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ntroduction

The rhizosphere is a region surrounding a plant’s root
tem in the soil, with high microbial activity affected by

 excretions of the plant roots. Microorganisms carry out
damental processes that contribute to nutrient cycling,
nt growth, and root health [1,2]. Soil microorganisms
t can stimulate the growth of plants operate through a

wide variety of mechanisms, including N2 fixation,
enhanced phosphate solubilization, phytohormone pro-
duction and polysaccharide production [3–5]. Among
these bacteria, Pseudomonas spp., ubiquitous inhabitants
of soil, water and plants, are in a unique position in the
rhizosphere where complex trophic interactions arise.
These beneficial or harmful bacteria effects on plant
productivity [6,7] are the root group colonizing the most
effective of soil microorganisms [8,9]. PGPR effects of
Pseudomonas allowed the solubilization of phosphate and
maintain the soil’s health and quality [10,11]. Indeed, the
phosphate-solubilizing bacteria were correlated with the
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A B S T R A C T

Many bacteria possess a natural ability to synthesize and excrete exopolysaccharides

which are widely varied in structure and function. These bacteria have the ability to

solubilize inorganic phosphorus, which is important to promote growth and increase crop

yields. The objective of this study is to select an adaptive strain to the constraints of erratic

rainfall and large temperature variations and to determine the possible synergistic effects

of its EPS and organic acid on tricalcium phosphate (TCP) solubilization. The strain TF7

isolated from an arid region of Algeria was characterized on the basis of its morphological

and physiological traits. Polysaccharide production and the phosphate-solubilizing

activity of the strain were evaluated using sucrose and tricalcium phosphate. This EPS

was studied by sugar analysis as well as proton NMR spectra. The 16S rRNA gene sequence

of this strain shared a similarity of more than 96% with Pseudomonas fluorescens.

The maximum polysaccharide productivity was estimated at 4.5 g�L�1 after 5 days. The

analyzed sugar was comprised of fructose, glucose, and mannose in a ratio of 4:1:0.6. NMR

spectra indicated that the polysaccharide produced by the strain was levan with b-(2!6)-

linked fructose units in accordance with the generally accepted structure. The strain TF7

solubilizes phosphate and forms a clear halo around the colony. The phosphate-

solubilizing index is 2.33.
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ability of microbes to produce selected organic acids and/
or extracellular polysaccharides [12,13].

These bacteria are known for their capacity to produce
a wide variety of metabolites [14], nutritional diversity,
and rhizosphere competition. The nutritional diversity of
Pseudomonas and the control of its membrane fluidity
confer a phenotypic plasticity allowing a better adapta-
tion to the hostile environmental conditions [15–17].
Members of genus Pseudomonas have frequently been
reported to produce exo-polymers and are considered to
be primary colonizers of surfaces in aqueous environ-
ments [18]. These complex carbohydrates are widely
varied in structure, with interesting physicochemical and
rheological properties allowing specific functionality,
namely water retention ability and film-forming capacity.
Polysaccharides are used in a large number of industrial
applications in the food, textile, painting, cosmetic, paper,
wastewater treatment and pharmaceuticals as emulsi-
fiers, stabilizers, or thickening agents [19–21]. The
composition and biosynthesis of EPS are functions of a
variety of environmental factors [22,23] such as climate,
soil, topography, decomposers, and seasons [24]. These
factors and specific culture conditions can dramatically
impact exopolysaccharide production in terms of EPS
yield, as well as the size and chemical composition of the
polysaccharides being formed [25,26]. The physiological
role of these exopolysaccharides is diverse and may be
dependent on the specific natural environment of the
organism [27,28].

The aim of the present work was the characterization
of EPS synthesized by strain TF7 recovered from rhizo-
spheric soil samples from an arid region of the southern
Algerian desert (Hassi R’mel), which was subject to the
constraints of erratic rainfall and large temperature
variations causing high evapotranspiration and the
evaluation of its capacity to solubilize phosphate in
order to determine the possible synergistic effects of its
EPS and organic acid on tricalcium phosphate (TCP)
solubilization.

2. Materials and methods

2.1. Isolation and purification of strain TF7

Rhizospheric soil samples of wheat (Triticum durum

L.) were collected in Hassi R’mel in Algeria (328550000 N,
038160000) E. This region is characterized by arid climate
and a lack in the agricultural sector because of the
scarcity of fertile soil. The soil sample was air dried and
passed through a 2-mm sieve and then put into glass.
Isolation of fluorescent Pseudomonas bacteria from
rhizospheric soil was carried out after 4 weeks and soil
suspensions were obtained by shaking 10 g of soil sample
having roots with tightly adhering soil in 90 mL of 0.1 M
MgSO4

- 7 H2O buffer for 10 min at 180 rpm. The resulting
suspensions were serially diluted and a 0.1-mL aliquot of
each dilution was spread onto King’s medium (KB) agar.
After incubation at 28 8C for 2 days, fluorescent Pseudo-

monas colonies were located under UV light (366 nm).
Single colonies were further streaked onto KB agar to
obtain pure cultures.

2.2. Physiological characterization of strain TF7

To identify the strain, an isolate showing obvious
similarities in colony morphology and pigmentation was
picked from King’B agar plates, incubated at 28 8C for 48 h
and subjected to the following tests for the preliminary
selection of Gram-negative: Gram reaction was performed
as described by Gerhardt et al. [29]. Oxidase and catalase
tests were performed using the method of McFaddin [30];
for these tests, a 24-h old bacterial culture was used and
results were noted after 18 h at 30 8C.

The presence of arginine dihydrolase and levan sucrase
was tested on Thornley’s medium and NA supplemented
with arginine and sucrose (20 g�L�1), respectively [29]. In
order to identify the fluorescence of the strain, overnight-
grown cells on KB agar medium were visualized under UV
light (366 nm). Briefly, a visible amount of overnight grown
cells from agar plate was smeared (1–2 cm2 area) onto a
glass slide containing a loop full (3 mm) of a 3% aqueous
KOH solution. A Gram-negative strain was identified as a
viscous gel that strings out along with the loop.

2.3. Phosphate-solubilizing activity

Phosphate-solubilizing activity was determined on
Pikovskaya [31] which contain (per liter): 0.5 g of yeast
extract, 10 g of dextrose, 5 g of Ca3(PO4)2, 0.5 g of
(NH4)2SO4, 0.2 g of KCl, 0.1 g of MgSO4�7H2O, 0.0001 g
of MnSO4�H2O, 0.0001 g of FeSO4�7H2O and 15 g of agar.
After 3 days at 27 8C, a strain-induced halo around the
colonies was considered as the indicator of phosphate-
solubilizing activity. The solubilization index indicates
the ability to solubilize the insoluble phosphate and it is
calculated by the formula by measuring the halo diameter
(HD) and the colony diameter (CD), to obtain the relation
of HD/CD*100 [32]. After 3–4 days, solubilization Index
(SI) was measured using the formula [33].

SI ¼ colony diameter þ halo zone diameterð Þ=
colony diameter

For the purpose of assessing the possible synergistic
effects of polysaccharide production and organic acid on
TCP solubilization, one gram of purified EPS of TF7 strain
was added to 100 mL of NBRIP medium containing 19.2 mg
of citric acid, as described by Goenadi et al. [34].

2.4. Genotypic characterization (16S rRNA gene sequencing)

After extraction of the total DNA of the bacteria as
described by Sunish Kumar et al. [35], we amplified by
polymerase chain reaction (PCR) 16S RNA using specific
primers. The reagent mixture was prepared with the GC
518R, 1U of Taq polymerase enzyme and 1X reagent buffer
(Promega1) and incubated in a Hybaid PCR Express
thermocycler (Thermohybaid, California, USA). The ampli-
fication conditions of the PCR were as indicated by
Weisburg et al. [36]. PCR products were observed by
electrophoresis in agarose gels. The bands of almost
1500 bp were excised from the gels and purified using
JET QUICK gel extraction spin kit (GENOMED). The purified



frag
Cou
Bec
ison
Nat
bla
reg
Gen

2.5.

soli
(2 g
um
we
dist
wa
15 

the
thr
to e
mo
add
wa
the

2.6.

Res
III 4
obt
a 

acc
zer
at 

exo
15,
col
ma
che
the
ana
ope

2.7.

2.7.

trifl
One
ana
tog
chr

2.7.

and
stan
an 

F. Taguett et al. / C. R. Biologies 338 (2015) 335–342 337
ments were sequenced using CEQ DTCS kit (Beckman
lter, USA) on Beckman Coulter sequencer (CEQ-8800,
kman Coulter Inc., Fullerton, USA). Sequence compar-
s were performed using BLAST algorithm at the

ional Centre for Biotechnology Information (http://
st.ncbi.nlm.nih.gov/). The obtained sequences were
istered in NCBI Genbank (www.ncbi.nlm.nih.gov/
bank/submit.html) under accession number KC906191.

 Production and purification of EPS

The strain TF7 forms mucoid and brilliant colonies on
d Levan medium, which contain: yeast extract
�L�1); bactopeptone (5 g�L�1); sucrose (20 g�L�1); sodi-

 chloride (5 g�L�1); and agar (15 g�L�1). Mucoid colonies
re scraped with a sterilized spatula, and suspended in
illed water. After homogenization, the bacterial mash

s taken out for a night and centrifuged (6000 g for
min at 4 8C). The bacteria-free supernatant containing

 EPS fraction was filtered under vacuum sequentially
ough membranes of 8.0, 3.0, 1.2 and 0.80 mm pore size
liminate cells and large cellular fragments. The high-

lecular-weight fraction of EPS was precipitated by
ition of three volumes of ethanol. The EPS precipitate

s ultrafiltrated through a membrane of 100 kDa and
n lyophilized.

 Structural analysis of EPS

The samples were dissolved in D2O. Nuclear Magnetic
onance (NMR) spectra were recorded with an Avance
00 MHz Bruker spectrometer. 1H NMR spectra were

ained at 298 K with a spectral width of 2000 Hz and
pulse length of 12.7 ms (908). The scans were
umulated with an acquisition time of 2 s. Data were
o filled to 32 K. 13C NMR spectra were obtained
358 K, in order to decrease the viscosity of the
polysaccharide solution, with a spectral width of
000 Hz and a recycle delay of 0.8 s. The data were
lected in 16 K data sets and before Fourier transfor-
tion, exponential multiplication was applied. 1H NMR
mical shifts are expressed in ppm by reference to

 D2O solvent peak, calibrated at 4.8 ppm for the
lysis performed at 298 K and at 4.20 ppm for those
rated at 358 K.

 Chemical analysis

1. Hydrolysis of EPS

The polysaccharide of TF7 strain was hydrolyzed in 2 M
uoroacetic acid (TFA) at 100 8C for 30 minutes and 4 h.

 fraction of the hydrolyzed sample was injected and
lyzed by High-Performance Anion Exchange Chroma-
raphy (Dionex), and another part was analyzed by gas
omatography [37].

2. Gas-liquid chromatography

A part of the previously hydrolyzed sample was reduced
 peracetylated, with myo-inositol as an internal
dard. The prepared alditol acetates were separated on

Agilent glass-capillary column SP 2380 chromatograph

equipped with a flame ionization detector and high-purity
nitrogen as the carrier gas.

2.7.3. High-performance anion exchange chromatography

with pulsed amperometric detection (HPAEC-PAD)

The hydrolysate was used for the quantification of
the constituent monosaccharides. The separation of the
constitutive monosaccharides of the TF7 samples was
performed using a Dionex LC system (Dionex ICS 3000)
equipped by a CarboPac PA1 column (4 � 250 mm) in
combination with a CarboPac guard column (Dionex).
Neutral monosaccharides were eluted isocratically using
18 mM sodium hydroxide at a flow rate of 0.7 mL/min.
Carbohydrate components were detected by pulsed
amperometry.

3. Results

On the basis of colony morphology, the strain TF7 was
selected for its resemblance to Pseudomonas. The isolate
strain was taxonomically described as Pseudomonas

fluorescens on the basis of 16S rRNA gene sequencing and
subsequent molecular phylogeny analysis and showed a
similarity of 96% with that of P. fluorescens the sequence is
registered in NCBI Genbank under accession number
KC906191 (Fig. 1).

Strain TF7 showed good growth on King’s medium B
(KB) agar after 48 h. The bacterial strain had proven to be
a positive reaction resulting in the formation of a viscous
filament after contacting the bacterial cream with a
solution of potassium hydroxide (KOH 3%). The physiologic
tests used confirm that the strain was Gram-negative,
motile, and tested positive for cytochrome oxidase,
catalase, and arginine dihydrolase (Table 1). The TF7
strain had a capacity to produce a variety of polymers,
which was analyzed as levan. Thus, convex and whitish
colonies (Fig. 2) were observed after 5 days with a mucoid
slimy appearance, indicating polysaccharide production.
This production was abundant after 7 days.

The TF7 strain produces 4.5 g per liter of the
polysaccharide dry weight when it was cultivated on
sucrose medium against 3.7 for the strain isolated from
sub-humid regions.

The isolated TF7 is capable of solubilizing tricalcium
phosphate present in Pikovskaya medium using glucose as
the sole carbon source and forming large halos of
solubilization after 48 h of incubation, to be cleared after
72 h. The composition of the medium affects the polysac-
charide production and phosphate solubilizing activity
[38] as well as the type of soil [39], and the location from
which the bacteria were isolated [40].

The performance of strain P. fluorescens to solubilize
phosphate (phosphate-solubilizing index 2.33) was better
than those of P. putida [41] and P. stutzeri [42], known as
the best known phosphate solubilizers. Jeon et al. [43]
reported phosphorous solubilization by three strains of
P. fluorescens.

The relationship between phosphate solubilization
and pH indicates that acidic conditions observed by the
decrease in pH would play a role in the solubilization of
phosphate (data not shown) [44,45] (Fig. 3).

http://blast.ncbi.nlm.nih.gov/
http://blast.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/Genbank/submit.html
http://www.ncbi.nlm.nih.gov/Genbank/submit.html
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1H and 13C nuclear magnetic resonance (NMR) spec-
troscopy were used to evaluate EPS structure. The 1H NMR
spectrum contained signals between 3.5 and 4.3 ppm, so
no signal in the anomeric proton was found (Fig. 4).

The chemical shift values generated by the strain TF7
polysaccharide were quite similar to those of levan, with

a signal at 104.70 ppm assigned to the C2 of a b-
hexofuranose residue, at 80.8 ppm for the C5, 77.6 ppm
for the C3, 76.2 ppm for the C4, 64 ppm for the C6, as
already described by Han and Clarke [46].

Therefore, our results suggest that the state of the
structure of the polysaccharide generated by strain TF7
would probably be that of the levan characterized by b
(2!6) linkage (Fig. 5).

Chemical characterization of EPS produced by the strain
TF7 from the sucrose carbon source was performed by gas
chromatography and high-performance anion exchange
chromatography (HPAEC–PAD).

After 30 min of acid hydrolysis, a chromatography
analysis of the monosaccharide composition of EPS
revealed that it was mainly constituted of fructose, with

Fig. 1. Phylogenetic analyses of strain TF7 of Pseudomonas fluorescens based on the nucleotide sequence of 16S rRNA. The phylogenetic tree was constructed

by neighbor-joining (NJ).

Fig. 2. (Color online.) Polysaccharide production on King B medium by

Table 1

Physiological and biochemical characteristics of the bacterial isolate TF7.

Characteristics TF7 strain

KOH Test Positive

Catalase Positive

Oxidase Positive

Arginine dihydrolase Positive

Polysaccharide production Positive

Pigmentation Green

Fig. 3. (Color online.) Phosphate solubilization on Pikovskaya’s agar
strain TF7. medium by strain TF7.
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 presence of the two epimers of fructose, namely
nnose and glucose in a molar ratio of 4:1:0.6,
pectively (Fig. 6).
The result was confirmed by gas chromatography that

 alditol acetates showed the total fructose epimeriza-
 in mannose and glucose after 4 hours of hydrolysis
. 7).

iscussion

Arid areas characterized by their extreme bioclimatic
ditions and poverty of their soils allow the implanta-

 of only the microflora able to adapt to the hostile

conditions, with the example of Pseudomonas, whose
synthesis of polysaccharides confers it a greater adaptabil-
ity.

The strain TF7 isolated from the Algerian desert had
oxidase, catalase, arginine dihydrolase activities, and
sequencing analysis identified it as P. fluorescens.

On sucrose medium, whitish convex colonies observed
after 5 days indicated that bacteria produced the levan
sucrase enzyme [29]. The polysaccharide produced by
TF7 is a homopolysaccharide consisting of fructose. After
acid hydrolysis, the fructose epimers, i.e. mannose and
glucose, were present in appreciable amounts. Our results
indicated that the structure of the polysaccharide

Fig. 4. 1H NMR spectra of the TF7 polysaccharides of Pseudomonas fluorescens.
Fig. 5. 13C NMR spectrum of the TF7 polysaccharide of Pseudomonas fluorescens.
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generated by our strain is primarily levan, characterized
by b (2!6) linkage.

Pseudomonas is among a wide variety of microorgan-
isms known for their ability to synthesize fructan [37]. It is
commonly accepted that fructans produced by micro-
organisms are levans of high-molecular-weight compared

with those produced by plants, and their role in microbial
cells’ protection against abiotic and biotic stresses was
demonstrated, such as desiccation, freezing, antibiotics or
toxic compounds, and attacks of parasites and predators
[47,48]. Microbial polysaccharides provide a potential new
source of functional biopolymers for food, industrial,

Fig. 6. Chromatogram of the degradation of the EPS produced by the strain TF7 after 30 min of acid hydrolysis. The released monosaccharides were

separated on a CarboPac PA1 column with 18 mM NaOH as an eluent. Fructose was the main monosaccharide observed, with the formation of its two

epimers: glucose and mannose.

Fig. 7. Chromatogram corresponding to the TF7 EPS, after 4 h of hydrolysis, reduction and peracetylation: the corresponding alditol acetates were separated
on a SP2380 column with nitrogen as the carrier gas and were detected with a flame ionization detector.
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metic or medical applications. Depending on the carbon
rce used, they can be homopolymers or heteropolymers
].
A variety of EPS of different chemical compositions has
n reported in P. fluorescens, so there is a specificity
ted to the strain. Read and Costerton [50] showed that

 EPS of P. fluorescens was composed of glucose, galactose
 pyruvate, while Kives et al. [18] showed that the
uorescens strain B52 produced polysaccharides contain-

 rhamnose, glucose, and glucosamine. Unlike these
ults, Chin-Chang et al. [51] reported in P. fluorescens

var II that 70% of polysaccharide consisted of uronic
. This variability depends mainly on the type of soil and
ironment of strain, culture conditions and medium
position [52]. The production capacity of EPS is a direct

 logical answer to the selective pressures of the
ironment [53]. Indeed, the production of EPS requires
t of energy and thus it seems unlikely that a bacterium
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 producing bacteria appear to have a competitive
antage that allows them to survive in hostile condi-
s.

The result obtained shows the synergistic effect
ween EPS and citric acid on the solubilization of
sphate: it is being reaffirmed that phosphate solubili-

ion is involved with the production of organic acids as
cribed by Goldstein [44] and Rashid et al. [45]. However,
olubilization is a complex phenomenon, which depends
many factors such as nutritional, physiological and
wth conditions of the culture.
In relation to our results, it would be interesting to
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ential to the survival and metabolic activity of strain
 in arid soils. Moreover, it would be important to
lyze how TF7 strain may act as a PGPR, which would
ract with the wheat rhizosphere by producing
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y have the greatest potential for structural variability

 constitute a direct response to selective pressures and
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