þ;

e2 ¼ e�iv0tkjx1 þ eiv0tk j̄x2 þ y2 �1ð Þ;

e3 ¼ x1 þ x2 þ y1 0ð Þ;

e4 ¼ x1 þ x2 þ y2 0ð Þ

since h = (h(1), h(2))T is a second-order homogeneous
polynomial in (x1, x2, m) with coefficients in Q1. Hence, we
can let:

h ¼ h110x1x2 þ h101x1m þ h011x2m þ h200x2
1 þ h020x2

2

þ h002m
2 (3.21)

Thus, from (3.20), we obtain

Dy f 1
2

	
h

� �
x;0;0;ð Þ ¼ 2tk

K1

K2

� �
;



C. Xu, P. Li / C. R. Biologies 338 (2015) 227–240234
where

where

e0
1 ¼ e�iv0tk x1 þ eiv0tk x2; e0

2 ¼ e�iv0tkjx1 þ eiv0tk j̄x2;

e0
3 ¼ x1 þ x2; e0

4 ¼ x1 þ x2

Therefore,

Dy f 1
2

	
h

� �
x;0;0;ð Þ ¼

2B3x2
1x2

2B̄3x1x2
2

� �
;

where

B3 ¼ �mEtk j3h 1ð Þ
110 0ð Þ þ j̄3h 1ð Þ

200 0ð Þ þ h 3ð Þ
110 0ð Þ þ h 3ð Þ

200 0ð Þ
� �

Since h110(u) and h200(u) for u 2 �1; 0½ � appear in B3, we
still need to compute them.

Following [28], we know that h = h (u; x1, x2, m) is the
unique solution in the linear space of homogeneous
polynomials of degree 2 in 3 real variable (x, m) = (x1, x2,

m) of the equation

M2
2 hð Þ x; mð Þ ¼ 2 I � pð ÞX0 L mð Þ Fxð Þ þ F Fx; tkð Þ½ �

�
; (3.22)

since

M2
2 hð Þ x; mð Þ ¼ Dxh x; mð ÞBx � A tkð Þ Q1

��� h x; mð Þð Þ
�

(3.23)

Combining the definition (3.6) of the operator A(t), we
can obtain:

Dxh x; mð ÞBx � ḣ x; mð Þ � X0 uð Þ L tð Þ h x; mð Þð Þ � ḣ x; mð Þ 0ð Þ
h i

¼ 2 I � pð ÞX0 L mð Þ Fxð Þ þ F Fx; tkð Þ½ �

For the sake of simplicity, let:

h ¼ h110 uð Þx1x2 þ h200 uð Þx2
1 þ h020 uð Þx2

2 (3.24)

Then, h0 can be evaluated by the system

ḣ0 xð Þ � Dxh0 x; mð ÞBx ¼ 2FC 0ð Þ L 0ð Þ Fxð Þ þ F Fx; tkð Þ½ �; (3.25)

ḣ0 xð Þ � L tkð Þ h0 xð Þð Þ ¼ 2 L 0ð Þ Fxð Þ þ F Fx; tkð Þ½ �; (3.26)

where ḣ0 denote the derivative of h0 with respect to u.
In view of (3.14), (3.15), (3.25) and (3.26), we know that

h110 ¼ h1
110; h2

110

� 	T
and h200 ¼ h1

200; h2
200

� 	T
are the solution

to the following two equations:

ḣ110 ¼ 2 a11F1 þ ā11F2ð Þ;

ḣ110 0ð Þ � L tkð Þ h0 xð Þð Þ ¼ 4tk

p1

p2

  !
;

8>><
>>: (3.27)

ḣ200 � 2iv0tkh200 ¼ a20F1 þ ā02F2Þ;

ḣ200 0ð Þ � L tkð Þ h200ð Þ ¼ tk

q1

q2

  !
;

8>><
>>: (3.28)

respectively, where

p1 ¼ m3þ m4 jj j2þ m5 Re jf gþ m6 Re eiv0tk

n o
þ m7 Re j e�iv0tk

n o
p2 ¼ n3þ n4 jj j2 þ n5 Re jf g þ n6 Re j e�iv0tk

n o
þ n7 Re j e�iv0tk

n o
;

q1 ¼ m3 e�2iv0tk þ m4 e�2iv0tkj2 þ m5j þ m6e�iv0tk þ m7j e�iv0tk ;

q2 ¼ n3 e�2iv0tk þ n4 e�2iv0tkj2þ n5j þ n6j e�iv0tk þ n7j e�iv0tk

Solving the Eq. (3.27) and (3.28), we have

h110 uð Þ ¼ 2

iv0tk
a11F1 � ā11F2ð Þ þ C;

h200 uð Þ ¼ � a20

iv0tk
F1 �

ā20

3iv0tk
F2 þ D e2iv0tk ;

8>>><
>>>:

(3.29)

where C = (c1, c2)T, D = (d1, d2)T are the solution to the
following linear algebra equations:

m1 e�iv0tk m2 e�iv0tk

n1 e�iv0tk n2 e�iv0tk

� �
c1

c2

� �
¼ �4

p1

p2

� �
; (3.30)

2iv0 � m1 e2iv0tk �m2 e2iv0tk

�n1 e2iv0tk 2iv0 � m2 e2iv0tk

  !
d1

d2

� �
¼

q1

q2

� �
;

(3.31)

K1 ¼ E 2m3e0
1h 1ð Þ �1ð Þ þ m5e0

2h 1ð Þ �1ð Þ þ e0
1hð1Þ 0ð Þ

h i
þ m7e0

2h 1ð Þ 0ð Þ� þ Eh 2n3e0
1h 1ð Þ �1ð Þ þ n6e0

4h 1ð Þ �1ð Þ
h i

þ E 2m4e0
2h 2ð Þ �1ð Þ

h
;

þ m5e0
1h 2ð Þ �1ð Þ þ m7e0

3h 2ð Þ �1ð Þ� þ Eh 2n5e0
2h 2ð Þð�1Þ þ n6e0

1h 2ð Þ 0ð Þ
h

þ n7 e0
4h 2ð Þð�1Þ þ e0

2h 2ð Þ 0ð Þ
� �i

;

K2 ¼ Ē 2m3e0
1hð1Þ �1ð Þ þ m5 e0

2hð1Þ �1ð Þ þ e0
1hð1Þ �1ð Þ

� �
þ m6e0

3h 1ð Þ �1ð Þ
h
þ m7e0

2h 1ð Þ 0ð Þ
i
þ Ēh̄ 2n3e0

1h 1ð Þð�1Þ þ n6e0
4h 1ð Þ �1ð Þ

h i
þ Ē 2m4e0

2h 2ð Þ �1ð Þ
h

þ m5e0
1h 2ð Þ �1ð Þ þ m7e0

3h 2ð Þ �1ð Þ
i
þ Ēh̄ 2n5e0

2h 2ð Þ �1ð Þ þ n6e0
1h 2ð Þ 0ð Þ

h
þ n7ðe0

4h 2ð Þ �1ð Þ þ e0
2h 2ð Þ 0ð Þ

i
;
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pectively. We know that

x; 0; 0ð Þ ¼ A3x2
1x2

Ā3x1x2
2

� �
; (3.32)

ere

¼ i

2v0tk
a20a11 � 2 a11j j2 � 1

3
a02j j2

� �
� 1

2
B3 (3.33)

Accordingly, the normal form (3.12) of (3.10) has the
owing form

x þ A1x1m
Ā1x2m

� �
þ A3x2

1x2

Ā3x1x2
2

� �
þ O xj jm2 þ xj j4

� �

The normal form (3.12) relative to P can be written in
l coordinates (v1, v2) through the change of variables

 v1� iv2, x2 = v1 + iv2. Setting v1 = r cosn, v2 = r sinn,
n this form becomes

 ¼ k1mr þ k2r
3 þ O m2r þ r; mð Þj j4

� �
;

ṅ ¼ �sk þ O r; mð Þj jð Þ;
(3.34)

ere k1 ¼ Re A1f g; k2 ¼ Re A3f g. Following [33], we know
t the sign of k1k2 determines the direction of the Hopf
rcation and the sign of k2 determines the stability of

 nontrivial periodic solution bifurcating from the Hopf
rcation. The Hopf bifurcation is supercritical when

2 < 0 and subcritical if k1k2 > 0. In addition, the
rcating periodic solution on the center manifold is
le provided that k2 < 0 and unstable if k2 > 0.

Summarizing the above analysis, we have the following
ult.
Theorem 3.1. The flow of Eq. (3.2) with m = 0 on the

ter manifold of the origin is given by (3.34). Hopf

rcation is supercritical if k1k2 < 0 and subcritical if

2 > 0. Moreover, the nontrivial periodic solution is stable if

 0 and unstable if k2 > 0.

umerical examples

In this section, we present some numerical results for
e particular values of the parameters associated with

 model system (1.6). We consider the system (1.6) with
 1, b = 2, c = 0.3, m = 0.5, d = 0.8, r = 2. That is,

x1

t
¼ x1 1 � 2x1 t � tð Þ � 0:3x2 t � tð Þ

0:5x2 t � tð Þ þ x1 t � tð Þ

� �
;

dx2

dt
¼ x2 �0:8 þ 2x1 t � tð Þ

0:5x2 t � tð Þ þ x1 t � tð Þ

� �
;

(4.35)

ich has a positive equilibrium E� ¼ 0:32; 0:96ð Þ. By
ans of software Matlab, we obtain:

Then, the stability determining quantities for Hopf
bifurcating periodic solutions are given by k1 = 0.1912,
k2 = �0.1377. From Theorem 2.4, we know that the positive
equilibrium E� 0:32; 0:96ð Þ is asymptotically stable when
t 2 0; 1:94Þ½ and is unstable when t > 1.94. The numerical
simulations for t = 1.9 and t = 2 are shown on Figs. 1–8,
respectively. From Theorem 3.1, we know that system
(4.35) with t = 1.94 has a supercritical Hopf bifurcation and
the nontrivial periodic solution bifurcating from the Hopf
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Fig. 1. Trajectory portrait and phase portrait of system (4.35) with

t = 1.9 < t0� 1.94. The positive equilibrium E� 0:32; 0:96ð Þ is

asymptotically stable. The initial value is (0.2, 1.5).
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Fig. 2. Trajectory portrait and phase portrait of system (4.35) with

t = 1.9 < t0� 1.94. The positive equilibrium E� 0:32; 0:96ð Þ is

asymptotically stable. The initial value is (0.2, 1.5).

¼ 0:9254; t0 ¼ 1:940; j ¼ 10:2032 � 5:3126 i; h ¼ 0:1073 þ 0:2435 i;

 0:0107 � 0:04131 i; A1 ¼ 0:1912 þ 0:3103 i; A2 ¼ �0:2956 � 0:2391 i;

¼ 0:7443 � 0:3476 i; a11 ¼ 0:0252 � 0:0395 i; a02 ¼ �0:7005 � 0:4669 i;

¼ 1:0411 þ 0:0012 i; c2 ¼ �0:3589 � 0:8993 i; d1 ¼ 2:1251 þ 0:9696 i;

¼ 0:4998 þ 0:5933 i; h 1ð Þ
110 0ð Þ ¼ 0:2013 � 10:0882 i; hð1Þ200 0ð Þ ¼ 2:3266 þ 7:0852 i;
¼ 0:3092 � 0:5112 i; A3 ¼ �0:1377 � 1:3126 i
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Fig. 6. Trajectory portrait and phase portrait of system (4.35) with

t = 2 < t0� 1.94. Hopf bifurcation occurs from the positive equilibrium

E� 0:32; 0:96ð Þ. The initial value is (0.2, 1.5).
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Fig. 3. Trajectory portrait and phase portrait of system (4.35) with

t = 1.9 < t0� 1.94. The positive equilibrium E� 0:32; 0:96ð Þ is asymptotically

stable. The initial value is (0.2, 1.5).
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Fig. 4. Trajectory portrait and phase portrait of system (4.35) with

t = 1.9 < t0� 1.94. The positive equilibrium E� 0:32; 0:96ð Þ is asymptotically

stable. The initial value is (0.2, 1.5).
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Fig. 5. Trajectory portrait and phase portrait of system (4.35) with

t = 2 < t0� 1.94. Hopf bifurcation occurs from the positive equilibrium

E� 0:32; 0:96ð Þ. The initial value is (0.2, 1.5).
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Fig. 7. Trajectory portrait and phase portrait of system (4.35) with

t = 2 < t0� 1.94. Hopf bifurcation occurs from the positive equilibrium

E� 0:32; 0:96ð Þ. The initial value is (0.2, 1.5).

0

200

400

600

0.2

0.3

0.4

0.5
0

0.5

1

1.5

2

2.5

tx
1
(t)

x 2(t
)

Fig. 8. Trajectory portrait and phase portrait of system (4.35) with

t = 2 < t0� 1.94. Hopf bifurcation occurs from the positive equilibrium

E� 0:32; 0:96ð Þ. The initial value is (0.2, 1.5).
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rcation of (4.35) with t = 1.94 is orbitally asymptoti-
y stable on the center. Moreover, all the roots of

 (2.3) with t = 1.94, except �0.9254i, have negative real
ts. Thus, the center manifold theory implies that the
ility of the periodic solutions projected on the center

nifold coincides with the stability of the periodic solutions
he whole phase space.

lobal continuation of local Hopf bifurcations

In the earlier sections we have established that the
del system (1.6) undergoes a Hopf bifurcation at
x�1; x�2
 	

for t = tk and also investigated the stability of
rcating periodic solutions. We all know that periodic
tions can arise through the Hopf bifurcation in delay

erential equations. However, these bifurcating periodic
tions are generally local, i.e., they only exist in a small

ghborhood of the critical value. Therefore, we want to
w that whether these nonconstant periodic solutions
ained through local Hopf bifurcations exist globally or
. In this section, we will consider the global continua-

 of periodic solutions bifurcating from the positive
ilibrium E� x�1; x�2

� 	
of system (1.6).

Throughout this section, we closely follow the notations
Wu [29]. For the simplification of notations, setting

 ¼ z1 tð Þ; z2 tð Þð ÞT ¼ x1 tð Þ; x2 tð Þð ÞT , we can rewrite system
) as the following form

 ¼ F zt; t; pð Þ; (5.1)

ere zt uð Þ ¼ z1t uð Þ; z2t uð Þð ÞT ¼ z1 t þ uð Þ; z2 t þ uð Þð Þ
�t; 0½ �; R2

 �
. It is easy to see that if the condition (H1)

ds, system (5.1) has a positive equilibrium E� x�1; x�2
� 	

.
Following the work of Wu [29], we need to define:

 C �t; 0½ �; R2
� �

;

¼ Clf z; t; pð Þ 2 X � R � Rþ; z is a nonconstant periodic

solution to 5:1ð Þg;
z̄; t; pð Þ; F z̄; t; pð Þ ¼ 0f g:

Let z̄ be the equilibrium of system (5.1). Then, the
racteristic matrix of (5.1) at the equilibrium z̄ takes the
owing form

; t; pÞ lð Þ ¼ lId � DF z̄; t; pð Þ el � Id
� �

;

ere Id is the identity matrix and DF z̄; t; pð Þ is the Fréchet
ivative of F with respect to zt evaluated at z̄; t; pð Þ. From

 [29], we know that z̄; t; pð Þ is called a center if
; pÞ 2 N and D z̄; t; pð Þ lð Þ ¼ 0. A center z̄; t; pð Þ is said
e isolated if it is the only center in some neighborhood of
; pÞ.

For the benefit of the readers, we first state the global
f bifurcation theory due to Wu [29] for functional

erential equations.
Lemma 5.1. Assume that z̄; t; pð Þ is an isolated center

sfying the hypotheses (A1) – (A4) in Wu [7]. Denote by

C z̄; t; pð Þ the connected component of z̄; t; pð Þ in G. Then,

er

(i) C z̄; t; pð Þ is unbounded, or

(ii) C z̄; t; pð Þ is bounded, C z̄; t; pð Þ \ G is finite and

X
z̄;t; pð Þ 2 C z̄;t; pð Þ \ N

gm z̄; t; pð Þ ¼ 0

for all m = 1,2,. . ., where gm z̄; t; pð Þ is the m-th crossing

number of z̄; t; pð Þ if m 2 J z̄; t; pð Þ, or it is zero if otherwise.

Obviously, if (ii) of Lemma 5.1 is not true, then C z̄; t; pð Þ
is unbounded. Thus, if the projections of C z̄; t; pð Þ onto z-
space and onto p-space are bounded, then the projections
of C z̄; t; pð Þ onto t-space is unbounded. Further, if we can
show that the projections of C z̄; t; pð Þ onto t-space is away
from zero, then the projections of C z̄; t; pð Þ onto t-space
must include the interval t½ ; 1Þ. Based on the idea, we can
prove our results on the global continuation of the local
Hopf bifurcation.

Lemma 5.2. If t is bounded, then all periodic solutions to

(1.6) is uniformly bounded.

Proof. Let x1 tð Þ; x2 tð Þð Þ be a nontrivial solution to (1.6)
and define

x1 j1ð Þ ¼ min x1 tð Þf g; x1 h1ð Þ ¼ max x1 tð Þf g; x2ðj2Þ

¼ min x2 tð Þf g; x2 h2ð Þ ¼ max x2 tð Þf g

with initial value

x1 tð Þ ¼ ’1ðtÞ 	 0; x1 0ð Þ ¼ ’1 0ð Þ > 0; x2 tð Þ ¼ ’2 tð Þ 	 0; x2 0ð Þ

¼ ’2 0ð Þ > 0;

where t 2 �t; 0½ �. Then, it follows from (1.6) that

x1 tð Þ ¼ x1 0ð Þexp

Z t

0
a � bx1ðt � tÞ � cx2ðt � tÞ

mx2ðt � tÞ þ x1ðt � tÞ

� �
ds

 �
;

x2 tð Þ ¼ x2 0ð Þexp

Z t

0
�d þ rx1ðt � tÞ

mx2ðt � tÞ þ x1ðt � tÞ

� �
ds

 �
8>>>><
>>>>:

Thus, x1 tð Þ > 0; x2 tð Þ > 0; which implies that solutions to
(1.6) cannot cross the x-axes and y-axes. Thus, the
nonconstant periodic orbits must be located in the interior
of the first quadrant. If (x1(t), x2(t)) is a solution to (1.6),
then it follows from the first equation of (1.6) that

dx1

dt
< x1 a � bx1 t � tð Þ½ � (5.2)

Clearly, x1 tð Þ < x1 t � tð Þeat for t > t, which implies that
x1 t � tð Þ > x1 tð Þe�at . This, together with (5.2), leads to

dx1

dt
< x1 a � b e�atx1ðtÞ½ �;

for t > t. Then, we obtain that

lim
t ! 1

supx1 tð Þ � a eat

b

Thus,

x1 tð Þ � a eat

b
þ e :¼ M

From the second equation of (1.6), we have

dx2

dt
< r � dð Þx2;

which leads to

x2 tð Þ < e r�dð Þtx2 t � tð Þ
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Then,

x2 t � tð Þ > e d�rð Þtx2 tð Þ

Therefore,

x2 h2 � tð Þ > e d�rð Þtx2 h2ð Þ

Applying the second equation of (1.6), we get

�d þ rx1 h2 � tð Þ
mx2 h2 � tð Þ þ x1 h2 � tð Þ ¼ 0;

i.e.

rx1 h2 � tð Þ
mx2 h2 � tð Þ þ x1 h2 � tð Þ ¼ d

It follows that

rM

m e d�rð Þtx2 h2ð Þ þ M
> d;

which leads to

x2 h2ð Þ <
r � dð ÞM

dm e d�rð Þt :¼ N

Thus, the possible periodic solutions lying in the first
quadrant of (1.6) must be uniformly bounded. This
completes the proof of Lemma 5.2.

Lemma 5.3. If a < d, r < c, then system (1.6) has

nonconstant periodic solution with period t.

Proof. Suppose for a contradiction that system (1.6) has
a nonconstant periodic solution with period t. Then, the
following ordinary differential equations

dx1

dt
¼ x1 a � bx1 tð Þ � cx2 tð Þ

mx2 tð Þ þ x1 tð Þ

� �
;

dx2

dt
¼ x2 �d þ rx1 tð Þ

mx2 tð Þ þ x1 tð Þ

� �
8>><
>>: (5.3)

has nonconstant periodic solution. System (5.3) has a
boundary equilibrium E0(0, 0) and a positive equilibrium
E� x�1; x�2
� 	

, where

x�1 ¼
am2 þ cd � cr

abm
; x�2 ¼

r � dð Þ am2 þ cd � cr
� 	

abdm2

Note that x-axis and y-axis are the invariable manifold
of system (5.3) and the orbits of system (5.3) do not
intersect each other. Thus, there are no solutions crossing
the coordinate axes. On the other hand, consider that if
system (5.3) has a periodic solution, then there must be
an equilibrium in its interior, and that E0(0, 0) is located
on the coordinate axis. Thus, we can conclude that the
periodic orbit of system (5.3) must lie in the first
quadrant.

In the sequel, we will prove that system (5.3) has no
nonconstant periodic solution in the first quadrant.

Define

D ¼ x1; x2ð Þ 2 R2j0 � x1 � M; 0 � x2 � N
n o

:

It is easy to show that D is an ultimately bounded region
(or absorbing and positively invariant set) of system

P x; yð Þ ¼ x1 a � bx1 tð Þ � cx2 tð Þ
mx2 tð Þ þ x1 tð Þ

� �
;

Q x; yð Þ ¼ x2 �d þ rx1 tð Þ
mx2 tð Þ þ x1 tð Þ

� �

Then, a direct computation show that, for (x, y) 2 D and
a < d, r < c,

@P x; yð Þ
@x

þ @Q x; yð Þ
@y

¼ a � d � 2bx1 þ
r � cð Þmx2

2

mx2 þ x1ð Þ2
< 0

Thus, the Bendixson–Dulac criterion, together with
the fact that D is an ultimately bounded region of
(5.3), implies that (5.3) has no nontrivial periodic
solutions, leading to a contradiction. Thus, the proof is
complete.

Theorem 5.4. Assume that a < d, r < c. Let v0 and tk

(k = 0,1,2,. . .) be defined by (2.8) and (2.9), respectively. Then,

for each t > tk (k 	 1), system (1.6) has at least k periodic

solutions.

Proof. Obviously, E�; tk;
2p
v0

� �
is an isolated center of

(1.6). Let
C E�; tk;

2p
v0

� �
denote the connected component passing

through E�; tk;
2p
v0

� �
in G. It follows from Theorem 2.4 that

C E�; tk;
2p
v0

� �
is nonempty. It is only necessary to prove that

the projection of C E�; tk;
2p
v0

� �
onto t-space is t̄½ ; 1Þ for

each j > 0, where t̄ � tk.
By Lemma 2.2 and 2.3, there exists e > 0, d > 0 and a

smooth curve l: (tk – d, tk + d) ! C such that det D l tð Þð Þ ¼
0; jl tð Þ � iv0j < e for all t 2 tk � d; tk þ d½ �, and l tkð Þ ¼
iv0;

d
dt Re l tð Þð Þjt¼tk

> 0

Let Ve;2p
v0

¼ m; pð Þ : 0 < m < e; j p � 2p
v0
j < e

n o
. It is

easy to verify that on tk � d; tk þ d½ � � @Ve;2p
v0

,

det D E�;tk ; pð Þ m þ 2p
p i

� �
¼ 0 if and only if m = 0, t = tk

and p ¼ 2p
v0

. This verifies assumption (A4) of Wu [29]. More-

over, if we put

H� E�; tk;
2p
v0

� �
¼ det DðE� ;tk ; pÞ m þ i

2p
p

� �� �
;

then, we have the crossing number of isolated centers
E�; tk;

2p
v0

� �
as follows:

g1 E�; tk;
2p
v0

� �
¼ degB H� E�; tk;

2p
v0

� �
; Ve;2p

v0

� �

� degB Hþ E�; tk;
2p
v0

� �
; Ve;2p

v0

� �
¼ �1

By Theorem 3.3 of Wu [29], we conclude that the
connected component C E�; tk;

2p
v0

� �
through E�; tk;

2p
v0

� �
in

S is nonempty, and

X
z̄;t; pð Þ 2 C z̄;t; pð Þ

g z̄; t; pð Þ < 0
(5.3). Let
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Thus, C E�; tk;
2p
v0

� �
is unbounded. From (2.9), one can

w that, for k 	 1,

1

v0
arcsin

m1 þ n2ð Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffim1n2 � m2n1
p

2 m1n2 � m2n1ð Þ þ 2kp
� �

; k

 1; 2; � � �

Hence,

< tk (5.4)

Now, we are in position to prove that the projection of

�; tk;
2p
v0

�
onto t-space is [t, 1), where t � tk. Clearly, It

ows from the proof of Lemma 5.3 that system (1.6) with
 0 has no nontrivial periodic solution. Hence, the
jection of C E�; tk;

2p
v0

� �
onto t-space is away from zero.

For the sake of contradiction, we suppose that the
jection of C E�; tk;

2p
v0

� �
onto t-space is bounded. This

ans that the projection of C E�; tk;
2p
v0

� �
onto t-space is

luded in an interval (0, t*). From (5.4) and applying
ma 5.3, we get 0 < p < t* for

 t; pÞ 2 C E�; tk;
2p
v0

� �
. This implies that the projection

C E�; tk;
2p
v0

� �
onto p-space is also bounded. Thus,

bining this with Lemma 5.2, we can get that the
nected component C E�; tk;

2p
v0

� �
is bounded. This

tradiction completes the proof.

onclusions and biological explanations

In this paper, we have investigated the local stability
he positive equilibrium E� x�1; x�2

� 	
and the local Hopf

rcation in a delayed predator–prey model with
sell–Varley-type functional response. We have
wed that if conditions (H1)–(H3) hold, the positive
ilibrium E� x�1; x�2

� 	
of system (1.6) is asymptotically

ble for all t 2 [0, t0) and unstable for t > t0. This
ws that, in this case, the population of preys and
dators will tend to stabilization and still keep stable
enever the delay parameter lies in the range t 2 [0, t0)

 unstable when t > t0. We have also showed that, if
ditions (H1)–(H3) hold, as the delay t increases, the
ilibrium loses its stability and a sequence of Hopf
rcations occur at E� x�1; x�2

� 	
, i.e., a family of periodic

its bifurcate from the positive equilibrium
x�1; x�2
 	

. This means that the population of preys and
dators may coexist and keep in an oscillatory mode.
reover, the direction of Hopf bifurcation and the
bility of the bifurcating periodic orbits are discussed
applying the normal form theory and the center

nifold theorem. Numerical simulations supporting
 theoretical results are also included. Further,
ficient conditions ensuring the existence of global

f bifurcation are given, i.e., if a < d, r < c, then system
) has at least k periodic solutions for t > tk(k 	 1). It

hown that the population of preys and predators still
p in an oscillatory mode near the positive equilibri-

 E� x�1; x�2
� 	

for t > tk(k 	 1).
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