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A B S T R A C T

Elucidating the underlying rules that govern the phenotypic diversity observed in natural

populations is an old but still unaccomplished goal in biology. In 1865, Gregor Mendel

paved the way for the dissection of the underlying genetic basis of traits by setting out to

understand the principles of heredity. To date, we still lack a global overview of the

spectrum and continuum existing between Mendelian and complex traits within any

natural population. In this respect, we recently performed a species-wide survey of

Mendelian traits across a large population of isolates using the yeast Saccharomyces

cerevisiae. By analyzing the distribution and the inheritance patterns of the trait, we have

clearly shown that monogenic mutations can display a significant, variable, and

continuous expressivity across different genetic backgrounds. Our study also demon-

strated that combining the elegancy of both classical genetics and high-throughput

genomics is more than valuable to dissect the genotype–phenotype relationship in natural

populations.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

R É S U M É

L’élucidation des règles gouvernant la diversité phénotypique observée entre individus

d’une même espèce est un objectif ancien en biologie, mais toujours loin d’être atteint. En

1865, Gregor Mendel a posé les bases théoriques de l’hérédité, permettant l’exploration

actuelle des origines génétiques des phénotypes. Cependant, nous n’avons toujours pas de

vision globale du spectre et du continuum existant entre les traits mendéliens et

complexes au sein des populations naturelles. Dans ce cadre, nous avons récemment initié

une étude à large échelle des traits mendéliens en utilisant la levure Saccharomyces

cerevisiae comme organisme modèle. En analysant la distribution et l’hérédité des traits,

nous avons clairement pu montrer que les mutations monogéniques peuvent avoir une

expressivité variable et continue dans différents fonds génétiques. Notre étude montre

également que la combinaison de la génétique classique et de la génomique à haut débit

est plus que précieuse pour disséquer la relation génotype–phénotype.

� 2016 Académie des sciences. Publié par Elsevier Masson SAS. Cet article est publié en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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. Trait variation and natural populations

Natural populations are characterized by an astonish-
g phenotypic diversity. Observing, exploring and dis-

ecting the biodiversity have clearly improved our
nowledge in biology. The variations observed among
dividuals of the same species represent an evident

owerful raw material to dissect and have a better insight
to the relation existing between genetic variants and

henotypes. Moreover, the advances of high-throughput
enotyping and phenotyping technologies have greatly
nhanced the power of determining the genetic basis of
aits in model as well as in non-model organisms
]. Genome sequencing of a large number of individuals

o longer represents a bottleneck. Consequently, a
omprehensive dissection of the genetic mechanisms
nderlying natural phenotypic diversity seems to be
ithin easy reach. In the era of ‘‘big data’’, we could think
at all is joined together to systematically map the genetic

rigins of traits within any species by using classical
apping approaches such as linkage analysis and genome-
ide association studies. Briefly, in linkage mapping, the

ausative loci are mapped using the progeny of crosses
etween genetically divergent individuals, in which the
enetic variants that contribute to phenotypic variation
egregates in the recombinant offspring. By contrast,
enome-wide association studies use a large sample of
nrelated individuals from the same species and look
irectly for correlations between phenotypes and geno-
pes. These mapping strategies are massively used and
ostly fruitful in many organisms, including the human

eing.
Alongside these major advances, however, it must be

oted that there are some limitations. And this is clearly
hown by all genotype–phenotype correlation studies in
umans and other model eukaryotes such as Arabidopsis

aliana and Caenorhabditis elegans, where identified
ausal loci by GWAS (Genome-Wide Association Studies)
xplained relatively little of the heritability of most
omplex traits. Multiple justifications for this unexplained
art, which is called ‘‘missing heritability’’, have been
uggested, including a large number of variants with small
ffects, rare variants, poorly detected structural variants,
nd low power to estimate gene–gene and gene–environ-
ent interactions [2,3]. As a result, we have today a

lightly better view of the genetic architecture of traits (i.e.

umber, type, effect size and frequency of variants
volved traits), but it is very far to be exhaustive.

. Following the footsteps of Gregor Mendel and
ermann Joseph Muller

A better understanding of the genetic architecture of
aits requires a deeper knowledge of the effect of genetic
ariants at the population level. This is stating the obvious
ut the question is how we can reach that. Deeper mapping
tudies by linkage or association, as mentioned previously,
ill definitely bring some insight into this problem, but
ill be insufficient. Additional and new strategies are

ssential and necessary. In such a context, sometimes it is
seful to stop and look in the rear-view mirror. By doing so,

we can obviously see way behind a Moravian scientist friar
dealing with Pisum sativum, the common pea plant
[4]. Indeed, natural populations were first used to observe
the patterns of inheritance of traits i.e. looking at the
segregation of traits in offspring and performing classical
genetics. In fact, we tend to forget about this powerful and
elegant way to investigate traits in the crowd of the fast
and ever-growing high-throughput sequencing and phe-
notyping possibilities. Obviously, such a strategy per se is
difficult, if not impossible, to apply to human traits such as
diseases when the genetic origin is complex and not
monogenic. It is obviously not possible to simply choose
parents and obtain the best crosses that will be informa-
tive. However, studies of inheritance patterns led to
remarkable discoveries over the past century in model
organisms such as plants, yeast, worms, and mammals.

Everything started around 1865 when Gregor Mendel
elegantly introduced the concept of dissecting how traits
are transferred for generation after generation [4]. He
clearly set out to understand the principles of heredity.
Mendel’s originality was present in many aspects of his
studies. First, the choice of the model system–the pea
plants–allowed controlling their fertilization and conse-
quently the possibility to arrange various parental
combinations, among which informative ones. Moreover,
Pisum sativum being self-fertilized, the traits remain
invariant and the parental lines of peas could be easily
pure-breeders or homozygous. Second, Mendel selected
and deeply dissected very simple traits, such as pea colour
and shape. When Mendel cross-fertilized wrinkled pea
plants with smooth ones, he did not get progeny with
semi-wrinkly seeds, for example. Finally, he conducted his
experiments in a quantitative manner and accurately
counted the number of the different phenotypic types in
direct progeny. He was the first to think and believe that
the mechanism of inheritance is reflected by the ratio or
proportion of each trait of the offspring. Obviously, it
became quickly evident that most of the traits are more
complex and show a deviation from what is now called a
Mendelian inheritance. In 1920, Edgar Altenburg and
Hermann J. Muller (the latest being best remembered for
his discovery of genetic effects of X-ray) characterized the
first complex trait using Drosophila as a model organism
[5]. In a masterful genetic analysis, they identified the
individual units, which affected the deformation of the
wing shape of flies, called ‘‘truncate’’. Sets of suitable,
informative and elegant crosses were performed to follow
the inheritance pattern and ultimately identify the three
loci involved in the trait. They pointed out that the traits
depend on genetic variations of all sorts–major locus as
well as their modifiers–and found how the units inter-
acted. They also have shown that variability was some-
times environmental. Importantly, they validated and
provided concrete evidence about the nature of hereditary
elements, leading to the integration of Darwinism and
Mendelism, i.e. the modern evolutionary synthesis.

3. Monogenic mutations, penetrance and expressivity

Beyond the simplicity of Mendelian inheritance, there is
the hidden complexity of how genetic variants exert a



fu
cla
co
ph
m
in
tio
in
ex
ep
or
all
w
ha
sh
a 

pr
ex
of
ge
sis
va
m
sh
va
di
ex
an
di
de
an

of
w
sc
w
to
de
ge
let
w
kn
sp
va
a 

co
un
w
of

4.

ge
he
ty
an
in
co
ot
th

J. Schacherer / C. R. Biologies 339 (2016) 284–288286
nctional impact. As a matter of fact, instead of being
ssified as either monogenic or complex, the potentially

ntinuous level of the underlying genetic complexity of
enotypes is overlooked. It is evident that monogenic

utations do not always strictly follow a Mendelian
heritance within natural populations [6]. First, a muta-
n can exhibit an incomplete penetrance meaning that

dividuals may have this particular mutation but may not
press the expected phenotype because of modifiers,
istatic interactions or suppressors present in the genome

 because of the environment. An example is the BRCA1

eles, which predispose to breast and ovarian cancer in
omen. Individuals with a mutation in the BRCA1 gene
ve an � 80% risk to develop this disease, therefore
owing incomplete penetrance. Second, the penetrance of
mutation is sometimes 100%, i.e. all the individuals
esent the expected phenotype. But different degrees of
pression are observed among the individuals. The range

 trait expression, called expressivity, might be due to
netic or environmental factors. Type-I neurofibromato-

 is a Mendelian disorder, which is a notorious example of
riable expressivity. The disease is caused by dominant
utations in the NF1 gene. Individuals carrying a mutation
ow a significant clinical heterogeneity and manifest
rious levels of severity, ranging from mild to extreme
sability. But again, if you think about the continuum of
pression of traits, the distinction between penetrance
d expressivity seems to be artificial. It also points out the
fficulty and the limit we sometimes have to precisely
fine, measure, and quantify a trait, mostly when it is an
thropocentric trait.
Besides classical examples in human diseases, variation

 penetrance and expressivity of monogenic mutations
ere also observed in model organisms at a genome-wide
ale. As an example, systematic gene deletion collections
ere obtained for two closely related S. cerevisiae labora-
ry isolates (S288c and S1278b) [7]. Comparison of
letion mutants revealed background specific essential
nes (approximately 1%), i.e. genes whose deletion is only
hal in either isolate. Similarly, loss-of-function mutants

ere also generated in C. elegans via RNAi-induced
ockdown, for hundreds of genes also led to background
ecific traits in different isolates [8,9]. Therefore, such
riation in penetrance and expressivity may suggest that
given trait could be monogenic in one individual, and
mplex in another. In this context, direct inference of the
derlying genetic variants for any given phenotype

ithin a population, assuming that the genetic complexity
 traits is at stasis, would obviously be biased.

 Continuity between Mendelian and complex traits

Ultimately, the key to a better understanding of the
netic architecture of traits could benefit from compre-
nsive dissection of the inheritance patterns of pheno-
pes within large populations using classic genetic
alyses. By using such strategies, we could have
formation concerning the continuous level of genetic
mplexity of traits, which is impossible to obtain by any
her means. More precisely, species-wide exploration of
e variation of penetrance, expressivity and complexity

among a large number of traits across considerable genetic
backgrounds would be very valuable. Study of simple
genetic cases (i.e. Mendelian or low-complexity traits) first
would allow laying the foundations for the dissection of
complex traits. The characterization of patterns of inheri-
tance by the selection of the best and most informative
crosses would undoubtedly lead to some interesting
inferences. At some point, such a strategy would probably
fill some big gaps left by genome-wide association and
linkage mapping analysis. Among the model organisms,
the yeast S. cerevisiae is especially well suited to such an
approach [10]. Large collections of isolates, originated from
insects, tree exudates, and various fermentations (e.g.,
wine, beer, cider) across different continents, are available.
They span a broad genetic and phenotypic diversity. The
S. cerevisiae species presents a high level of genetic
diversity, much greater than that found in humans
[11]. Because of their small and compact genomes,
hundreds of genomes are completely sequenced and more
will be soon available (http://www.1002genomes.
u-strasbg.fr/). In addition, yeast is a powerful model for
genetics. In fact, the particularity of its cell cycle allows us
to accurately examine the patterns of inheritance
[12,13]. A unique feature is the possibility to analyse
tetrads, which offers an opportunity to examine the
complete product of any single meiotic event. Finally,
patterns of inheritance can be followed for hundreds of
traits. Using new high-throughput strategies, hundreds of
phenotypes can be determined for the same set of parents
as well as their progeny.

As a test bed, we therefore performed a species-wide
survey of the inheritance patterns of a large number of
traits using the S. cerevisiae yeast model system [14]. We
systematically crossed the laboratory strain (S1278b)
with 41 various natural isolates spanning a wide range of
ecological (e.g., tree exudates, Drosophila, clinical isolates
and various fermentation) and geographical origins (e.g.,
Europe, America, Africa, and Asia), and covering a high
genetic divergence (up to � 0.6%). For each of the crosses,
offspring were obtained and 10 full tetrads (i.e. a total of
40 descendants per cross) were retained summing up to a
set of 1640 descendants from various parental combina-
tions. We quantitatively measured the fitness variation in
the offspring across a large panel of 30 culture conditions
(including various carbon sources, temperatures and
chemicals that impact various cellular processes). This
set of data led to a comprehensive analysis of the
inheritance patterns of more than 1100 cross/trait
combinations (a total of 41 unique parental combinations
in 30 conditions). By analysing the distribution and the
segregation of each phenotype for each cross, we obtained
the first estimation of the cases showing a Mendelian
inheritance pattern (i.e. showing a bimodal distribution as
well as a Mendelian segregation) within a natural
population. Our results showed that � 9% are monogenic
traits with a Mendelian inheritance. Using a linkage
mapping strategy coupled with whole-genome sequenc-
ing, we then precisely identified the genomic loci involved
in the different cases showing a Mendelian inheritance. To
assess the variation of expressivity (i.e. the range of trait
expression) within a population, we then followed the

http://www.1002genomes.u-strasbg.fr/
http://www.1002genomes.u-strasbg.fr/
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ffect of an identified monogenic mutation of the PDR1

ene present in the YJM326 clinical isolate (PDR1YJM326),
hich confer resistance to cycloheximide and anisomycin.

he Pdr1p protein is a transcription factor regulating the
xpression of various multidrug resistance ATP-Binding
assette (ABC) transporters. In YJM326, the presence of a
on-synonymous mutation in the sequence of the
hibitory domain of Pdr1p leads to a constitutive

xpression of the downstream transporter coding genes,
onferring the drug resistance trait. To test the effect of
DR1YJM326, we crossed YJM326 with 20 sensitive natural
olates and evaluated the fitness distribution of the drug

esistance in the offspring (Fig. 1). Most of the tested cases
0%) displayed a classic Mendelian inheritance. But more
terestingly, increased genetic complexity was observed
 30% of the cases, with significant deviations from the
endelian expectation (Fig. 1). In five cases out of the 20, a

light deviation from a Mendelian inheritance was
bserved. The level of genetic complexity was low and
e variation of expressivity observed in these cases is due

 the presence of modifiers and/or gene interactions.
astly, the fitness distribution in the progeny appeared to
e normal for one given cross. In this case, the trait does not

follow a Mendelian inheritance anymore and the underly-
ing genetic determinants are assuredly complex, involving
multiple genes.

5. Conclusion and perspectives

Overall, our recent study revealed the presence of a
continuum in terms of expressivity in natural populations.
Monogenic mutations might have different phenotypic
outcomes with various inheritance patterns ranging from a
Mendelian to a complex inheritance, including cases with
intermediate levels of complexity [14]. This particular case
based on a given PDR1 allele elegantly illustrates the extent
to which genetic backgrounds can impact the inheritance
pattern of traits in a continuous manner in respect of
complexity. Deeper dissection of the transition between
simple and complex traits is a possible gateway to have a
new insight into the genetic architecture of traits.
Obviously, the case presented above is a first example,
but there is much more to learn by investigating the
distribution and the inheritance patterns of the large cross/
trait combinations we already generated. In addition, to
have a broader view of the genetic complexity as well as of

ig. 1. Illustration of the hidden complexity of a monogenic mutation in yeast. The inheritance and distribution patterns of offspring resistance to

ycloheximide (1 mg/ml) were determined for hybrids originated from a cross between sensitive isolates and the YJM326 resistant strain. The effect of the

onogenic mutation (present in YJM326 and leading to the resistance) across multiple genetic backgrounds revealed the hidden complexity of monogenic

aits, where significant deviations from Mendelian inheritance were observed in multiple cases (30%), ranging from low to high complexities.
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e expressivity, this test bed should be expanded. First,
ch cross was performed with a reference laboratory
ain and hence we are far from having taken full
vantage of the genetic diversity present in the whole
cerevisiae species yet. Second, a more comprehensive
ploration of the phenotypic landscape also would
deniably be useful. Altogether, embracing data from

gh-throughput genomics with the elegancy of classical
netics will definitely add a new dimension to the
derstanding of the genotype–phenotype relationship in
tural populations.
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