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Gé

Po

Év
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1. Introduction

The wide range of phenotypic variation observed in
human populations may reflect distinctive processes of
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igénétique

A B S T R A C T

The evolutionary history of modern humans means much more than their demographic

past. It includes the way in which humans have had to genetically adapt to the different

environments they have encountered—nutritional, climatic or pathogenic—as well as the

different epigenetic responses elicited by such environmental cues. Detecting how natural

selection has affected human genome variability has proven to be a powerful tool to

delineate genes and biological functions having played a key role in human adaptation, a

variation which can also be involved in phenotypes of medical relevance. This article

reviews several examples that illustrate well how different environmental pressures,

particularly those imposed by pathogens and infectious diseases, have shaped the patterns

of genetic and epigenetic variability currently observed in human populations.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

R É S U M É

L’histoire évolutive de l’Homme signifie bien plus que son histoire démographique. Elle

inclut également son adaptation génétique aux divers environnements qu’il a rencontrés —

nutritionnels, climatiques ou pathogéniques — ainsi que les différentes réponses

épigénétiques mises en place pour y faire face. Détecter la façon dont la sélection naturelle

a influencé la variabilité du génome humain représente un outil puissant pour identifier des

fonctions biologiques ayant joué un rôle majeur dans l’adaptation et la survie de notre espèce

et qui peuvent également être associées à des phénotypes variables d’intérêt médical. Cet

article présente différents exemples qui illustrent la façon dont les pressions environne-

mentales, tout en particulier celles exercées par les agents pathogènes et les maladies

infectieuses, ont influencé la diversité génétique et épigénétique des populations humaines.

� 2016 Académie des sciences. Publié par Elsevier Masson SAS. Cet article est publié en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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enetic adaptation to variable environmental conditions.
ver the past decade, the advent of genome-wide single-
ucleotide polymorphisms (SNPs) and whole-genome
equence datasets has enabled one to test different
ypotheses concerning how natural selection, in its
ifferent forms and intensities, has influenced the vari-
bility of the human genome. Genome-wide scans for
election have identified numerous candidate genes under
election, increasing knowledge of the adaptive history of
umans and providing new tools for delineating genomic
egions associated with phenotype variation, both benign
nd disease-related [1–4].

In addition to genome-wide approaches, studies of
andidate genes have also provided evidence for the action
f selection, particularly when functional evidence is
vailable, with an increasing number of selected genes
eing documented in relation to phenotypes associated
ith adaptation to nutritional resources, different climates

r pathogen presence [1,5–7]. For example, iconic cases of
enetic adaptation to diet have been well described for
ilk consumption, starch-rich diets or bitter-taste percep-
on. Likewise, genetic adaptation to changing environ-
ents is provided by the exposure of ancestral populations
 colder climates and lower levels of sunlight after early
igrations out of Africa. These changes led to variation in
e quantity, type and distribution of melanin in the skin,

esulting in the various levels of skin pigmentation
bserved in present-day human populations. Another
teresting case of selection is adaptation to high altitude,
r which different mutations in different genes have been

eported as evolving adaptively to avoid hypoxia.

. Forms of natural selection

Natural selection can manifest in different forms
ig. 1A), each of them leaving distinctive molecular

ignatures in the targeted genomic region (reviewed in
]). Purifying selection, or negative selection, refers to the

rocess by which deleterious mutations are culled from
e population, and is the most pervasive form of selection.

t the population level, the reduced number of non-
ynonymous SNPs observed, as compared with the non-
ynonymous mutation rate, reflects the elimination of
any non-synonymous mutations through purifying

election. Selection also occurs when a novel mutation is
vorable, as is referred to as positive selection, which is
ought to be one of the ways in which adaptive evolution

ccurs. Most approaches to detect positive selection rely
n the fact that a beneficial allele will increase to a high
equency within the population at a rate that is much
ster than that of a neutrally-evolving allele. Finally,

alancing selection refers to a selective regime in which
o, or multiple alleles, at a given locus are maintained in

e population, leading to an overall increase in genetic
iversity. Balancing selection can maintain polymorphism
rough heterozygote advantage, in which individuals who

re heterozygous at a particular locus have a greater fitness
an homozygous individuals (e.g., HbS [sickle-cell]

ariant), or frequency-dependent selection, where the
tness of a phenotype is dependent on its frequency
elative to other phenotypes in a given population. In

humans, it appears that positive selection is more
pervasive than balancing selection, although the latter
regime has been particularly documented in genes
involved in immune functions.

3. Approaches for detecting the effects of selection

Each type of selection leaves a distinctive molecular
signature (e.g., nucleotide diversity, allele frequency
spectrum, haplotype length, etc.) in the genome concer-
ned (Fig. 1B). Such molecular signatures can be detected
with an increasing number of statistical tests that can be
broadly subdivided into those that search for selection at
the inter-species level (e.g., human vs. chimpanzees) and
those that focus on particular aspects of within-species
data (for a review, see [6]). The latter are used to detect
selection within and between human populations, and
can be further subdivided into distinct groups, each one
focusing on different aspects of the genetic data. These
include: (i) frequency-based methods (e.g., Tajima’s D and
derivatives, Fay and Wu’s H tests), which determine
whether the frequency spectrum of mutations conforms
to the expectations of the standard neutral model; (ii)
population differentiation-based methods (e.g., FST and
LSBL), which test for altered levels of differentiation
between populations. For example, when positive selec-
tion occurs in only a subset of populations, the frequency
of the selected variant may differ across populations to a
greater extent than that predicted under neutrality
(increased FST) (Fig. 1C); (iii) haplotype-based methods
(e.g., iHS, LDD, XP-EHH), which examine the patterns of
haplotype homozygosity associated with particular alle-
les. For example, an allele targeted by recent positive
selection would be expected to have an unusually long
haplotype for its population frequency, because the
advantageous allele increases in frequency too rapidly
for recombination to have a major effect on haplotype
length; and (iv) composite methods, which combine
different, independent tests into a single composite score,
increasing power and minimizing the detection of false
positive signals [6].

Some of these tests are sensitive to the confounding
effects that other factors, in particular demography, have
on the patterns of genetic diversity. However, it is possible
to overcome this caveat, as demographic events affect the
whole genome, whereas selection acts locally and is
restricted to particular genomic regions. Demographic
models that consider realistic scenarios for the demo-
graphic history of human populations (e.g., population
expansion, bottlenecks, etc.) can be incorporated into
neutral expectations. Likewise, empirical procedures can
be used to compare the value of a given statistic for the
gene of interest (e.g., Tajmas’s D, FST, etc.) with background
expectations for that statistic generated from genome-
wide data, which should reflect neutrality. Thus, simula-
tion-based or empirical procedures can be used to
distinguish between the effects of demographic factors
and those of natural selection events targeting specific
genomic regions, providing evidence of the true effects of
selection in the human genome.
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 Pressures imposed by pathogens and infectious
seases

Probably the most important selective pressure that
s confronted humans is that imposed by infectious
seases, as pathogens have been, and still are in regions
 which antibiotic treatment, vaccine administration
d hygiene improvements are limited, a major cause of
man mortality. Numerous studies have shown that
nes involved in immunity and host defense are
ivileged targets of selection, increasing our under-
anding of how pathogens have exerted pressure on

human genome variability [1–3,5,8,9]. In humans, scans
for positive selection, bolstered by the advent of genome-
wide datasets, have detected more than 5000 loci
presenting signatures of positive selection (see [1,10]
for reviews). Of these, more than 300 genes with
immune-related functions have been identified, with
more than half of them being detected as targets of
positive selection by at least two independent studies
[1]. This group of ‘‘selected genes’’ may display functional
variation that is differentially distributed between popu-
lations and is therefore likely to be involved in the present-
day differences in susceptibility to infectious, chronic

. 1. Modes of natural selection and molecular signatures of each selective regime. A. Purifying selection leads to the removal of deleterious alleles (in

ck) from the population. Positive selection favors the increase of a given allele (in red) in the population. Balancing selection, for example, can favor the

sence of heterozygotes (in blue) in the population. B. The main molecular signatures of each selection type are described (LD: linkage disequilibrium).

An iconic example of a signature of positive selection, i.e., increased levels of population differentiation, is provided. Under neutrality (left), the frequency

a given mutation (in red) will fluctuate across generations by simple genetic drift, reflecting the demographic history of the population concerned. Under

cenario of population-specific positive selection (right), the advantageous mutation (in red) will increase in frequency in population 2, leading to high

els of population differentiation (high FST) for the mutation concerned.
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flammatory, and autoimmune diseases, observed in
uman populations [4].

The most obvious selection pressure on immunity
enes is the presence of pathogens, i.e., pathogen-driven
election. Proof of the importance of pathogen-driven
election comes from studies correlating genetic variabili-

 in human populations and pathogen diversity in the
orresponding geographic regions, with significant corre-
tions being detected for the Human Leukocyte Antigen
LA) class-I genes, blood group antigens, and interleukin-

elated genes. Other studies have identified genetic
ariation in host genes that correlates with specific groups
f microbes, such as viruses, protozoa, and parasitic
orms. Furthermore, when testing for genetic correlations
ith a large variety of environmental variables, including

limate, subsistence strategies, diets and pathogen load, it
as been found that pathogens are still the primary drivers
f local adaptation [11]. That genes under pathogen-driven
election are enriched in functions such as innate

munity and inflammatory response supports the major
ole played by pathogens in human evolution, particularly

at of the immune response.

. From population genetics to human immunology

The additional insight brought by studies of natural
election is that they enable the delineation of the
iological relevance of immunity genes in natura (i.e.,
eir degree of essentiality, redundancy or adaptability),

nd the prediction of their involvement in infectious or
munity-related diseases [3,12,13]. Genes evolving

nder purifying selection are likely to be involved in
ssential mechanisms of host defense, variation in which
hould lead to severe disorders [13]. This is supported by
enome-wide studies, as Mendelian disease genes are
nriched in signals of purifying selection [14]. Focusing on
nate immunity, it has been recently shown that innate
munity genes have evolved under stronger evolutionary

onstraints than the remainder of the genome [15]. For
xample, microbial sensors such as endosomal Toll-like
eceptors (TLRs) and many Nod-like receptors (NLRs),
daptors such as MYD88 and TRIF, and effectors such as
ome type-I IFNs and IFN-g have been targeted by
urifying selection, attesting to the unique, essential
ature of the mechanisms—immunological or other-
ise—involved (reviewed in [3]).

Clinical genetic studies further support this notion, as
are mutations underlying severe diseases have been
und in highly constrained genes and pathways. For

xample, mutations in the TLR3-TRIF, TIR-MYD88, and
N-g pathways have been associated with life-threaten-
g infections during childhood, including HSV-1 enceph-

litis, pyogenic bacterial infections and MSMD,
espectively (see [16] and references therein). Conversely,
enes evolving under weak negative selection are likely to
e involved in more redundant processes [1,12,16]. For
xample, among innate immunity receptors that sense
ucleic acids, the weaker constraints characterizing the
IG-I-like receptor (RLR) family, with respect to endosomal
LRs, point to some redundancy of RLR-mediated antiviral

munity. Extreme cases of immunological redundancy

are provided by molecules such as MBL or TLR5, for which
loss-of-function alleles can increase to very high popula-
tion frequencies [3].

The action of positive or balancing selection, in turn,
attests to more dynamic mechanisms, variations of which
have been beneficial to the host over different evolutionary
timescales. Selection can increase the frequency of some
mutations in specific populations, as they can exert a
protective, almost Mendelian, effect against infections
[7]. Notable examples are provided by the HbS heterozy-
gotes in Africa, independent G6PD deficiency variants
worldwide, the DARC null allele in Africa, and the various
FUT2 deficiency alleles in different populations. Positive
selection can also increase the frequency of alleles
associated with more complex traits or diseases, such as
the TLR1 I602S hypo-responsiveness mutation in Europe
[17], suggesting an advantage associated with weak TLR1-
mediated responses, or variants in type III IFN genes in
Eurasians [18], some of which have been associated with
the clearance of HCV infection. A recent study focusing
on > 1500 innate immunity genes has shown that their
patterns of diversity result from different demographic and
selective events, including Neanderthal introgression and
hard sweeps at some loci in specific populations occurring
mostly during the Neolithic transition [15].

6. Trade-offs of past selection: maladaptation

In some cases, past selection may result in maladapta-
tion and immune dysfunction, such as inflammation and
autoimmunity. The present increased incidence of chronic
immunity-related disorders appears to be concomitant
with the ‘‘pathogenic sterilization’’ of modern societies
during the 20th century [19]. The hygiene hypothesis
postulates that a decrease in the diversity of microbes we
are exposed to has led to an imbalance in the immune
response, promoting chronic inflammation [20]. Popula-
tion genetics has provided support for this hypothesis, as
several immunity-related genes, variants of which confer a
higher risk of inflammatory bowel disease, celiac disease,
type-I diabetes, multiple sclerosis, or psoriasis, have been
targeted by positive selection. The higher frequency of
alleles conferring greater susceptibility to some of these
diseases in populations exposed to high microbial/viral
loads suggests that these variants play an otherwise
beneficial protective role in host defense [20]. Furthermore,
risk alleles for celiac disease, in genes such as IL12A,
IL18RAP, and SH2B3, have been targeted by positive
selection and individuals carrying these alleles benefit
from protection against some infections [1]. More gener-
ally, strong population differentiation has been observed
for some risk alleles associated with several autoimmune
conditions [21], supporting further the connection be-
tween past adaptation and current disease risk.

7. Population epigenetics: the case of DNA methylation
variation

Besides genetic adaptation, humans, as well as other
organisms, have alternative ways to respond to environ-
mental pressures. In this context, epigenetic variation,
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cluding histone modifications, RNA-based mechanisms
d DNA methylation, plays a crucial role at the interface
tween the environment and the genome [22]. DNA
ethylation is perhaps the best understood component of
e epigenetic machinery [23], and can be affected by
herited DNA sequence variation and environmental
ctors, such as nutrition, toxic pollutants and social
vironment. DNA methylation differences exist between
ajor ethnic groups, highlighting the potential contribu-
n of epigenetic modifications to phenotypic variation,

cluding physical appearance, drug metabolism, sensory
rception, and disease susceptibility [24]. These studies
ve also shown that DNA methylation differences
tween populations result from a combination of
fferences in allele frequencies of genetic variants
sociated with DNA methylation variation (methylation
antitative trait loci, meQTL) and gene–environment

 � E) interactions.
Recent work has evaluated the impact that temporal

anges in habitat and lifestyles, together with genetic
versity, have on epigenetic variation [25]. By comparing
e genome-wide DNA methylation profiles of rainforest
nter-gatherers and sedentary farmers from Central
rica, it appears that methylation variation associated
ith recent changes in habitat (urban/rural vs. forest)
ostly concerns immune functions, whereas that associ-
ed with historical lifestyle (farming vs. hunting and
thering) affects primarily developmental processes.
rthermore, DNA methylation changes that correlate

ith historical lifestyle show strong associations with
netic variants that, moreover, are enriched in signals of
tural selection. All these studies increase our under-
nding of the relative impacts that population genetic

riation and differences in lifestyles and ecologies have on
e human epigenome, and illustrates the utility of DNA
ethylation as a marker to track variation in regulatory
tivity following environmental change.

 Concluding remarks

Population genetic studies have collectively helped to
lineate functionally important loci responsible for the
netic adaptation, or epigenetic responses, of human
pulations to environmental pressures and lifestyle
nsitions. Likewise, the investigation of how natural

lection, in its different forms and intensities, has targeted
rticular genes and biological functions has proven a
eful tool to inform the relationship between genetic
versity, adaptive phenotypes and disease, providing an
dispensable complement to clinical and epidemiological
netic studies. Such multidisciplinary, integrative efforts
e required to clarify the relationship between natural
lection and disease and to improve our understanding of
e evolutionary mechanisms accounting for the present-
y disparities in disease susceptibility, resistance or
ogression observed, both at the individual and popula-
n levels.
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