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A B S T R A C T

Sepsis is defined as a syndrome combining a systemic inflammatory response with a

documented infection. It may progress to more serious cases such as septic shock following

the failure of one or more organs and the emergence of hemodynamic defects. Assuming

that the emergence of serious septic syndromes may be partially explained by the early loss

of regulation of the inflammatory response, we decided to compare, in a transcriptomic

perspective, the biological mechanisms expressed during an induced systemic inflamma-

tory response with those expressed during severe septic syndromes. By using open-access

transcriptomic databases, we first studied the kinetics of an induced inflammatory

response. The use of functional analysis helped us identify discriminating biological

mechanisms, such as the mTOR signaling pathway, between the pathological cases of

sepsis and non-pathological (i.e., the artificially induced SIRS) cases.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Le sepsis se définit comme un syndrome combinant une réponse inflammatoire systémique à

une infection documentée. Celui-ci peut évoluer vers des cas plus graves, tels que le choc

septique consécutif à la défaillance d’un ou de plusieurs organes et l’apparition d’une

défaillance hémodynamique. Partant de l’hypothèse que l’apparition de syndromes septiques

graves est la conséquence d’une perte de contrôle précoce dans la régulation de la réponse

inflammatoire, nous avons décidé de comparer d’un point de vue transcriptomique les

mécanismes opérant lors d’une réponse inflammatoire systémique induite et contrôlée à ceux

exprimés dans les syndromes septiques graves. À partir de bases de données transcripto-

miques en libre accès, nous avons étudié la cinétique d’une réponse inflammatoire induite.

L’utilisation d’outils bioinformatiques d’analyse fonctionnelle a permis d’identifier des

mécanismes biologiques discriminants, tels que la voie de signalisation mTOR, entre des cas

pathologiques de sepsis et des cas de SIRS induits non pathologiques.

� 2015 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

The term Sepsis refers to a complex clinical syndrome
observed in patients who exhibit a systemic inflammatory
response syndrome (SIRS) along with an infection [1]. It
may progress to a severe sepsis if acute organ dysfunction
occurs. A septic shock is the combination of a severe sepsis
with an acute fall in blood pressure that does not respond
to treatments.

Septic syndromes represent approximately 750,000
cases per year in the United States [2] and it remains the
first cause of mortality in intensive care units (ICUs).
Although in the last 10 years an improvement has been
observed, commonly ascribed to the Surviving Sepsis
Campaign [3], the mortality of severe septic syndromes
remains high, reaching in some settings 50% for septic
shock [2,4,5]. The incidence of septic syndromes
increased during the last decade [6–9], which implies
a considerable burden for healthcare systems. As
recently evidenced by the National Center for Health
Statistics, septic syndromes were, with an estimated
annual cost of 1.8 billion dollars, the most expensive
reason for hospitalization in the United States in 2011
[10].

Despite extensive research, no specific treatment exists
for septic syndromes. One of the most recent cases of
failure was AstraZeneca’s AZD9773 [11], a polyclonal
antibody against the major inflammatory mediator TNF-a,
whose development was stopped in August 2012, while
still in phase II. The withdrawal of activated protein C
(Xigris) from the market, in October 2011, constitutes
another example of failure in this field [12].

In light of the complexity of the underlying mecha-
nisms and taking into account the high number of
entities and mediators involved during a SIRS, we believe
that a systems biology approach could be an alternative
for analyzing the innate immune system responses
during septic syndromes. Based on the assumption that
most severe sepsis cases ultimately stem from the loss of
natural control over the initial inflammatory response,
we employed bioinformatics in order to pinpoint the
mechanisms potentially involved in the loss of such
control.

Several studies have been published in the last few
years, in which microarray-based techniques are used to
obtain genome-wide transcription snapshots of the
immune function in several clinical setups related to
SIRS and sepsis [13]. Among those, the highly cited
2005 Calvano’s study [14] continues to be considered
seminal work, for it was the first to focus on the
resolution of an artificially induced SIRS in healthy
individuals. Also based on microarray experiments,
Sutherland et al. [15] conducted a multi-centre and
prospective clinical trial in order to establish a novel
molecular biomarker diagnostic test for the early
detection of sepsis.

To our knowledge, no transcriptomic comparative
study exists between healthy individuals, in whom a SIRS
is rapidly controlled, and septic patients, in whom such
control has been lost. Based on previously published gene
expression raw datasets, we compared the pathological to

the non-pathological cases, through the analysis of the
most relevant biochemical mechanisms involved.

2. Materials and methods

2.1. Datasets

The number of original articles based on microarray
experiments published yearly passed from a couple of
hundreds in the year 2000 to more than 5000 by the end of
the decade. Notwithstanding the high degree of heteroge-
neity that characterizes microarray experiments, a sys-
tematic review of literature [13] and public gene
expression repositories (e.g., gene expression omnibus)
enabled us to find two relevant datasets in order to
compare the pathological and the non-pathological
systemic inflammatory responses.

We used the openly shared raw datasets from both
Calvano’s et al. [14] and Sutherlands’s et al. [15] studies
(data accessible at NCBI GEO database [16] with the
references GSE3284 and GSE28750, respectively).

In the first study, the researchers analyzed the
inflammatory response dynamically. Data from Calvano’s
et al. study originally comprises two subsets: the first one,
obtained in a group of 8 healthy volunteers was used by the
authors to conduct functional analyses; the second one,
obtained in an independent group of 6 healthy volunteers
was used for validation purposes. At a glance, the first
subset, composed of 8 healthy individuals, 18- to 40-years-
old, was divided into two groups to receive either
intravenous LPS (i.e. lipopolysaccharide) or placebo. Blood
samples were collected at t = 0 (i.e. just before the
injection), and at t = 2, 4, 6, 9 and 24 h. Leukocytes were
separated and a genome-wide transcriptomic analysis was
conducted onto oligonucleotide arrays (Affymetrix
Hu133A and Hu133B). The second subset was drawn from
the experience conducted in six healthy individuals, also
divided into two groups to recieve either intravenous LPS
or placebo. Blood samples were taken at t = 0 hours (i.e. just
before the injection), then at t = 2 hours and at t = 6 hours.
Affymetrix Human Genome U133 Plus 2.0 chips were used
to get a genome-wide transcriptomic picture of the
biochemical processes induced by the LPS stimulus.

In Sutherland’s study [15], the main objective was to
identify biomarkers for the early detection of sepsis. For
that, the authors conducted a prospective study in four
intensive care units in Australia between 2007 and
2009. Data from this study comprises three subsets: a
sepsis group (n = 10), a post-surgery group (n = 11) and
finally a control group (n = 20). The main inclusion criteria
for the sepsis group were patients over 18 years, enrolled
within 24 h of admission, presenting clinical suspicion of
sepsis as defined by the ACCP consensus/SCCM 1992 [1]
and whose infection had been confirmed a posteriori. The
second subset consists of patients recruited before a
surgery and that had developed a systemic inflammatory
response (not infectious) within the 24 h following the
intervention. The last subset consisted in adults from the
medical staff of the hospital, without any concurrent
illnesses at the time of blood collection nor any past history
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mmunological dysfunction. Blood tests were performed
the three subgroups, leukocytes were isolated and
ridization was then performed using Affymetrix

man Genome U133 Plus 2.0.

 Microarray data pretreatment

Because we had to handle data sets produced by
erent research groups, we started from collected raw
a sets and applied to them the same standardized
treatment procedures. Raw data expression files were
ded and analyzed with R (v3.1.1) and Bioconductor
]. The CEL files were imported into R environment.
ore any differential expression analysis, all raw datasets
re preprocessed using both the affy library [18] and the
ong probe summary method [19].

 Microarray data analysis

This part of the work was conducted in two stages. The
t phase was based on the first subset of the database
duced during Calvano’s et al. study. We analyzed the
etics of SIRS focusing on the times during which major
nges in gene expression were observed. The aim was to
firm, as reported by Calvano et al. that the main

une regulatory processes occur between 0 and 2 h and
ween 6 and 9 h. We used the maSigPro algorithm
elopped by Conesa et al. [20] for the analysis of single

 multi-series time-course microarray data. An ascend-
 hierarchical classification was then applied and

pleted with a principal component analysis (unsuper-
d method) in order to explore differential expression

ults, minimizing the dimensionality of the data while
serving most of the variation.
The second phase was based on the rest of subsets
luded in this study. The second subset from Calvano’s
l. study was used in order to compare LPS-injected with
cebo-injected healthy subjects gene expression values.
ferential expression analysis was performed using
MA linear models with least squares regression and

pirical Bayes moderated t-statistics [21,22]. P-values
re adjusted for multiple comparisons using the Benja-
i–Hochberg false discovery rate correction (FDR). A

rected P-value of 0.001 was chosen as significance level.
ce a list of genes is hardly exploitable as such, genes that
re identified as significantly differentially expressed for
h time point from the experimental data were exported
o Ingenuity Pathway Analysis software (IPA). This
tform was selected for the high quality of Ingenuity’s
wledge base and the efficient web-based functional
lysis tool that was provided. Specificity of connections
each gene of interest was calculated, allowing us to
ermine the corresponding expressed canonical path-
ys. Pathways of higly interconnected genes were
ntified by statistical likelihood. The same modus
randi was scrupulously applied to the transcriptomic
abase extracted from Sutherland’s et al. study. Inge-
ty’s software was then employed to compare canonical
hways differentially expressed between the pathologi-

and the non-pathological systemic inflammatory

3. Results and discussion

3.1. Kinetics of an induced systemic inflammatory response

We started by conducting an exploratory analysis of the
kinetics of an induced SIRS based on the first subset of the
database extracted from Calvano’s et al. study.

For this, we realized a temporal analysis using the
maSigPro Bioconductor library. With a P-value fixed at
0.001 and a threshold error rate FDR fixed at 0.001, a total
of 4601 probe sets were identified as differentially
expressed for the six time points, compared with the
5093 initially found in the study conducted by Calvano
et al. [14]. Although the algorithms are very similar, in
particular those used for normalization and standardiza-
tion of raw data, there is a fluctuation that can be explained
by the use of different software tools (Calvano and his
colleagues used dChip).

As presented in Fig. 1, the 4601 probesets previously
identified as differentially expressed were displayed as a
heatmap graph in order to provide a trend of the kinetics of
inflammatory response induced by endotoxin injection.
Each line in the graph corresponds to the level of
expression of a given probe set; each column represents
the results of an array. A color gradient was applied and
ranging from dark blue to yellow for under-expressed to
over-expressed genes. Firstly, if we focus on the control
group, we do not distinguish any fluctuation in the gene
expression patterns throughout the 24-h interval. With
regard to the LPS group, three distinct phases can be
observed. At t = 0 h, that is to say, before the infusion of
endotoxin, we can observe that the expression of genes is
comparable to that of the 24-h interval in the control
group. Between t = 2 h and t = 9 h, we can observe a
complete change of gene expression patterns. Finally,
between t = 9 h and t = 24 h, the level of regulation of genes
gets back into a quasi-steady state as observed at t = 0 h.
This graph highlights two interesting phenomena that are
a first and rather rapid activation of the immune system
during an inflammatory reaction (before t = 2 h) and the
regulation of such inflammatory reaction that takes place
between t = 2 h and t = 9 h after the first contact with an
antigen.

As a confirmation, a principal components analysis was
carried out and presented in Fig. 2. As previously observed,
three groups appeared. The first group consists of all
microarrays from the control group (represented by
hollow dots). Also included in this first group are all
microarrays corresponding to time t = 0 h and t = 24 h from
the LPS group (solid dots, black and purple respectively).
The second group consists in microarrays corresponding to
time t = 2 h. Finally, the last group consists in gene
expression data for times t = 4 h, t = 6 h, and t = 9 h. This
second analysis confirms the previous observations, but
also demonstrates that at t = 2 h, expression of genes was
significantly different from t = 4 h and t = 9 h.

In order to study more closely what happened between
t = 4 h and t = 9 h in the LPS infusion group, maSigPro
library was used on the previous dataset to group genes
according to their expression level (agglomerative hierar-
cal clustering based on Ward’s method and using
ponses. chi
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correlation distance). It allowed us to analyse the average
level of expression of genes in clusters over time (Fig. 3).
The graph shows the average gene expression by clusters
as a function of time. First we can observe that the red
curve (corresponding to control group) remains relatively
stable over time, while the green curve (corresponding to
the endotoxin infused group) undergoes significant
fluctuations. Two phases can be distinguished as a function
of these fluctuations. A first intense phase occurs between
t = 0 h and t = 2 h, and then it goes slightly up until t = 4 h. A
reverse phase then begins between 4–6 h up to 24 h.

3.2. Gene expression during an induced and controlled SIRS,

an observed post-chirurgical SIRS and a diagnosed sepsis

The second part of this study is structured around the
results obtained with the Limma package for the four

observational conditions: SIRS 2 h and 6 h after the
injection of lipopolysaccharide, spontaneous SIRS after a
surgery and Sepsis. For the first conditions, at t = 2 h after
endotoxin infusion, 3099 probe sets were significantly
identified, corresponding to 2745 genes. For the second
conditions, 6 h after the endotoxin injection, 7779 probe
sets were identified, corresponding to 6666 genes. Finally,
for the last conditions, 4436 genes (5302 probe sets) on the
one hand and 5033 genes (5965 probe sets) on the other
hand were identified as differentially expressed in the
cases of post-surgical SIRS and septic SIRS respectively. By
contrast with the previous part, this analysis was focused
on the identification of genes differently expressed
according to the context of an induced SIRS by adminis-
tration of a low dose of LPS. Detailed results of microarray
experiment analysis were presented in supplementary
material, Appendix S1.

Fig. 1. (Color online.) Heatmap graph and hierarchical clustering of significant probesets that were differentially expressed following endotoxin (or saline

solution) infusion. The heatmap cell color ranges from blue, i.e. down-regulated, to yellow, i.e. up-regulated, according to the probeset expression level

(normalized by Z-score). Columns represent arrays with time points indicated in hours before (0 h) and after infusion (2 h, 4 h, 6 h, 9 h, 24 h); rows represent

probe sets.
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 Functional analysis and comparison between the

hologic and the non-pathologic cases

The purpose of this study was to identify any regulatory
chanisms of the inflammatory response behaving in a
erent way during a sepsis. We therefore carried out a
ctional analysis with the use of Ingenuity Pathway
lysis (IPA). The first two sets of Limma exported data

 those concerning the expression of genes two hours
 six hours after the injection of endotoxin.

As a first step, we were interested in transcription
ulators. Those that were identified as playing a
ificant role (Fisher’s exact test, P-value threshold

5), are referenced in Table 1. As regards to the SIRS
uced group, the regulators of transcription significantly
ressed at two hours after LPS infusion were RELA,
T3 and HMGB2 while those that were expressed at

 h are SATB1, EP300 and FOXP3. RELA and STAT3 are

two transcription regulators with a central role for an
effective host defense without excessive inflammatory
response [23], while HMGB2 plays a central role in nucleic
acid-mediated TLR responses [24,25]. At t = 6 h following
endotoxin injection, RELA gives way to STATB1, which is
known to be involved in the regulation of the differentia-
tion of naive T cells [26]. EP300 and FOXP3 are involved in
the regulation of autoimmunity [27]. Regarding the post-
chirurgical and sepsis groups, significantly expressed
regulators of transcription are SATB1, NFATC2, TCFL5,
USF1 and EGR1 on the one hand, and SATB1, FOXP3, TAL1,
NFATC2 on the other hand. It should be noted that NFATC2
was significantly expressed in post-chirurgical and sepsis
groups, which is a calcium-dependent transcription factor
implicated in the activation of diverse cell types of immune
system [28].

Using Ingenuity Pathway Analysis (IPA), we identified
canonical pathways involved in the inflammatory

2. (Color online.) Principal component analysis of the kinetics of an inflammatory response induced by lipopolysaccharide (LPS) infusion. Hollow dots

esent expression data of control group, solid dots represent expression of LPS group. A different color is given for each time points, black: t = 0 h, green:

 h, blue: t = 4 h, red: t = 6 h, gray: t = 9 h, purple: t = 24 h.

le 1

scription regulators identified and classified with IPA according to their statistical significance at 2 h and at 6 h after endotoxin infusion, during a post-

ical SIRS and during a sepsis. P-values were adjusted using the Benjamini–Hochberg correction. A threshold value was set at 0.05.

hours after LPS infusion 6 hours after LPS infusion Post-chirurgical SIRS Sepsis

anscription

gulators

P-value Transcription

regulators

P-value Transcription

regulators

P-value Transcription

regulators

P-value

LA 9.09e–4 SATB1 1.82e–2 SATB1 1.43e–3 SATB1 4.31e–4

AT3 1.59e–3 EP300 2.54e–2 NFATC2 1.61e–2 FOXP3 1.72e–2

GB2 1.17e–2 FOXP3 3.09e–2 TCFL5 4.19e–2 TAL1 2.32e–2

USF1 4.19e–2 NFATC2 3.70e–2

EGR1 4.19e–2
 Ingenuity Pathway Analysis software; SIRS: systemic inflammatory response syndrome; LPS: lipopolysaccharide.
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response processes. We first analyzed gene expression
tables during an induced and controlled SIRS and we
identified 18 canonical pathways at t = 2 h after endotoxin
infusion and 15 canonical pathways at t = 6 h (Table 2). This

process was repeated for both the post-chirurgical SIRS
and the diagnosed sepsis gene expression tables. Thus,
19 canonical pathways have been identified for sepsis and
20 pathways for post-surgical SIRS cases (Table 3). Among

Fig. 3. (Color online.) Representation of gene expression profiles by cluster for each experimental group (control group in red and systemic inflammatory

response syndrome [SIRS] group in green). Average gene expression profiles are presented according to time points: t = 0 h, t = 2 h, t = 4 h, t = 6 h, t = 9 h, and

t = 24 h. Cluster analysis was based on Ward’s method (correlation distance) with a hierarchical classification.

Table 2

Canonical pathways identified and classified with IPA according to their statistical significance 2 h after endotoxin infusion (left) and 6 h after endotoxin

enfusion (right). P-value were adjusted using the Benjamini–Hochberg correction. A threshold value was set at 0.01.

2 hours after LPS infusion 6 hours after LPS infusion

Canonical pathways BH P-value Canonical pathways BH P-value

OX40 Signaling pathway 5.01e–7 EIF2 Signaling 5.15e–32

Cytotoxic T lymphocyte-mediated apoptosis of target cells 5.01e–7 Regulation of eIF4 and p70S6K 1.79e–9

Calcium-induced T lymphocyte apoptosis 7.62e–5 Calcium-induced T lymphocyte apoptosis 7.74e–7

Nur77 Signaling in T lymphocytes 8.43e–5 mTOR Signaling 2.52e–6

CD28 Signaling in T helper cells 4.37e–4 iCOS-iCOSL Signaling in T helper cells 1.31e–5

PKC u Signaling in T lymphocytes 4.37e–4 CD28 Signaling in T helper cells 5.49e–4

iCOS-iCOSL Signaling in T helper cells 1.08e–3 Role of NFAT in regulation of the immune response 7.85e–4

TREM1 Signaling 1.72e–3 CTLA4 Signaling in Cytotoxic T lymphocytes 7.99e–4

CCR5 Signaling in macrophages 3.90e–3 Nur77 Signaling in T lymphocytes 1.13e–3

Cdc42 Signaling 4.44e–3 Cytotoxic T lymphocyte–mediated apoptosis of target Cells 2.07e–3

T Helper cell differentiation 4.73e–3 T Cell receptor signaling 2.09e–3

Tumoricidal function of hepatic natural killer cells 5.17e–3 B Cell development 2.85e–3

Dendritic cell maturation 6.94e–3 Phospholipase C signaling 3.44e–3

IL-6 Signaling 8.79e–3 T Helper cell differentiation 6.52e–3

CTLA4 Signaling in cytotoxic T lymphocytes 8.79e–3 PKCu Signaling in T lymphocytes 8.92e–3

B cell development 8.79e–3

iNOS signaling 8.89e–3

Natural killer cell signaling 9.92e–3
IPA: Ingenuity Pathway Analysis software; SIRS: systemic inflammatory response syndrome; LPS: lipopolysaccharide.
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the identified pathways, nine are shared by all the
ditions. Three of these are related to the regulation of
ptosis of immune cells during an inflammatory

ponse (calcium-induced T lymphocyte apoptosis, cyto-
ic T lymphocyte-mediated apoptosis, Nur77 signaling).

 other six pathways (iCOS-iCOSL signaling, CD28
aling, B Cell development, CTLA4 signaling, T Helper

l differentiation, PCKØ signaling) are involved in the
ulation of the activity and proliferation processes of

une cells. Focusing on the regulation of the inflamma-
 response and considering the differently expressed

onical pathways between non-pathologic and patho-
ic cases, two canonical pathways drew our attention: the

/p70S6K regulatory pathway and the mTOR signaling
hway. Despite the fact that they are presented
arately, eIF4 and p70S6K are both downstream compo-
ts of mTOR signaling pathway. Particularly studied over

 last decade because of his involvement in the regulation
he immune response [29–31], mTOR signaling pathway
s detected at t = 6 h after LPS infusion as well as the eIF4/
S6K canonical pathway, that was also identified for
t-chirurgical SIRS subjects. Although those pathways
re not identified at t = 2 h after endotoxin stimulation

 namely during a prevailing acute pro-inflammatory
ponse, the regulatory role played by the mTOR signaling
hway during a systemic inflammatory response cer-
ly commands further investigation.

onclusion

Assuming that severe septic cases are partially caused
a loss of control in the inflammatory response, we
ided to investigate and compare the physiologic
chanisms involved in the regulation of inflammation
ween pathological and non-pathological cases.

The dynamic analysis of an induced systemic inflam-
matory response led us to reach similar conclusions from
what was established by Calvano et al. in their seminal
work. From a transcriptomic point of view, the systemic
inflammatory response goes through two stages; one is
predominantly pro-inflammatory and occurs around 2 h
after endotoxin infusion and the other one is predomi-
nantly anti-inflammatory and occurs around 6 h after the
first contact with LPS.

Many mechanisms are common between the patholog-
ical and the non-pathological cases. There are nevertheless
some differences in the processes involved in the regula-
tion of the inflammatory response as it could be observed
for the mTOR signaling pathway. The results obtained
following the functional analysis are consistent with what
has been recently observed in the field of inflammation and
its regulation [32–34].

Although it cannot be established with certainty, owing
to the limited number of patients included in Calvano’s
study and the disparate blood collection conditions
between the two included transcriptomic databases, the
detection of a different activity of the mTOR signaling
pathway during the inflammation regulatory stages in
non-pathological subjects in contrast to what was
observed in the pathological cases could represent an
interesting avenue to explore.

While encouraging, these results need to be confirmed
by time series experiments including a significant number
of ICU septic patients and in controlled blood collection
conditions.
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le 3

onical pathways identified and classified with IPA according to their statistical significance during a post-surgical SIRS (left) and during sepsis (right). P-

es were adjusted using the Benjamini–Hochberg correction. A threshold value was set at 0.01.

st-chirurgical SIRS Sepsis

nonical pathways BH P-value Canonical pathways BH P-value

F2 Signaling 7.84e–10 Cytotoxic T lymphocyte–mediated apoptosis of

target cells

3.26e–8

lcium-induced T lymphocyte apoptosis 2.44e–8 Calcium-induced T lymphocyte apoptosis 3.26e–8

OS-iCOSL Signaling in T helper cells 5.01e–7 EIF2 Signaling 2.40e–7

le of NFAT in regulation of the immune response 3.49e–6 Role of NFAT in regulation of the immune response 2.54e–7

40 Signaling pathway 1.21e–5 OX40 Signaling pathway 5.57e–7

r77 Signaling in T lymphocytes 1.70e–5 Nur77 Signaling in T lymphocytes 9.30e–7

totoxic T lymphocyte–mediated apoptosis of target cells 3.12e–5 iCOS-iCOSL Signaling in T helper cells 3.12e–6

28 Signaling in T helper cells 3.12e–5 T Helper cell differentiation 9.24e–6

Cell development 5.47e–5 Phospholipase C signaling 1.29e–5

LA4 Signaling in cytotoxic T Lymphocytes 7.22e–5 B Cell development 2.01e–5

mmunication between innate and adaptative immune cells 7.39e–5 T Cell receptor signaling 9.03e–5

Cell receptor signaling 8.96e–5 CTLA4 Signaling in cytotoxic T lymphocytes 1.33e–5

Helper cell differentiation 1.71e–4 CD28 Signaling in T helper cells 1.61e–4

matopoiesis from pluripotent stem cells 3.22e–4 Cdc42 Signaling 2.00e–3

R5 Signaling in macrophages 6.89e–4 CCR5 Signaling in macrophages 4.28e–4

OS Signaling 1.39e–3 PKCu Signaling in T lymphocytes 4.80e–4

c42 Signaling 1.64e–3 Hematopoiesis from pluripotent stem cells 1.30e–3

8 MAPK Signaling 1.82e–3 p38 MAPK Signaling 4.50e–3

gulation of eIF4 and p70S6K 3.55e–3 Antigen presentation pathway 4.58e–3

Cu Signaling in T lymphocytes 4.50e–3

 Ingenuity Pathway Analysis software; SIRS: systemic inflammatory response syndrome; LPS: lipopolysaccharide.
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