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A B S T R A C T

We used self-organizing maps (SOM, neural network) to bring out patterns of benthic

macroinvertebrate diversity in relation to river pollution. Fourteen stations were sampled

over various seasons in the Nestore drainage basin (Central Italy) and characterized for

macroinvertebrate communities, nutrient and heavy metal concentrations. Physicochem-

ical variables were introduced into a SOM previously trained with macroinvertebrate data.

Patterns of communities matched spatial and seasonal changes in environmental

conditions, including water chemistry related to economic activities in the catchment.

Although our analyses did not allow us to establish the specific effect of any given

environmental parameter upon macroinvertebrate community composition based on the

field study, they enabled us to map the ecological health of river ecosystems in a readily

interpretable manner.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Nous avons utilisé les cartes auto-organisatrices (SOM, réseau de neurones) pour dégager

des patrons de diversité des macro-invertébrés benthiques en relation avec la pollution des

rivières. Quatorze stations ont été échantillonnées sur plusieurs saisons dans le bassin du

Nestore (Italie centrale) et caractérisées à partir de leurs communautés d’invertébrés, des

concentrations en nutriments et métaux lourds. Les variables physicochimiques ont été

introduites dans une SOM préalablement établie sur la base des communautés

d’invertébrés. Les patrons de diversité des communautés suivent les changements

spatio-temporels des conditions environnementales, dont ceux de la chimie de l’eau, en

relation avec les activités économiques dans le basin versant. Bien que nos analyses ne

nous aient pas mis en mesure d’établir l’effet d’un paramètre environnemental en
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1. Introduction

Worldwide freshwater ecosystems face a range of
anthropogenic pressures, including pollution, flow regime
alterations, overfishing, habitat destruction, and biological
invasions. In particular, many lowland regions concentrate
agricultural and/or industrial activities, which adversely
affect biological diversity in rivers [1]. Important sources of
agriculture-derived pollution are the inflow of nutrients,
pesticides, and heavy metals [2–4]. Industrial activities can
be a source of a variety of other xenobiotic substances that,
through run-off and/or precipitation, affect the water
bodies [5]. Because river sediments have a strong
adsorption capacity for pollutants [6–8], contamination
is often greater within sediments than within the water
column [9]. Also, sediments can behave as reservoirs of
heavy metals that are then released into the water column
and/or accumulate in plant and animal tissues before
entering food chains [10–13]. The consequences of
elevated nutrient concentrations on freshwater diversity
are well known [14], but the effects of heavy metals on the
composition of biological communities and species abun-
dance patterns are widely understudied [15–17]. More-
over, whilst heavy metals have obvious impacts on
individuals and populations (e.g., mouthpart deformities
in aquatic insects [18]), such effects do not necessarily
echo at the community level [19], thus complicating the
assessment of ecosystem health through routine biological
surveys. Therefore, in light of both economic development
and current water policies schemes (e.g., the US Clean
Water Act or Europe’s Water Framework Directive 2000/
60/EC), characterizing the impacts of nutrient and heavy
metal pollution on ecosystem health through Biological
Quality Elements (BQEs, either fish, macroinvertebrates,
aquatic plants or microalgae) is of major relevance to
identify threats to freshwater ecosystems, and to design
local-to regional-scale management plans.

Macroinvertebrates constitute an important compo-
nent of secondary production within freshwater ecosys-
tems, and are tightly integrated into the structure and
function of their habitats (organic matter processing,
nutrient retention, food resource for amphibians, fish, or
birds) [20]. Hence, they are widely used as biological
indicators of ecosystem health [21,22], because the
structure of macroinvertebrate communities is expected
to vary consistently in relation to the intensity of any given
disturbance type in any given area. In running waters, most
taxa are benthic and therefore related to the sediment,
making them potential bioindicators of sediment quality
where heavy-metal pollutions are identified or suspected
[23–26]. Identifying the (combined) effects of various
types of contaminants on macroinvertebrate community
structure is however challenging, because of the spatial

independently account for community diversity patterns.
In addition, ecological data such as macroinvertebrate and
environmental variables often vary and co-vary in a
nonlinear fashion. Thus, nonlinear modelling methods
should theoretically be preferred to illustrate relationships
between physicochemical gradients and community pat-
terns [27].

To be effective, environmental management efforts
must rely on explicit distribution schemes that ‘‘map’’ the
patterns of biological and physicochemical quality indi-
cators in a readily interpretable manner. In this study, we
assessed the influence of a set of water chemistry
parameters (including heavy metal concentrations) on
the community composition and abundance patterns of
macroinvertebrates at the river catchment scale, using
Artificial Neural Networks (ANNs). Neural networks have
been successfully implemented in various aspects of
ecological modeling such as classifying groups, patterning
complex relationships, predicting population and commu-
nity development, modeling habitat suitability, and
assessment of water quality [28]. Combining clustering
and ordering abilities, the Self-Organizing Map algorithm
(SOM, unsupervised ANN [29]) has shown particular
relevance to pattern detection in biological communities
in relation to environmental data, because the gradient
distribution of some environmental variables (here heavy
metals and water chemistry) can be visualized in a SOM
previously trained with biological variables [30,31]. The
Nestore River basin (Central Italy) provides a suitable
context to examine how macroinvertebrate communities
respond to chemical (nutrient) and heavy metal contami-
nation in space and time, because it is affected by
numerous sources of pollution resulting from urbaniza-
tion, industry, agriculture, and extensive livestock produc-
tion. In addition, sewage systems in the area are either
inefficient or absent. We sampled macroinvertebrate
communities in a range of undisturbed to contaminated
sites (according to the site classification by the Regional
Environmental Agency [32]) at various seasons, and used
SOM, in order to:

� relate community diversity to gradients of pollution;
� bring out either congruent or differing patterns between

particular chemical and/or heavy metal contaminants.

2. Methods

2.1. Study area

This study was conducted in the Nestore River basin,
Umbria, Central Italy (Fig. 1). The drainage basin area is
1116 km2, and the length of the main stream is 48 km

particulier sur la base d’une étude de terrain, elles nous ont permis de cartographier la

santé écologique des écosystèmes de rivière sous une forme immédiatement

interprétable.

� 2015 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
[33]. The Nestore River is a right tributary of the Tiber
covariance in different physicochemical factors that
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er. It originates in southwestern Umbria, from multiple
lized springs [34]. Economy within the basin consists

ndustrial and agricultural activities, as well as livestock
duction.
The main left tributaries of the Nestore River are the
na (23 km) and Caina streams (31 km) (central-eastern

 northern parts of the basin). These streams drain
anized areas, with industrial, agricultural and livestock
ivities. The main right tributaries are the Fersinone

 km) and Calvana streams (18 km) (southwestern part
he basin), which flow through sparsely populated areas.
h the Nestore River and its tributaries are characterized
variable hydraulic regimes [32].

 Sampling stations and schedule

The sampling plan consisted of two different surveys,
 covering the whole Nestore River basin (N), and a
ond one covering the Genna Stream (G, left tributary)
. 1). The first survey (N) extended from March 2010 to

October 2010 and consisted of four seasonal sampling
sessions (March, June, August, October). Ten sampling
stations were selected, six along the Nestore River (N01–
N06) and four in its main tributaries, just before their
confluence with the Nestore River (N07 = Caina Stream;
N08 = Genna Stream; N09 = Fersinone Stream; N10 = Cal-
vana Stream). The second survey (G) lasted from March
2012 to October 2012 and consisted of three seasonal
samplings (March, June, October). Four sampling stations
were identified along the Genna Stream (G00–G03;
G03 = N08). Stations N09 and N10 from the first survey
were not sampled in October, and in August and October
respectively due to dryness. For the same reason, station
G00 from the second survey was not sampled in March and
October. The main characteristics of the sampling stations
are given in Table 1. In each station, macroinvertebrate
samples were collected with a dragnet (kick method)
equipped with a 335 mm mesh. The sampling time was
standardized at 10 min, from bank to bank, considering all
the microhabitats present [35]. The samples were fixed in

Fig. 1. The drainage basin of the Nestore River (Central Italy) and location of the sampling stations.
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70% alcohol. In the laboratory, macroinvertebrates were
identified to species, genus or family level using various
taxonomic keys [36] and enumerated.

2.3. Chemical and physicochemical characterization of

surface water

The following four physicochemical water parameters
were measured seasonally in situ, always at the same
daytime: temperature and dissolved oxygen (DO; Oxime-
ter F-Simplair Syland Scientific, accuracy 1% of the scale
value, measuring range: 0.0–20.0 O2 mg�L�1), pH (pH-
meter Hanna Instruments HI-98150, range: –4.00–19.99,
resolution 0.01 pH, precision � 0.02 pH); conductivity
(HI8733-Hanna Instruments, range: 0–1999 mS�cm�1, accu-
racy 1%, resolution 1 mS�cm�1).

Seasonal water samples were also collected in 500-mL
polyethylene bottles, and then stored at 5 8C in the
refrigerator for subsequent anionic and cationic character-
ization and COD determination.

Chemical oxygen demand (COD) determination was
performed by colorimetric method (Smart 2 Colorimeter La
Motte Company, COD Low Range Reagent Kit, 0–
150 mg�L�1 COD, detection limit 0.5 mg�L�1). The concen-
trations of anion and cation species (anions = F–, Cl–, NO2

–,
Br–, NO3

–, PO4
3–and SO4

2–; cations = Li+, Na+, NH4
+, K+, Mg2+

and Ca2+) were determined by suppressed ion chromatog-
raphy with a conductivity detector using a Dionex Series
4500i chromatograph. Commercially produced standard
solutions (Fluka-TraceCERT1 Standard Solutions,
1000 mg�L�1� 4 mg�L�1) in ultrapure water (18.2 MV at
25 8C) were used to prepare appropriate calibration stan-
dards. The analyses were operated after filtration of samples
with cellulose filters (0.2 mm) [37]. Li+ was excluded in
subsequent analyses because it was below detection limits in
every sample.

2.4. Heavy metals in sediments

Samples of bottom sediments were taken at each
sampling date for heavy metal analyses. Sediment samples
were obtained by dredging the superficial layer (about
5 cm) of the bottom sediments with a hand dredge. The

samples (500 g) were preserved in Pyrex glass bottles and
kept refrigerated at –18 8C [38].

Concentrations of heavy metals in sediments (Cr, Cd,
Cu, Ni, Zn and Pb), for the first survey (N), were determined
by flame Atomic Absorption Spectrometry (AAS, Perki-
nElmer 3300, instrumental detection limit 0.01–0.20
mg�L�1) after sample acid digestion. Commercially pro-
duced standard solutions (Fluka-TraceCERT1 Standard
Solutions, 1000 mg�L�1� 4 mg�L�1) in 2% nitric acid, were
used to prepare appropriate elemental calibration standards
[38,39]. Concentrations of heavy metals (Cr, Cd, Cu, Ni, Zn and
Pb) in sediments samples, for the second survey (G), were
determined by Inductively Coupled Plasma Optical Emission
Spectrometry (ICP-OES, Ultima 2, HORIBA Scientific)
equipped with ultrasonic nebulizer (CETAC Technologies,
U-5000AT) after sample acid digestion. Instrumental detec-
tion limits were in the range 0.14–1.58 mg�L�1. Commercially
produced (ICP multi-element standard solution IV Certi-
PUR1, VWR Merck Chemicals and Reagents) standard
solutions (1000 mg�L�1) in nitric acid were used to prepare
appropriate elemental calibration standards [18,38].

The sediment samples from both surveys were air-
dried, disaggregated using a mortar and pestle to pass
through a 2-mm mesh sieve, dried at 105 8C for 24 h and
digested as follows: 15 mL of concentrated ultrapure nitric
acid (Fluka, TraceSELECT1, for trace analysis � 69%) were
added to the sample (2.0 g) and heated to 160 8C for 1 h;
then, the vessel was cooled to room temperature and
10 mL ultrapure concentrated hydrochloric acid (Fluka,
TraceSELECT1, for trace analysis � 37%) were added and
the flask was heated to 160 8C for 1 h. The mixture was
cooled, filtered (Whatman Grade No. 42, particle retention
2.5 mm) and diluted with ultrapure water to 50 mL.

2.5. Modeling procedure

To sort the 47 samples (2010 survey (N): 37 seasonal
samples at ten stations; 2012 survey (G): 10 seasonal
samples at four stations), we used the Self-Organizing Map
algorithm (SOM Toolbox version 2 for Matlab1, see [40] for
practical instructions). The strengths of the SOM in
comparison with conventional multivariate analyses were
discussed in [41]. Combining ordination and gradient
analysis functions, the SOM is convenient to visualize high-
dimensional data in a readily interpretable manner
without prior transformation. The SOM algorithm is an
unsupervised learning procedure that transforms multi-
dimensional input data into a two-dimensional map
subject to a topological (neighbourhood preserving)
constraint (detailed in [42]). The SOM thus plots the
similarities of the data by grouping similar data items
together onto a 2D-space (visualized as a grid) using an
iterative learning process that was detailed in [30]. The
SOM algorithm is specifically relevant for analyzing sets of
variables that vary and co-vary in non-linear fashions, and/
or that have skewed distributions. Additionally, the SOM
algorithm averages the input dataset using weight vectors
through the learning process and thus removes noise. A full
description of the modeling procedure employed here
(training, map size selection, number of iterations, map
quality measurements) was detailed in [30,31].

Table 1

Main characteristics of the sampling stations.

Code River Elevation Width Average depth

N01 Nestore 303 3 0.15

N02 Nestore 263 7 0.50

N03 Nestore 232 6 0.20

N04 Nestore 203 13 0.25

N05 Nestore 182 15 0.55

N06 Nestore 174 21 0.50

N07 Caina 215 8 0.20

N08 = G03 Genna 199 7 0.35

N09 Fersinone 179 11 0.30

N10 Calvana 185 11 0.20

G00 Genna 243 4 0.15

G01 Genna 225 5 0.35

G02 Genna 209 5 0.25

G03 = N08 Genna 199 7 0.35

Elevation: m a.s.l., width: m, average depth: m.
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The structure of the SOM for this analysis consisted of
 layers of neurons connected by weights (or connection
nsities): the input layer was composed of 78 neurons

e per invertebrate taxon) connected to the 47 samples,
 the output layer was composed of 35 neurons
alized as hexagonal cells organized on an array with

en rows and five columns. The number of 35 output
rons was retained after testing quantization and
ographic errors (QE and TE, see [31]). We note in
sing that the map size, based on local minimum values
QE and TE, matched well the heuristic rule by [43]
orting that the optimal number of output neurons is
e to 5Hn, with n the number of samples. At the end of

 training, each sample is set in a hexagon of the SOM
p. Samples appearing distant in the modeling space
cording to the invertebrate abundance data used during

 training) represent the expected chemical differences
real environmental characteristics. A k-means algo-
m was applied to cluster the trained map [44]. The SOM
ts (hexagons) were divided into 2–8 clusters according
he weight vectors of the neurons, and the final number
lusters (3) was justified according to the lowest Davis
ldin Index, i.e. for a solution with low variance within

sters and high variance between clusters [45]. In order
analyze the contribution of each macroinvertebrate
on to cluster structures of the trained SOM, each input
iable calculated during the training process was
alized in each neuron (hexagon) of the trained SOM
rey scale. This visualization method directly describes

 discriminatory powers of input variables in mapping
].
Finally, in order to bring out relationships between
otic and biotic variables, we introduced the 23 chemical,
sicochemical and heavy metal variables into the SOM,

ich was previously trained with the abundance data for
 78 macroinvertebrate taxa. During training, we used a
sk function to give a null weight to the 23 chemical,
sicochemical and heavy metal variables, whereas the

logical ones were given a weight of 1 so that the
ination process was based on the 78 macroinvertebrate
a only [1]. Setting mask value to 0 for a given

ponent removes the effect of that component on
anization [46].
In order to further highlight macroinvertebrate com-
nity and environmental patterns among clusters, the
ributions of taxonomic richness, number of individuals,
munity evenness (Simpson index) [47], community

ropy (Shannon index) [48], Chao index [49,50],
sicochemical and heavy metals variables were com-
ed among clusters using Mann-Whitney tests. These
istical tests were performed using the Past software

rsion 3.02) [51].

esults

 Classification of samples and invertebrate distribution

terns

Based on minimum quantization and topographic
rs, the map size was selected as 7 � 5 neurons. The

35-unit map trained with macroinvertebrate abundance
data had a quantization error of 0.117 and a topographic
error of 0.0001. This map thus preserved well the typology
of the input data [42], and was relevant for subsequent
interpretations. After training the SOM algorithm with the
macroinvertebrate abundance data, the k-means algo-
rithm helped to delineate three clusters of samples
(clusters A–C) according to the quantitative structure of
macroinvertebrate assemblages (Fig. 2a). The SOM clus-
tering revealed both spatial and seasonal variation in the
macroinvertebrate community structure. Cluster A
grouped four samples from the most upstream, headwater
stations N01-N02. Cluster B grouped all samples from
stations N09-N10 (right tributaries of Nestore River), and
mostly spring (March) samples from N01-N08. Cluster C
grouped all seasonal samples from Genna stream (except
N08 in March) and almost all summer to autumn samples
of stations N03–N07 also grouped in cluster C.

When the distribution of each macroinvertebrate taxon
was visualized on the trained SOM using a shading scale
(see Fig. 2b for selected taxa), cluster A had eight taxa that
were not found in other clusters (Deronectes moestus

(Fairmaire), Elmis, Gyrinus, Halesus, Haliplus, Helophorus,
Mystacides azurea (Linnaeus), Sericostoma); cluster B had
10 specific taxa (Atherix, Choroterpes picteti (Eaton),
Gyraulus, Muscidae, Nemoura, Paraleptophlebia, Pisidium,
Potamon fluviatile (Herbst), Potamopyrgus antipodarum

(Gray), Siphonoperla torrentium (Pictet)); and cluster C
had four taxa that were not found in other clusters
(Culicinae, Haemopis sanguisuga (Linnaeus), Procambarus

clarkii (Girard), Trocheta). Hence, these taxa contributed
most to the delineation of the three clusters, and can be
considered as indicators of environmental conditions
associated with the corresponding samples.

3.2. Environmental gradients

Chemical, physicochemical and heavy metal variables
were introduced into the SOM previously trained with
macroinvertebrate data, thus forming explanatory vari-
ables (Fig. 3); in particular, the ordinate on the SOM
showed a gradient of pH, DO and Ni, from low (bottom) to
high (top of the map), and a reverse gradient of Pb and
NO2

–. Values for Cl–, PO4
3–, Na+, NH4

+, K+, Cd, Cu, COD and
conductivity increased from right-top to left-bottom areas
of the map. We also noted gradients of F– and NO3

– from
left-top to right-bottom areas of the SOM.

3.3. Between-cluster variability

Box-plots of diversity metrics (Fig. 4) showed a trend
for decreasing community diversity from cluster A to
cluster C. Specifically, taxonomic richness and the Chao
index differed significantly among clusters (Mann-Whit-
ney tests, P < 0.05), Simpson’s evenness differed between
clusters A and C, and Shannon’s entropy was significantly
different between cluster C and other clusters. Last, there
was no significant difference in terms of number of
individuals among clusters. Clusters A and B were
characterized by higher values for pH, DO and Ni, and
cluster C was characterized by higher values for F–, Cl–,
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PO4
3–, Na+, NH4

+, K+, Cd, Cu, Pb, NO2
–, NO3

–, COD and
conductivity. Only conductivity and K+ differed signifi-
cantly among all three clusters (Mann-Whitney tests,
P < 0.05). Values for pH, DO, COD, Cl–, PO4

3–, Na+, NH4
+, Cr

and Ni differed significantly between cluster C and other
clusters. NO3

– and SO4
2– were significantly different

between clusters A and other clusters. Mg+2 was signifi-
cantly different between clusters B and other ones. Water
temperature and Cd differed between clusters B and C, and
Ca+2 differed between clusters C and A. Finally, F–, NO2

–,
Br–, Cu, Zn and Pb showed no significant differences among
clusters.

4. Discussion

Environmental management planning requires explicit
schemes such as distribution patterns of biological diversity
in relation to geomorphological, physical, and/or chemical
attributes of ecosystems, to subsequently evaluate the
deviation from a reference state, define quality objectives,
and eventually anticipate ecological risk. Among the
questions that are asked of the scientific experts, the most
common ones are probably the following:

� which areas within a regional system are most impacted
by industrial or agricultural activities?

� which physical and/or chemical stressors are detrimen-
tal to the biological quality of recipient ecosystems?

Additionally, if threats associated with current activi-
ties and future development plans align with zones of
conservation interest (e.g., presence of flagship species),
this could add new impetus to freshwater management
policies. Given these settings, the SOM visualization has
proven an efficient analytical tool to illustrate relation-
ships between sample locations, biological and environ-
mental variables [31]. Through its iterative learning
process, the SOM also minimizes the problem of outliers
(e.g., presence of singletons) where each outlier is assigned
to one unit of the map, and only the weights of that unit
and its nearest neighbours are affected. Finally, by over-
lapping species and or explanatory variable maps, any
spatial overlap or segregation on the output map becomes
clear and can be interpreted in a straightforward manner.

SOM clusters revealed spatial, and to a lesser extent
seasonal patterns of macroinvertebrate communities in
relation to environmental quality and land use in the Nestore
drainage basin. Among different taxa, Trichoptera and
Coleoptera particularly declined from cluster A to cluster
C both in terms of number of taxa and abundance of
individuals, while Annelida (Tubificidae and Hirudinea)
showed increasing numbers of taxa and individuals.
However, based on macroinvertebratecommunity structure,

Fig. 2. a: distribution and clustering of samples on the self-organizing map (SOM) according to the abundance of 78 macroinvertebrate taxa. Codes within

each hexagon (e.g., N01M, G03J) correspond to individual samples (see also Table 1): N (Nestore survey, 2010), G (Genna survey, 2012), 00-10 sampling

stations, M = March, J = June, A = August, O = October. Clusters A–C (separated by the bold line) were derived from the k-means algorithm applied to the

weights of the 78 taxa in the 35 output neurons of the SOM; b: gradient analysis of the abundance (number of individuals) for selected taxa (exclusive of

each cluster: Sericostoma, cluster A; Atherix, cluster B; Haemopis sanguisuga, cluster C; and shared between clusters: Tabanidae, cluster A and B, Dina, cluster

B and C; Gordiidae, cluster A and C; Baetis, cluster A, B and C) on the trained SOM represented by a shaded scale (dark = high abundance, light = low

abundance).
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e stations could shift from one cluster to another
ording to the season. Interestingly, Nestore stations N03–

 tend to shift from cluster B (intermediate pollution) to
ster C (heavier pollution) in summer–autumn, although
se seasons theoretically correspond to the renewal of
ulations through reproduction and egg hatching, and are

refore supposedly species-rich periods for stream inver-
rates [52]. Further data on agricultural–industrial prac-
s would be needed to properly assess whether temporal
ts in local biodiversity are mostly related to invertebrate
sonality (life cycle patterns) or to seasonal patterns in
ter pollution (e.g. intensified agricultural practices in

mer).
With regard to spatial patterns, land use influences the
mical and biological characteristics of river ecosystems
] and the structure of lotic macroinvertebrate commu-
es may be subsequently influenced by economic
ivities within catchments [54]. Here, the introduction
explanatory variables into the SOM trained with

macroinvertebrate data provided additional insights into
our understanding of community patterns in relation to
human activities. Several chemicals and heavy metals
showed congruent patterns, although the latter variables
were given a null weight during the ordination and
classification process (i.e. they did not influence the
grouping of samples); in particular, higher Cr and Ni
concentrations were associated with higher pH and DO in
clusters A and B. Headwater reaches of the Nestore
(stations N01 and N02, cluster A) are only surrounded
by sparse habitation. Economic activity in the area is
limited to a glass factory, located upstream of station N02.
Stations in cluster B are either surrounded by intensively
farmed landscapes and urban/industrial lands. Ni and Cr
could thus be waste products of different types of
industries. Stations in cluster C showed higher concentra-
tions of Pb, Cd and Cu matched to the increasing gradients
of conductivity, COD, nitrate, nitrite, ammonium, phos-
phates, chloride, sodium, and potassium. Accordingly, all

3. Visualization of physicochemical parameters of water and heavy metals of sediments (shades of gray). The mean value for each variable was

ulated in each output neuron of the SOM previously trained with macroinvertebrate data. Darker/lighter tones represent higher/lower values.



Fig. 4. Boxplots of diversity metrics (taxonomic richness, number of individuals, Simpson, Shannon and Chao indices) and environmental variables

(physicochemical parameters of water, heavy metals in sediments) for the three clusters. Significant differences between clusters were tested with Mann-

Whitney tests; lowercase letters above boxes indicate significant differences at P < 0.05.
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ions in cluster C are surrounded by intensive agricul-
al activities and livestock (80 farms recorded in the
a). Lower values for DO (oxygenation of the water) for

 cluster (Genna Stream and the lower Nestore River)
gest a high level of organic pollution. Higher Cu
centrations can be related to livestock as it is used in
d for animals, and contaminated sludges are then used
agriculture as soil fertilizers [55]. In addition, Cu is
sent in pesticides and fertilizers, but can also be waste
duct in industry.
Whilst the SOM illustrated co-variation in community
cture and a series of nutrients and heavy metals, it
ains difficult to establish the specific effect of the

ious stressors upon macroinvertebrate community
position. This is however inherent to observational

d studies where anthropogenic disturbance subjects
logical communities to mixtures of pollutants. Never-
less, the SOM analysis of the biological data did well at
ealing the extent of pollution among stations, to assess
ter quality at the drainage basin level. Further studies
er experimental conditions would be needed to
mine how heavy metals act and interact in nature to

 detriment of certain taxa, either in terms of occurrence
 abundance patterns. On an empirical basis, however, a
mon and efficient way to assess environmental quality
ains to interpret the distribution of biological indica-

 across gradients of environmental conditions.
In conclusion, qualitative and quantitative changes in
croinvertebrate communities in space (sites) and time
sons) can be expected in relation to anthropogenic
urbance that affect water chemistry at local to stream-

tem levels, together with potential changes in terms of
logical traits. Whilst biological indices are a universal
l to rate river health, spatial schemes of community
anization still provide the explicit models against
ich deviation from reference conditions, in the form
cores or water quality classes, are assessed [56]. Owing
he limited size of our dataset, we did not attempt to
ign a biotic index that would fit, for instance, the well-
wn guidelines of the EU Water Framework Directive.
l, through the SOM clustering, the ecological health of
r ecosystems can be mapped in a readily interpretable

nner, taking into account gradients of chemical pollu-
 sensu lato.
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