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A B S T R A C T

Characterizing genomic structural variations (SVs) in the human genome remains

challenging, and there is a growing interest to understand somatic SVs occurring in

cancer, a disease of the genome. A havoc-causing SV process known as chromothripsis

scars the genome when localized chromosome shattering and repair occur in a one-off

catastrophe. Recent efforts led to the development of a set of conceptual criteria for the

inference of chromothripsis events in cancer genomes and to the development of

experimental model systems for studying this striking DNA alteration process in vitro. We

discuss these approaches, and additionally touch upon current ‘‘Big Data’’ efforts that

employ hybrid cloud computing to enable studies of numerous cancer genomes in an effort

to search for commonalities and differences in molecular DNA alteration processes in

cancer.

� 2016 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Caractériser les variations structurelles génomiques (SVs) dans le génome humain reste

difficile et comprendre ces variations somatiques survenant dans le cancer, une

maladie du génome, fait l’objet d’un intérêt croissant. Un processus de SV ravageur,

connu sous le nom de chromothripsie, endommage le génome par un phénomène de

fragmentation-réparation localisé en une seule étape, qui devient soudainement

catastrophique. Des efforts récents ont conduit à l’élaboration d’un ensemble de

critères conceptuels pour révéler des événements de chromothripsie dans les cancers et

pour développer des systèmes modèles expérimentaux pour étudier in vitro ce

processus d’altération de l’ADN. Nous discuterons ces approches et de plus, nous

évoquerons les efforts actuels qui, mettant en œuvre des ressources informatiques à
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. Introduction

Genetic variation is a fundamental reason why humans
iffer from one another and why some individuals are
ore susceptible to diseases such as cancer than others,

nd there is a growing interest in investigating the
echanisms and the phenotypic consequences of genetic

ariation. A sharp decrease in the costs of DNA sequencing
as enabled the sequencing of numerous human genomes
nd their mining using ‘‘Big Data’’ analytical approaches
r unraveling molecular disease processes [1]. One

xample for such studies is the presently ongoing Pan-
ancer Analysis of Whole Genomes (PCAWG) project
ttps://dcc.icgc.org/pcawg), a forerunner project in Big

ata analytics of genomes from patients, which aims to
tegrate data from somatic and germline whole genomes,
NA methylomes, transcriptomes, and clinical data from
ore than 2800 cancer patients amounting to nearly a

etabyte of sequencing data [1]. The objective of PCAWG is
 unravel commonalities and to distinguish factors

etween cancer types and subtypes at the molecular level,
 facilitate the molecular classification of malignancies
ith impact on diagnostics and treatment, and to uncover

ausalities linking genotype, environment, and phenotype.
he unprecedented resource developed through PCAWG
ill enable standardized analysis of cancer genomes and

ssociated datasets including transcriptomes, DNA methy-
mes, and clinical data to obtain insights into molecular

isease processes relevant to cancer.
The objective of this paper is to briefly review

ethodologies for analyzing disease processes, with a
pecific focus on complex DNA rearrangements, in cancer
enomes. Additionally, we will provide an outlook to
oming Big Data efforts – with one example being the
CAWG project – which will facilitate the understanding of
asic processes as well as translational research (Box 1).

. Cancer genomes can evolve through catastrophes: the
olecular process of chromothripsis

Cancer genome sequencing has enabled new insights into
ow tumors evolve, and has led to quite remarkable findings
elating to the fact that cancer is not merely driven by stepwise
lterations but can arise in conjunction with bursts of
utational events [2]. One particularly remarkable example
r this is chromothripsis, a molecular process first described

y Stephens et al. in 2011 based on cancer genome analysis,
hich can scar individual chromosome arms or one up to

everal chromosomes when localized chromosome shattering
nd repair occurs in a one-off catastrophe [3]. Rearrangement
atterns associated with chromothripsis occur in approxi-
ately 2–3% of human cancers [3] and TP53 germline
utations are linked with the occurrence of chromothripsis

abundant in other cancers, such as bladder [5], breast [6],
melanoma [7], and in bone cancers [3]. While the prevalence
of chromothripsis in diverse cancer cell lines and cancer
genomes [3,4,8] suggest a crucial role of chromothripsis in
cancer development, the reproducible inference of this
process has remained challenging, requiring that cataclysmic
one-off rearrangements can be distinguished from localized
genetic lesions that occur in a stepwise fashion. We recently
devised a set of conceptual criteria for the inference of
complex DNA rearrangements suitable for rigorous statistical
analyses, which included previously established [3] as well as
novel criteria: clustering of breakpoints, regularity of oscillat-
ing copy-number states, interspersed loss and retention of
heterozygosity, prevalence of rearrangements affecting a
specific haplotype, randomness of DNA segment order and
fragment joins, as well as the ability to walk the derivative
chromosome [8]. These criteria attempt to reject the
alternative hypothesis that DNA rearrangements have oc-
curred in a stepwise (progressive) fashion. Further refinement
of these criteria allow inferring chromothripsis events in
conjunction with additional stepwise patterns of DNA
alteration [9], and collectively, these criteria have begun to
be used quite regularly to operationally define chromothripsis
events based on cancer genome sequencing data.

l’échelle mondiale de type « Big Data » sur de nombreux génomes, recherchent des

points communs et des différences dans les processus d’altération moléculaire de l’ADN

dans le cancer.

� 2016 Publié par Elsevier Masson SAS au nom de Académie des sciences.

Box 1. Challenges in genomics due to recent increase

in data set sizes.

Opportunities emerging from large datasets are not

without challenges. When using a typical university

Internet connection, for example, it would take more

than 15 months to transfer a data set such as the one

amassed by the ICGC from its data repository into a

researcher’s local IT infrastructure [1]. And the hard-

ware needed to store, let alone process the data,

would produce costs at a million dollar level each

year. So, consider a PhD student pursuing a 3-year

thesis project at a European university. Before she/he

could even consider to start pursuing analyses,

15 months of download time would need to be over-

come – a considerable portion of the overall time

frame anticipated for the thesis, and a million USD

in storage would need to be spent before any research

work could begin.

Given the establishment of new sequencing platforms

that can now sequence over 10,000 human genomes a

year at several locations around the world, the number

of human genomes generated in the context of dis-

ease research is going to be ramped up dramatically in

the coming 5 to 10 years. Genomics England Ltd, a

government-driven initiative in the UK, for example,

plans to sequence 100,000 human genomes – includ-

ing 25,000 from cancer patients, by the end of 2017.
 pediatric medulloblastoma [4]. Chromothripsis is also

https://dcc.icgc.org/pcawg
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 Methods for mechanistic dissection of catastrophic
A rearrangement processes

Although cellular catastrophes occurring during key
ges of the cell cycle were proposed to play roles in

itiating catastrophic DNA rearrangements [10], the
echanistic basis of chromothripsis has not been studied
til recently, largely due to lack of suitable cell-based

odel systems. In order to investigate the underlying
echanism(s) of chromothripsis events, recent studies
ve described cell-based models for characterizing
romothripsis, which include a methodology termed
ST (Complex Alterations After Selection And Transforma-

n) developed by our group [11]. CAST (Fig. 1) is based on
 untransformed model cell line (hTERT-RPE-1), applica-
n of genetic or chemical perturbations, selection of DNA
erations conferring a growth advantage by soft agar
lony formation and screening for extensive copy-
mber alterations using low-coverage DNA sequencing

llowed by in-depth characterization of complex rear-
ngements by long-range paired-end sequencing [11].

Using this in vitro system, we were able to reproducibly
nerate chromothripsis events in RPE-1 cells upon global
A damage by doxorubicin. In addition, we performed in-

pth characterization of cell lines harboring chromothri-
is alterations that were generated by CAST, and we
plied the above-mentioned criteria to obtain additional
sights into the process [11]. By doing so, we were able to
monstrate that telomeric stress can initiate chromo-
ripsis events in vitro (when using an siRNA against the
elterin complex component TRF2) consistent with
evious genomic analyses suggesting that chromothripsis
n be initiated from dicentric chromosomes and break-
e-fusion-bridge cycles [9]. The link between telomere
isis and complex DNA rearrangements were further

substantiated by recent reports providing compelling
evidence for telomeric stress being an initiating factor
for complex rearrangements both in vitro mediated by
TREX-1 endonuclease following telomere crisis as well as
[12] in vivo in medulloblastomas, ependymomas, glioblas-
tomas, and chronic lymphocytic leukemias [13]. Another
important implication derived from this in vitro system
was the association of an increase in ploidy either in the
form of tetraploidy (four chromosome sets) or hyperploidy
(presence of extra chromosomes in the form of incomplete
sets) with chromothripsis. This is an interesting finding
considering previous studies suggesting an increase in
genomic instability in response to tetraploidy [14]. In the
context of chromothripsis, we were able to uncover that
the increase in ploidy predisposes to complex genomic
rearrangements also in vivo analyzing primary SHH-
medulloblastoma tumor genomes. In these tumors, we
found that hyperploidy is not only strongly associated with
chromothripsis, but is also plausibly the initiating factor
for complex SRs [11].

Another attractive model for chromothripsis is based on
the presumption that chromosomes confined in micronuclei
can undergo a catastrophic shattering process in a one-off
event [15], a model which recently was significantly
substantiated through single-cell sequencing data providing
compelling evidence for chromothripsis [16]. It is important to
note in this regard that there is also a plausible connection
between telomere crises and micronuclei formation, whereby
upon telomere loss sister chromatid fusion events may
mediate the formation of dicentric chromosomes, which in
turn may result in micronuclei formation as a consequence of
chromosome segregation defects [11].

In summary, due to recent advances in chromothripsis
research, we are now beginning to understand the cellular
processes and factors that might be involved in instigating

. 1. The CAST approach, providing insights into determinants of chromothripsis. CAST allows the mechanistic dissection of chromothripsis – a cellular

astrophe resulting in massive simultaneous DNA rearrangements. Using hTERT RPE-1 cells, we reproducibly created chromothripsis in vitro by chemical

d genetic perturbations. Clonal expansion of cells is followed by their in-depth characterization to obtain additional insights into the process (top right

nel). CAST revealed an increased rate of chromothripsis in hyperploid cells (bottom right panel) and following telomere shortening (through siRNA

uced silencing of a shelterin complex component), findings that we verified by genome sequencing in primary brain tumours.
is figure has been adapted from Fig. 1 of the article by Mardin et al. [11], �2015 European Molecular Biology Organization.
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uch dramatic rearrangements. However, it still remains to
e seen to what extent a misregulation of these factors is
eflected in real tumors and which cellular process actually
perates in vivo during tumorigenesis generating chromo-
ripsis events.

. Big data: opportunity for genomics and cancer
esearch

Investigations of molecular disease processes such as
hromothripsis events can be significantly leveraged by
ccess to large datasets that facilitate correlative studies to
ursue hypothesis- and data-driven research. Thanks to

provements in sequencing technology, the volume of
enomic data submitted to public archives is now well into
e multipetabyte range (1 petabyte is 1015 bytes) [1], and

 beginning to match scientific dataset sizes that we
reviously only knew from physics. A large portion of the
enome sequencing data recently generated is from
uman patients, with cancer genomics playing a forerun-
er role thanks to recent large-scale funding initiatives
ncluding consortia projects by the International Cancer
enome Consortium [ICGC] for example; see www.icgc.
rg). Within the ICGC, groups from 17 countries have
massed a data set in excess of two petabytes – equivalent

 the capacity of roughly 20,000 smartphones – in just
 years [1] (Box 2).

Analysis of this treasure trove of data has the potential
 enable a range of analyses of relevance to systems

iology, computational biology, and biomedicine, which so
r could not be undertaken. Cancer genome analyses

enefit from large sample sizes, since common cancers are
pically classified into numerous subtypes which charac-
ristically show different patterns of mutation. In order to
arn about cancer biology and treatment options for
atients, and also to uncover relationships between
olecular data and clinical data, large sets of patient

enomes as well as associated datasets (e.g. epigenomes
nd transcriptomes) are needed. Furthermore, since major
itiatives such as the Cancer Genome Atlas (TCGA) project

ased in the USA used mainly exome sequencing (i.e.,
equencing of those 1–2% of the human genome encoding
r protein-coding genes), much less is currently known

bout mutations in non-coding regions that contain most
ene regulatory information – in spite of initial success
tories showing that these regions can indeed be very
elevant to cancer [17–19]. Additionally, since previous
ancer studies focused largely on uncovering somatic DNA
ariation, relatively little is known about how germline
NA variants may influence somatic mutations, although
10% of all cancers likely have a hereditary cause [20].

There is by now wide agreement in the human
enomics research community that the challenges of
ccessing Big Data sets are now limiting the scientists’
bility to do research, and especially to replicate and build
n previous work. One main objective of a novel major
ternational initiative, the PCAWG study, is to identify

ommon patterns of mutation in more than 2800 cancer
hole genomes from the International Cancer Genome
onsortium. PCAWG is exploring the nature and conse-

and non-coding regions, with particular emphasis on cis-
regulatory sites, non-coding RNAs, and large-scale struc-
tural alterations [1].

5. Challenges of Big Data analyses

A key determinant for, and perhaps one of the biggest
benefits of, cloud computing is the rapid scalability of
computational analyses (also often referred to as elasticity)
– i.e. the ability to scale up vastly when need increases or
down if resources are not being used. Several researchers
can work in parallel, sharing their data and methods with
ease by performing their analyses within cloud-based
virtual computers that can be accessed from desktop
computers. Thus, the analysis of a big genome data set that
might have previously taken months can be executed in
days or in weeks. Especially in public/commercial clouds
computing capabilities available for provisioning often
appear to be unlimited (e.g. with exceptionally high peak
time requirements), which enables applications in the life

Box 2. Big data analysis within PCAWG.

The key technical challenge addressed by the PCAWG

project is the collection and uniform analysis of whole

genome sequencing data for > 2800 cancer patients,

as well as additional data such as RNA and DNA

methylation, where available. The total data set size

under analysis now exceeds 700 TB (Table 1). To

address this challenge, seven project data repositories

have been established within high-performance com-

puting centers in Barcelona, Chicago, Heidelberg

(DKFZ), London (EMBL-EBI), Santa Cruz, Seoul, and

Tokyo. These seven centers have kindly donated com-

puting capacity to perform data processing, so far

totaling 8824 computing cores, 24 TB of RAM and

6 PB of hard disk storage. Four out of these seven

centers act as academic community cloud computing

centers for the purposes of this project, whereas the

remaining three contribute their data processing ca-

pabilities as traditional High performance computing

centers. A commercial cloud-computing provider –

Amazon AWS, was also used to analyze about 20%

of the samples [1].

In order to facilitate the comparison among diverse

tumour types, all tumour and matched normal geno-

mes are subjected to a uniform set of alignment and

variant calling algorithms, and a rigorous set of quality

control tests. The research activities are coordinated

by the steering committee of the project, which ste-

wards a series of working groups comprising more

than 700 scientists and covering a range of themes. A

set of computer centres around the world share the

work load of processing all the data available to

PCAWG using a standardized set of analysis tools

developed in the context of three major pipelines:

the Sanger pipeline, the Broad Institute pipeline and

the Heidelberg pipeline developed at the DKFZ and the

European Molecular Biology Laboratory (EMBL), and

also includes dedicated germline genome analysis

pipelines developed at Annai/Stanford as well as at

EMBL and EMBL-EBI.
ciences that may not be feasible/practical at all within a
uences of somatic and germline variations in both coding s

http://www.icgc.org/
http://www.icgc.org/


sin
de
Na
th
te
da
ni
sc
clo
ne
fo
va
ap
is 

pl
sta
fu
m
tiv

6.

ac
ge
bi
an
be
fo
of
ad
PC
w
re
di
hy
pr
co

Di

in

Ac

Ca
es

Ta

Da

(PC

D

W

R

D

N. Habermann et al. / C. R. Biologies 339 (2016) 308–313312
gle or a few localized data centers. We have recently
veloped recommendations for the development of
tional clouds [21]. In our view, an optimal model for

e European life science research community is what is
rmed a hybrid cloud, which combines academic localized
ta centers provisioning cloud computing to the commu-
ty and keeping some of the most highly valuable life
ience datasets locally, as well as public/commercial
ud computing (e.g. using European commercial part-
rs through the Helix Nebula public – private partnership
r cloud computing; www.helix-nebula.eu) providing
st scalability on demand to enable new research
plications. Another key advantage for a hybrid cloud
that such a cloud model does not require centralized

anning, and could (as long as this is based on agreed
ndards and frameworks) be built around different

nding sources, governance structures and organizational
odels, to facilitate the (data-heavy) future of collabora-
e basic and translational research in Europe.

 Conclusion and future

The field of genomics is rapidly changing with the
cessibility of new technologies that make human
nome sequencing a regular tool employed in molecular
ology and genetics laboratories, in biomedical research
d in the clinics. The data emerging from these efforts will

 of tremendous value not only for human health, but also
r molecular research to uncover the basic underpinnings
 disease processes such as chromothripsis and to make
vances in translational cancer research. Projects such as
AWG will show us some of the challenges while working

ith such sets of ‘‘Big Data’’. More work will be needed to
alize collaborative processing of such datasets in
fferent areas of the life sciences, and we propose a
brid cloud model of collaborative and shared data
ocessing – e.g. to compare crucial data across projects/
horts to advance the life sciences.
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