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A B S T R A C T

RNA-Seq of the Catharanthus roseus SRA database was done in order to detect putative

universal stress proteins (USPs) and their possible controlling factors. Previous analysis

indicated the existence and characterization of uspA-like genes. In silico analysis of RNA-

Seq database in several plant tissues revealed the possible functions and regulations of

some uspA-like transcripts whose transcription factors (TFs) that might drive their

expression were detected. BLAST indicated the existence of TF superfamilies erf (ethylene-

responsive TF), bHLH (basic helix-loop-helix) and WRKY that might regulate several uspA-

like genes. This data was proven via semi-quantitative RT-PCR in four plant tissues. Several

of these transcription factor superfamilies are known for their action in the plant defense

against biotic and abiotic stresses.
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1. Introduction

Vinca or Catharanthus roseus is an important medicinal
plant species with several applications in pharmaceuticals
and industry. This plant species is well known for the
biosynthesis of two anticancer bisindole alkaloids, namely
vinblastine and vincristine, produced during the terpenoid
indole alkaloids (TIAs) pathway [1,2]. This wild plant
species can tolerate several biotic and abiotic stresses
[3,4]; hence, we screened its transcriptome for usp-like
gene family that might act in conferring tolerance to such
adverse conditions. Although the exact function of this
gene family is unknown, it acts not only through improving
tolerance to biotic and abiotic stresses, but also tolerance
to other stresses, e.g., starvation and DNA damage [5].

The RNA-Seq data of different tissues that were
deposited in the CathaCyc database come from a study
originally conducted by Van Moerkercke et al. [6]. This
database was previously utilized [7] for detecting and
characterizing 24 uspA-like genes. Transcription factors
(TFs) with known actions that might drive these uspA-like
genes likely indicate the mode of action of these genes. TFs
are key proteins required in the regulation of almost all
biosynthetic pathways in life [8]. They bind to specific
target DNA sequences controlling cellular transcription by
either promoting or blocking the recruitment of RNA
polymerase to the target genes. TFs usually bind directly to
the target promoter regions; however, they sometimes
bind to RNA polymerase. The action of TF directly affect
downstream genes functioning at a particular time on
target cells (gene-in-time/gene-in-site). They are also
important in driving the plant’s responses to biotic and
abiotic stresses [9].

In the present study, an in silico analysis was conducted
in order to detect the TFs that might regulate the
expression of uspA-like genes in C. roseus in a trial to
detect the possible role of these uspA-like genes under
biotic and abiotic stresses.

2. Materials and methods

An RNA-seq analysis of C. roseus available at NCBI
(http://www.ncbi.nlm.nih.gov/sra, experiment SRP005953)
was conducted in order to detect TFs concordantly
expressed with uspA-like genes that had been previously
characterized [7]. The data were de novo-assembled using
Trinity-RNAseq v (r2013_08_14), and the recovered trans-
cripts were calculated for abundance and differential
expression using the Rsem package and the edgR method

and the values of fpkm for the recovered uspA-like
transcripts and their co-expressed transcripts were calcu-
lated. The resulted transcripts were clustered based on their
expression patterns across different tissues, treatments and
hairy root genotypes. Clusters were studied in order to
detect TF transcripts co-expressed with uspA-like trans-
cripts in C. roseus. A structural analysis was done for
selected C. roseus TF transcripts frequently co-expressed
with uspA-like transcripts.

To validate the RNA-Seq dataset of C. roseus, semi-
quantitative RT-PCR (or sqRT-PCR) was conducted for
seven transcripts of selected clusters. They included four
uspA-like genes and three co-expressing TFs. RNAs were
isolated from four pot-grown plant tissues (e.g., mature
leaf, flower, root and stem) using the Trizol reagent method
(Invitrogen) and treated with RNase-free DNase (Promega
Inc.). Primers were designed using Netprimer software
(http://www.premierbiosoft.com/netprimer/index.html)
with the following criteria: length of 20–27 bases, GC
content of �50%, with minimal secondary structure,
comparable annealing temperatures (48–55 8C) of the
primer pairs, and PCR products of 281–300 bp (Table S1).
sqRT-PCR was performed in forty cycles including dena-
turation at 94 8C for 15 s, annealing at 47–48 8C for 30 s,
and extension at 72 8C for 45 s. Amounts of 1 ul cDNA,
1 � PCR buffer (with 1.5 mM MgCl2), 200 uM dNTPs,
200 nM of each gene-specific primers and 0.2 U of Taq DNA
polymerase (Promega Inc.) were used in the reaction.
Amplicons were run on a 1.2% agarose gels stained with
ethidium bromide and visualized using the Gel Doc XR
from Bio-Rad Laboratories (Hercules, CA, <). The actin gene
(250 bp) was used as the house-keeping control.

3. Results and discussion

RNA-Seq analysis of the C. roseus SRA database of
different tissues resulted in the recovery of 50,723
transcripts that were calculated for abundance and
differential expression. A number of 24 uspA-like trans-
cripts were previously detected and characterized [7]. The
in silico analysis of the present study resulted in the
recovery of 1245 transcripts involving 13, out of the 24,
uspA-like transcripts (Table S2). The rest of the transcripts
were not regulated in different tissues of C. roseus, hence
not presented in the clusters generated from the analysis.
The regulated transcripts were shown in 12 clusters based
on their expression patterns across different tissues. BLAST
to detect hits in the NCBI indicated the occurrence of a
large number of TFs mainly in the erf (ethylene-responsive

ML, mature leaf

FL, flower

R, root

MTI, MAMP-triggered immunity

PTI, PAMP-triggered immunity

ETI, effector-triggered immunity

Trp, tryptophan

JA, jasmonic acid

SA, salicylic acid
TF), bHLH (basic helix-loop-helix) and WRKY gene
[7]. Blast alignment was done as previously described [7],

http://www.ncbi.nlm.nih.gov/sra
http://www.premierbiosoft.com/netprimer/index.html
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erfamilies. A number of 17 (four of erf, six of bHLH and
en of WRKY) TFs (see Table 1 for details) showed co-
ression with six, out of the 13, uspA-like transcripts in
 clusters, e.g., 4, 7, 8, 9 and 12 (Fig. 1 & Table S2). In

ster 4, the uspA-like transcript KJ634217 co-expressed
h bHLH48. In cluster 7, the uspA-like transcripts
34222 and KJ634224 were in concordance with
KY40, while the uspA-like transcript KJ634231 co-
ressed with erf034. The uspA-like transcripts KJ634232

 KJ634221 co-expressed with a number of ten and five
 of the three families, respectively. sqRT-PCR was used
validating the RNA-Seq dataset utilizing the selected

expressing uspA-like and TF transcripts of clusters 4,
nd 8 with varying expression levels in the four selected
ues, e.g., immature leaf (iML), mature leaf (ML), flower
), and root (R). The results concerning sqRT-PCR shown
ig. 2 indicated an alignment with the RNA-Seq dataset
ble S2 and Fig. 1).
The AP-2 – or activating protein-2 of ethylene respon-

 (ER) TF – domain represents a superfamily of closely
ted TFs, which plays a critical role in regulating gene
ression during the early development [10]. It was also
wn to interfere with other signal transduction path-
ys [11,12]. Ethylene-responsive element-binding fac-

 (ERFs) are a superfamily of transcriptional factors [13]
t induce many developmental processes, and are also
olved in the adaptation to biotic or abiotic stresses such
pathogen attack, wounding, UV irradiation, extreme
perature, and drought [14–16]. This TF is a key element

the integration of both signals for the regulation of
ense response genes [17]. Recent studies have extended

 influence of ethylene signaling with plant responses to
h salt and water stress [18,19]. The erf8 and erf34 were
orted in Arabidopsis and rice to be involved in the
ulation of gene expression by stress factors and

ponents of stress signal transduction pathways
]. The erf was further reported to operate during the
gression of leaf senescence [20], while erf5 was
orted in Arabidopsis to regulate the chitin-induced
ate immunity response [21]. Similar results were

reached in tomato (Solanum lycopersicum), tobacco
(Nicotiana tabacum), and Arabidopsis [22,23].

The information available for the basic helix-loop-helix
(bHLH) superfamily indicates its existence in eukaryotes
with numerous functions [24,25]. It can be responsible for
the incoming regulatory signals from various cellular
pathways and the direction of the transcriptional activity
of a target gene [26]. The function of bHLH48 is not
available, although this TF was characterized in a number of
plant species including Arabidopsis (www.ncbi.nlm.nih.gov/
gene/818831), rice (www.ncbi.nlm.nih.gov/gene/
4341525), Glycine max (soybean) (www.ncbi.nlm.nih.gov/
gene/100814124), corn (Zea mays) (www.maizegdb.org/
gene_center/gene/bhlh48) and Jatropha (Jatropha curcas)
(www.ncbi.nlm.nih.gov/gene/105634733). In Arabidopsis,
bHLH74 was reported to regulate the expression of a subset
of genes involved in cell expansion, while bHLH78 was
reported to trigger flowering in response to blue light
[27]. bHLH96 and bHLH155 have no known role, except
that the expression of the first one was reported to be
constitutive in roots, leaves, stems and flowers, while the
second is involved in root development [24]. The bHLH106
was recently reported to participate in salt stress tolerance
in Arabidopsis [28]. Knockout lines of this TF were more
sensitive to NaCl, KCl, LiCl, ABA, and to low temperatures
than the wild type.

The third type of TF, namely WRKY, is a member of a
family of TFs functioning in plant responses to various
physiological processes of vegetative and reproductive
growth [29]. This type of TF is important in plant defense
mechanisms, including MAMP-triggered immunity (MTI)
or PAMP-triggered immunity (PTI), effector-triggered
immunity (ETI), and systemic acquired resistance [30]. It
was also proven to have a regulatory role in salt and
mannitol stresses in Arabidopsis [31] and in cold and
drought responses in barley (Hordeum vulgare) [32]. In
addition, WRKY TFs regulate trichome and seed coat
development in Arabidopsis [33], sesquiterpene biosyn-
thesis in cotton (Gossypium hirsutum) [34], seed develop-
ment in barley [35] and Arabidopsis [36], respectively, and

le 1

scription factors in Catharanthus roseus assemblies and their NCBI protein and mRNA hits.

 Transcript ID NCBI protein hit Description

1 comp30166_c0 XP_004162335 Cucumis sativus ethylene-responsive transcription factor erf034-like mRNA

2 comp24014_c0 XP_004164936 Cucumis sativus ethylene-responsive transcription factor 5-like mRNA

3 comp30976_c0 XP_004173262 Cucumis sativus ap2-like ethylene-responsive transcription factor bbm2-like mRNA

4 comp16043_c0 XP_004169980 Cucumis sativus ethylene-responsive transcription factor erf008-like mRNA

5 comp10162_c0 XP_003521193 Glycine max transcription factor bhlh48-like mRNA

6 comp24246_c0 XP_004250124 Solanum lycopersicum transcription factor bhlh96-like mRNA

7 comp15693_c0 XP_006602463 Glycine max transcription factor bhlh78-like transcript variant mRNA

8 comp20416_c0 XP_011460603 Transcription factor bHLH106-like [Fragaria vesca subsp. vesca]

9 comp2848_c0 XP_006351643 Solanum tuberosum transcription factor bhlh155-like transcript variant mRNA

10 comp4341_c0 XP_006356833 Solanum tuberosum transcription factor bhlh74-like transcript variant mRNA

11 comp10042_c0 AJF11723 Citrus sinensis probable wrky transcription factor 40-like mRNA

12 comp11785_c0 XP_003534796 Glycine max probable wrky transcription factor 14-like transcript variant mRNA

13 comp3515_c1 XP_004235231 Solanum lycopersicum probable wrky transcription factor 70-like mRNA

14 comp20639_c0 XP_004165456 Cucumis sativus wrky transcription factor 72-like mRNA

15 comp21556_c0 XP_004504739 Cicer arietinum wrky transcription factor 9-like transcript variant mRNA

16 comp26488_c0 XP_004501445 Cicer arietinum wrky transcription factor 50-like mRNA

17 comp8026_c1 XP_004291261 Fragaria vesca wrky transcription factor 11-like mRNA

4: transcription factors with erf domain, TF5–10: transcription factors with bHLH domain, TF11–17: transcription factors with WRKY domain.

http://www.ncbi.nlm.nih.gov/gene/818831
http://www.ncbi.nlm.nih.gov/gene/818831
http://www.ncbi.nlm.nih.gov/gene/4341525
http://www.ncbi.nlm.nih.gov/gene/4341525
http://www.ncbi.nlm.nih.gov/gene/100814124
http://www.ncbi.nlm.nih.gov/gene/100814124
http://www.maizegdb.org/gene_center/gene/bhlh48
http://www.maizegdb.org/gene_center/gene/bhlh48
http://www.ncbi.nlm.nih.gov/gene/105634733


Fig. 1. Co-expression of uspA-like transcripts and putative transcription factors (see Table 1 for details) of erf, bHLH and WRKY superfamilies in clusters 4, 7,

8, 9 and 12 (see Table S2) across Catharanthus roseus plant tissues. iML: immature leaf, ML: mature leaf, FL: flower, R: root, ST: stem, S: seedling, SC:

suspension culture, HR: hairy root. TF1–4: transcription factors with erf domain, TF5–10: transcription factors with bHLH domain, TF11–17: transcription

factors with WRKY domain.
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escence in Arabidopsis [37]. The WRKY1 of tobacco
], similar to WRKY9 in Arabidopsis [39], was reported
e phosphorylated by the MAPK, namely SIPK, in order
ediate HR-like cell death. The WRKY11 and WRKY70

re reported more recently to participate in regulating
 signal transduction pathways involved in triggering
uced systemic resistance in Arabidopsis [40]. The
KY14 was reported to act as a key regulatory role in
thanol-induced tryptophan (Trp) and Trp-derived
ondary metabolite biosynthesis during senescence
rice leaves [41]. The WRKY40 participates as tran-
iptional regulator in ABA signal transduction in
bidopsis [42]. In the presence of the signal, WRKY40
calises to the nucleoplasm. Interestingly, the reloca-
tion was not observed in response to other abiotic or
tic stimuli. Recent reports indicated that WRKY50 is
olved in low oleic acid- and SA-derived repression of

onic acid (JA)-inducible defense responses in Arabi-

sis [43]. The WRKY72 was reported to participate in
al immunity in tomato and Arabidopsis, while
eared to be largely non-responsive to the defense
mone salicylic acid (SA) [44].
In general, we anticipate that the information in the
sent study highlights the possible functions of uspA-

 genes in C. roseus in terms of cell response to
tic and abiotic stress. This is because a number of
oseus uspA-like transcripts co-expressed with many
ative ethylene-responsive, bHLH or WRKY putative
, whose analogues of some of them are known for
ir action in the plant defense against biotic and
otic stresses.
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[2] H. Rischer, M. Orešič, T. Seppänen-Laakso, M. Katajamaa, F. Lammertyn,
et al., Gene-to-metabolite networks for terpenoid indole alkaloid bio-
synthesis in Catharanthus roseus cells, Proc. Natl. Acad. Sci. USA 103
(2006) 5614–5619.

[3] T. Nystrom, F.C. Neidhardt, Expression and role of the universal stress
protein, UspA, of Escherichia coli during growth arrest, Mol. Microbiol.
11 (1994) 537–544.

[4] R. Van der Heijden, D.I. Jacobs, W. Snoeijer, D. Hallard, R. Verpoorte, The
Catharanthus alkaloids: pharmacognosy and biotechnology, Curr. Med.
Chem. 11 (2004) 1241–1253.

[5] W.T. Li, Y.M. Wei, J.R. Wang, C.J. Liu, X.J. Lan, et al., Identification,
localization, and characterization of putative USP genes in barley,
Theor. Applied Genet. 121 (2010) 907–917.

[6] A. Van Moerkercke, M. Fabris, J. Pollier, G.J.E. Baart, S. Rombauts, et al.,
CathaCyc, a metabolic pathway database built from Catharanthus roseus
RNA-Seq data, Plant Cell Physiol. 54 (2013) 673–685.

[7] A. Bahieldin, A. Atef, A.M. Shokry, S. Al-Karim, S.G. Al Attas, et al.,
Structural identification of putative USPs in Catharanthus roseus, C. R.
Biol. 338 (2015) 643–649.

[8] D.S. Latchman, Transcription factors: an overview, Int. J. Biochem. Cell
Biol. 29 (1997) 1305–1312.

[9] S. Lindemose, C. O’Shea, M.K. Jensen, K. Skriver, Structure, function and
networks of transcription factors involved in abiotic stress responses,
Int. J. Mol. Sci. 14 (2013) 5842–5878.

[10] K. Hilger-Eversheim, M. Moser, H. Schorle, R. Buettner, Regulatory roles
of AP-2 transcription factors in vertebrate development, apoptosis and
cell-cycle control, Gene 260 (2000) 1–12.

[11] D. Eckert, S. Buhl, S. Weber, R. Jäger, H. Schorle, The AP-2 family of
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