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A B S T R A C T

Of very ancient descent, domestication switched the outcome of natural selection to that

due to human design. A widespread fancy is that man-created contraptions develop

dangerously on their own because of their Promethean essence. This assumes

implicitly—how difficult is it to refrain from thinking that we are the sawyers of

nature!—that their crafted powers would dominate the autonomy resulting from billions

of years of evolution. Yet artifice depends on the skills of its creator, so that it is when

coming close to nature that danger surfaces. Invasive species are natural, and the havoc

they create is here to call for some modesty in the appraisal of our endeavours. The farther

away, the less dangerous. Being distant from man, engineered plants are considerably

less harmful than animal constructs, especially those that are close to man and meant for

medical use. This reality contrasts with popular belief. In this misconception lies the

danger, magnified by the present demographic explosion of the invasive species Homo

sapiens, which develops artificial environments that provide progressively less room for

life to evolve.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

R É S U M É

D’origine très ancienne, la domestication a remplacé l’œuvre de la sélection naturelle par

l’action humaine. Dans l’imaginaire général, les choses créées par l’homme ont un pouvoir

de développement autonome en raison de leur caractère prométhéen. Cela suppose

implicitement — tant il est difficile de ne pas penser que nous sommes les régulateurs de la

nature ! — que leurs pouvoirs artificiels domineraient une autonomie résultant de

milliards d’années d’évolution. Pourtant, tout artifice repose sur les compétences de son

créateur, de sorte que c’est en se rapprochant de la nature que le danger survient. Les

espèces envahissantes sont naturelles, et les ravages qu’elles provoquent sont là pour

appeler à une certaine modestie dans l’appréciation de nos efforts. Plus c’est loin, moins

c’est dangereux. En étant éloignées de l’homme, les plantes modifiées sont considéra-

blement moins nocives que les constructions animales, en particulier celles qui sont

proches de l’homme et destinées à un usage médical. Cette réalité contraste avec la

croyance populaire. Dans cette idée fausse réside le danger, amplifié par l’explosion
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1. Introduction

In his famous book, Chance and Necessity, Jacques Monod
reminded us that telling living things from non-living ones is
straightforward. Even when in fossil form, the remains of life
display some sort of arbitrariness, some sort of inventive
property, which the standard laws of mechanical physics
would not reach easily. It may therefore seem outrageously
naı̈ve to take the stance of the engineer, and design and
construct from scratch a living organism. Yet, this prompted
the endeavour of Synthetic Biology, which seeks to develop
the building up of living contraptions, keeping biology
within the realm of physics and chemistry. To be sure, for a
long time it was common practice to see life in fairly
standard chemical processes such as those illustrated by
Stéphane Leduc in his 1912 book, La biologie synthétique

(Fig. 1).

2. From nature to manufacture: combining genes to
make a living organism

All the same, for the general public a synthetic drug
produced by engineering is believed to carry the scary
flavour of craftsmanship. The identical chemical, isolated
from a plant or an animal, would carry the harmless and
even beneficial flavour of Nature. What is deemed natural
is somehow blessed with a spark of life. As often, this
common sense has something important to tell us,
something still escaping attention of most biologists.
Indeed, the common view perceives the laws of physics, as
they were three centuries ago, tantamount to those of
mechanics, while it seems obvious that living organisms
differ from mechanical constructs. This implies that the
recent revolutions in physics, that I will now outline, has
not reached yet the understanding of biologists nor, a
fortiori, that of the general public.

Some 10,000 years ago, in parallel with the emergence
of complex mechanical tools, the Neolithic revolution
created agriculture, based on man-mediated selection of
plants and animals. Domestication retained useful traits
and directed their evolution towards organisms useful to
us. First, implicitly, then explicitly in recent times, we used
in this process our knowledge of heredity to speed up the
efficiency of selection. Domestication became intimately
connected to what was to become genetics. A dramatic
change between the old recipes meant to domesticate life
and the science of genetics happened after the discovery of
genes by Mendel—whom we celebrate today, De Vries,
Correns, von Tschermak, Johannsen, Morgan, Sturtevant,
Ephrussi, L’Héritier and many others. Knowing that the
characters we could observe resulted from a combinatorial
action of genes—that were organised as linear sequences
and subject to shuffling between varieties or even species—
a first gene-driven approach resulted in a considerable
speed up of the creation of new varieties for agriculture.
This gene/character-driven process is still a most widely
used way to domesticate plants and animals.

The process was refined by increasing human intrusion
via running statistical tools that give marks to phenotypic
traits and connect them to the way genes are organised in
the genome. Let us notice that this procedure is obviously
artificial, because someone, and not blind nature itself,
selects individuals to force them into the generation of a
hopeful progeny, often using manual fertilisation. Yet the
practice is generally appreciated as natural in the
coverage of mass media. This is likely because it combines
one or more fully living organisms to get the expected
progeny. The spark of life is still there. By contrast with
this apparently holistic approach, genetic engineering,
the most recent step in this process of gene-driven

démographique actuelle de l’espèce envahissante Homo sapiens, qui développe

des environnements artificiels et réduit progressivement la place laissée à la vie pour

évoluer.

� 2016 Académie des sciences. Publié par Elsevier Masson SAS. Cet article est publié en

Open Access sous licence CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/

4.0/).

Fig. 1. Silver sediments on a punctiform cathode, during the electrolysis

of silver nitrate (Stéphane Leduc, La Biologie synthétique, http://www.

peiresc.org/bs08suite.htm).
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estication of plants and animals (genetically modi-
 organisms, GMOs), uses bits and pieces of living
gs (or even synthetic constructs) to produce an

anism with the desired properties. Lacking knowledge
ut the way life develops, the general public perceives

 designed fragmentation as missing an essential
ibute of life, and, as a consequence, as possibly
gerous. Yes, this mistaken feeling misses a major
cess of gene invention in nature: the natural evolution
rganisms across generations also uses bits and pieces

living things, and this at a huge scale, much larger
n what man could do. Indeed, despite human
enuity, the GMO approach falls short of the way life
lf explores the infinite space of gene variation. All the
e, and contradicting this flawed belief, the danger

uld in fact take place because the construction is alive,
 inert, showing implicitly that we perceive nature as
entially dangerous.

nformation and life

To better understand the borders of natural and
thetic life we need to dive deeper in the intricacies
he cell’s functions. This will lead us into a profound
stion of physics—and perhaps philosophy, that of the
ure of the physical currencies that build up reality.
etics, at the core of the science of heredity, is based on

alphabetic metaphor. Genetic heredity is transmitted
 generation to generation by DNA, a macromolecule

t has the strange property of behaving as a textbook
tten with an alphabet of four letters. This creates a link
ween genetics and number theory that deserves further
lanation, as this highlights a major feature of biology,
ich crept quietly into physics during the past century or
and bloomed in recent times. Alphabetic writing uses
ngs of symbols chosen from a narrow list (usually of the
er of 20-30 symbols). It combines them sequentially to
resent the phonemes that make spoken words. There is
connection between these letters and the objects

y represent: four (in English), cztery (in Polish), vier

German), quatre (in French), tessera (in Greek),
Chinese) represent the same concept of number theory,

ber 4. We find here the first clue of the existence of a
 currency of reality, which obviously differs from the
monly accepted ones, matter, energy, space or time.

s currency underlies what we mean by ‘‘symbol’’, the
 that some entity is used to represent an abstract (yet
sically real) idea. Commonly referred to as ‘‘informa-

’’, it embodies the link between the symbol and what it
resents. Now, DNA is made of the chaining of four
micals, its sequence, following an order that has
ething to do with the general functioning of the cell.

just pointed out, this connects the DNA sequence with
e information. Briefly, the DNA contained in a cell, its

ome, can be understood as standing for a book of
ipes, that which tells the cell how to behave in a given
ironment (in particular how to produce a progeny).
Beside its genome, the bulk of the cell behaves as a

puter that would read and write (some of) the DNA
t (the genetic program) according to cues provided by

 environment, and interprets it as actions. It chains the

recipes in an order that allows the organism to maintain
itself, produce a young progeny, react to environmental
cues, protect itself against aggressions, etc. The program
prescribes synthesis of the entities that express its
meaning. In particular it codes for the synthesis of the
nanomachines that make identical copies of the program.
Alan Turing in the 1930s proposed the design of a most
elementary machine of this type, made of a read/write
head and of a mobile tape that carried a linear sequence of
symbols. Using a coding table, the machine reads or writes
symbols on the tape as a function of its previous readings
and moves it through the head, controlling a mechanical
device that allows the tape to go forward, backward, and
possibly stop. Core features of this machine, shared with
living cells, is that it entails physical separation between
the machine proper (the read/write head and the
mechanics needed to make the tape move) and the data
and program, using a coding table to set the conditions
under which the program is run. With this table, the
genetic program is recursive: it codes for the components
that make it run. Now, Turing and others showed that
running a recursive program via a coding table has a
remarkable property: not only does it preclude absolute
predictability in the long run, but, as demonstrated by Rolf
Landauer, it also allows creation of information. To be sure,
this feature of the genetic program and its coding
properties is at the heart of the creative properties of life
[1,2]. It is the place where information combines with
matter, energy, space and time within living organisms.

A sequence of symbols associated with a coding process
opens up the possibility for true creation (i.e. sudden
appearance of an entity which cannot be predicted from
what was existing before, but only accounted for a

posteriori). Recursive rewriting of the DNA text via using
a coding table makes living organisms creative, evolving in
a way that cannot be fully predicted because of the very
way they are constructed. This explains why living
organisms may behave as information traps. This way,
evolution creates new functions, which, to come into
being, recruit pre-existing structures. This happens with-
out any grand design, but locally: in a system that keeps
discarding unproductive entities, if something works
(locally, not necessarily to the benefit of the organism) it
will be kept for further use. This process is what we name
natural selection. It readily explains the ‘‘tinkering’’
features of living organisms (fairly haphazard collection
of local functions, that concur to allow the organism, with
its basic element, the cell, to thrive), as stressed by François
Jacob. To state this again, living organisms are those
material systems that have found a way, facing an
uncertain future, to create an innovative, hence unforesee-

able progeny, among which some will be able to survive.
Needless to say, this applies to any type of organisms, be it
natural or artificial and we must now consider how this
works in practice.

4. The making of genomes

The previous, fairly abstract, view of what life is leads us
to a concrete question: how are genomes produced in
nature? To compare nature and craft we need to have an
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idea of the way they are made. An organism comes from a
parent organism, which comes from a parent organism. . .

for many generations. This chain of events requires a start,
likely to be fuzzy, something like 3.5 billion years ago. A
great many scenarios account for the way the first cells
appeared on Earth. They all have in common that they
ended in gathering together just a few hundred essential
functions. These functions are enabled by macromolecular
structures housed in the space enclosed by the membrane
of a cell. They govern the overall management of matter
and energy supplies to make a progeny similar to what the
parent cell was, maintain the cell for a significant span of
time, while interacting with its environment. They
replicate the program (make an exact copy), while
reproducing the cell (making a similar copy). In this
process innovation comes from the relentless variations in
the cell setup (when the program is run, it produces
various outcomes depending on the environment, time or
random events) and from rare accidents—mutations—in
the program, that are subsequently propagated in the
following generations. This allows organisms to recruit
information from their environment and evolve. However,
if it were solely resulting from these alterations, the speed

of evolution would be extremely slow, because the
program’s replication is quite accurate. Furthermore this
would not leave much room for innovation, which must
come from the context (Fig. 2).

Again, a solution to this challenge is manifest in
scenarios of the way the first cells emerged, creating
and propagating innovation. Cells used to, and often still do
fuse and split continually. They also swallowed all or
pieces of other cells. Furthermore, most components of
cells are fairly labile, and are broken down into small
molecules. This comes true for almost everything, except
for some structures, such as the ligno-cellulosic material
that protects plant cells and, notably, DNA, the material of
the genetic program. The recent deciphering of the genome
sequence of Neanderthals and of many ancient organisms
shows that DNA is a remarkably stable molecule [3]. A
great many systems, viruses in particular, carry over the
process and spread it as fairly large pieces across cells and
organisms. DNA fragments are prone to recombination
events, cutting and pasting all kinds of genetic sequences
in the genome texts. Thus, through horizontal gene
transfer, the coding properties of DNA are propagated
over many organisms in a single generation.

Fig. 2. A scenario for the origin of the first cells builds on the critical need for compartmentalization at the origin of life. In a first step, this was assumed by

the surface of minerals, which selected the reactive compounds that formed primitive metabolism. Subsequently, RNA molecules replaced mineral surfaces

after the discovery of nitrogen fixation and the emergence of ribonucleotides, in parallel with a machinery for the synthesis of peptides, coenzymes, and

lipids. This RNA-metabolism world then developed into an RNA-genome world based on RNA as informational templates rather than substrates. Bordered

by lipids, the first cells were phagocytes, Protokarya, which put together two compartments stemming from the RNA-metabolism world (the cytoplasm)

and the RNA-genome world (the nucleus). The emergence of stable deoxyribonucleotides allowed the clustering together of genes into chromosomes, while

phagocytosis created the opportunity for an escape based on an alternative metabolism of membrane lipids, with the Archaea, and on the emergence of a

robust and phagocyte-resistant envelope, with the Bacteria. Reductive evolution allowed bacteria with a modified enveloped to be phagocytosed again as
symbionts of Protokarya, leading to the final generation of the Eukarya.
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The techniques designed by scientists at the origin of
Os and synthetic biology took advantage of these pre-

sting systems. Yet, this developed at a minute scale as
pared to what happens in nature. Water and soil are

lete with viruses and sheer DNA sequences. Typically
water contains ten to one hundred million virus-like
ticles (VLP) per gram in pelagic environments and ten
es this number per gram in sediments. We are bathing

 DNA soup [4]. The DNA flow can involve direct DNA
sformation, but specialised processes such as those

diating bacterial sexuality, or viral infection followed by
l genome insertion or retrotransposition are ubiqui-
s. All kinds of viruses and mobile elements have
eatedly invaded genomes. Our own genome hosts
ost 10% of its DNA derived from viruses. Viruses

bedded in genomes can excise imprecisely, carrying
h them host adjacent genes. As a consequence, natural
omes are patchworks of genes that display a huge
binatorial association, ever experimenting novel

ups, some of which will be stabilised by natural
ction.

However, the haphazard combinations thus generated
e no reason to be of interest for human endeavours. To
esticate life, nature had to be replaced by craft. Slowly

lving from past pursuits, the present practice of
iculture used selection acting on the expressed traits
he organism, its phenotype, or directly on gene function
he rare situation when a precise phenotype could be
ly linked to a particular gene. In its early days, selection

ognised a particular trait and inbred organisms that
sessed the same trait. This resulted in very slow vertical
smission, especially when using the phenotype alone

e had to wait for many generations to create a really
red strain, and, for plants, this usually required one year
 generation). Furthermore, the genes of interest
hhiked other genes, possibly deleterious, in a fairly
ontrolled way. More recently, knowledge of the way
es are organised in the genome was used to speed up

 process, via statistically-relevant choices in crosses.
ever, it was still not possible to know exactly what

bal modifications of the genome text was at work. A
her skill was developed with GMOs, where the
dification of the genome is considerably smaller than
rtificial breeding crosses, and known exactly. Instead of
cting, after the fact, the organisms of interest, it
ame possible to create them with the narrow properties

 wished them to have. In order to isolate a plant
istant to a virus one could either crossbreed plants (in
intelligent way, using a parent organism known to have
eloped some kind of resistance) until we found one that

ists, or we could identify genes coding for products
king viruses innocuous. The former is a considerable
ension of an old practice, hybridization. However,
rids combine whole genomes, possibly and eventually

ating new species, while in genetic engineering only
 gene or a few genes are introduced in the organism,
ich will seldom alter its nature as a species. This
ation is now changing with synthetic biology, where

 species will be created [5]. However, because they
lved for more than 3 billion years, natural organisms

 much better at producing innovations than the crippled

life we designed. Indeed, understanding how nature
manages information, as we have seen, synthetic biology
engineers exclude the components of their constructs that
are meant to innovate. They have to: would you fly in a
plane that can modify its wings and engines while flying?
The danger comes when they duplicate nature, not when
they create artificial organisms.

5. Nature’s reach

The main difference between nature and craft is that,
in the former, there is no design. In natural organisms,
the processes that manage construction and mainte-
nance are in-built, not managed by an outside intelli-
gence. This has the consequence that living organisms
must both get energy and matter exploring their
environment, and be able to separate between what is
old and what is young within them to generate a young
progeny. This latter scoring and cherry-picking function
is original to life. It belongs to the family of functions
linked to information that we discussed previously. It
marks where nature differs the most from manufacture.
Let us first return to exploration. In natural environ-
ments this entails winning competition with other
organisms. This is not so with synthetic biology
organisms meant to be cell factories: their environment
is designed by engineers, so that they do not require
means to manage competition with foreign organisms.
As for the formation of a young hopeful progeny, the
synthetic biology engineers must prevent cell factories
to innovate as much as possible. The consequence is that
natural organisms are essentially inventive whereas
artificial ones are not.

The distance between natural and artificial evolution is
witnessed in the historical pattern of emerging conflicts
between species. After all, competition for limited resources
is the basis of natural selection. Indiscriminate continual
elimination of individuals (be it only because they age),
makes the background of natural selection. However, this
selection is organised so as to preserve all cells carrying
functions that do not draw too much on their overall
competence, favouring those that lead to capture or store
important resources in the presence of competitors. A major
consequence of this in-built property of natural organisms is
that wild-type animals or plants that get to biotopes where
no competition has yet evolved, either because of climate
changes, pollution, or accidental introduction, cause de-
structive biological invasions (islands or continents such as
Australia witness invasion by foreign plants and animals
with dramatic consequences) (Fig. 3).

Why are organisms invasive, while they are put in check
in their normal environment? A cautionary example will
tell. Mammalian cells harbour a variety of viruses. Over
myriads of generations they became attenuated in their
normal hosts where specific adaptive genome immunity
was progressively built up. These viruses (see those
causing many children diseases) usually cause a mild
form of disease. In contrast, when shifted from their hosts
to human beings, the probability that they generate very
infectious agents is high because, while the entry within
cells has been preserved, no adaptive immune system has
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yet evolved. In Archaea and Bacteria, the CRISPR system, an
anti-viral immune system discovered twenty years ago
and first considered anecdotal, illustrates the point. It
leaves in the host genome scars of previous infections,
which are subsequently used to fight further infections.
Sadly, in animals, direct contact with fresh blood of related
animals is dangerous because similar protecting barriers
are often absent. Owing to our similarity to other Primates,
a likely origin of the AIDS virus is in the butchering of
monkeys or apes. However, because a pathogen requires a
conserved port of entry, the danger decreases when one
shifts from man to animals, which are less and less similar
to us. Note that it remains significant with bats, that some
think are genetically quite close to Primates [6].

A rational behaviour would be, therefore, to take care of
the possibly dangerous properties of nature in an inverse
proportion with the kinship, which associates us with the
species of interest. Plants would be less dangerous than
animals. In this respect, the fear of Genetically Modified
Plants (at least when they do not carry animal genes) is
unfounded. Now, monkeys and even pigs are built on a
pattern very similar to that of human beings. Their organs
would easily exchange with ours, triggering a keen interest
for xenotransplantation, a practice that removes the species
barrier. Alas, the transplanted patients would carry for years
organs loaded with animal virus remnants. This would
increase immensely the risk of recombination between the
animal viruses and normal host endogenous viruses, the
more so if the phylogenetic distance is shorter. This would

create a new ‘‘experimental’’ field for new pathogens to
emerge. The danger becomes serious when we note that
xenotransplantation is perceived as positive: there is an
inverse relationship between the reality of a danger and
human perception of danger. If not carefully explored, such a
practice, perhaps useful from the point of view of a patient,
would become extremely dangerous for society as a whole.
Studies are wanting in this domain. For example, do we have
indications that butchering animals may be a source of
diseases? The answer is positive unfortunately [7], and this
would deserve thorough studies.

6. Tentative conclusions: two kinds of craftsmanship,
Homo sapiens is an invasive species

Belonging to the realm of physics, the key property of
life is that it is based on natural selection, a law that results
in the systematic collection and subsequent transmission
of novel information in the progeny of living organisms. In
this context, nature is considerably more liable than craft to
produce dangerous outcomes, such as what we see in
constantly emerging diseases. It makes natural life in a
natural environment utterly unpredictable in the long run.
However this property requires that nature and craft develop
in a natural environment and this situation is on the verge of a
complete turnaround, because of the impact of our species on
Earth. The accidental fusion of two chromosomes in one of
our ancestors (note that this is a gross chromosome anomaly,
that our designed modern practice of artificial human
fertilisation might have prevented from producing a proge-
ny) probably resulted in the Homo lineage, with a remarkable
consequence in terms of invasiveness. Homo sapiens created
a field of crafts that we did not discuss yet, crafts which aim at
wholly changing its environment, the whole surface of the
Earth, not at creating or modifying life directly. A first step
developed with the making of tools, the control of fire, and
finally with the practice of agriculture. This meant changing
the environment so that plants and animals chosen by man
would thrive, at the expense of wild plants and animals that
were suddenly deprived of the environment that had allowed
their birth, evolution and development. We also began to
construct homes, cities, roads. Our fields are artificial,
metamorphosing landscapes. As a consequence the human
population started to increase. In turn this increase resulted
in more artificial modification of the surface of our planet to
the extent that, in practice, nothing on Earth remains that
escaped the influence of man’s craft. Nature is still inventive,
but it gets less and less room to exert its inventivity. It is not
the human design of living artefacts that may become
dangerous, but the inanimate craft associated with our
frighteningly explosive demography that destroys all natural
niches where life could exert its inventivity.
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