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The marked toxicity of cadmium (Cd) ions on aquatic
anisms with respect to the terrestrial counterparts is
monly attributed to their higher bioavailability in

ter [1] and to the multiple routes of uptake (skin, gills,
) [2,3]. In both marine and freshwater habitats, Cd
rts its toxicity even at traces environmental concen-
ions, causing severe damage at the morphocytological

el. Cd, for example, impairs tissue organization in the
letal muscles [4,5], in the gills, liver and kidney [6–8], in

the neuroglia in the central nervous system [9] and in the
retina [10,11].

Cd exposure also alters gene expression [11–15] but the
correlation existing between the observed molecular and
morphological changes remains up to now rather unclear
[16].

With the aim to identify early genes involved in cellular
response to Cd stress in vertebrate embryos, we started a
transcriptomic study using zebrafish as model organisms.
The preliminary results herein described demonstrated a
Cd-induction of the expression of the retinoblastoma
binding protein 6 (RBBP6) and the crystallin lambda 1
protein (CRYL1) genes in gastrula embryos. RBBP6 protein
is an E3 ubiquitin ligase involved in protein degradation
[17]; the protein interacts with both p53 and pRb,
promoting their degradation and thereby increasing cell
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A B S T R A C T

Nonessential metal cadmium is widely used and released in the environment, causing cell

toxicity and posing a severe threat to wildlife. Zebrafish (Danio rerio) is one of the most

commonly used animals in the investigation of environmental cadmium toxicity in

vertebrates. In this study, we identified two cadmium-responsive genes, RBBP6 and

CRYL1, in the early phases of zebrafish development, at the gastrula stage. The

retinoblastoma binding protein 6 is associated with increased protein degradation and

cell proliferation; crystallin-lambda 1 is a lens protein with redox activity. In situ

hybridization analysis performed on adult zebrafish exposed to 1.5–40 mM cadmium for

30 days confirmed the ability of cadmium to up-regulate the expression of both genes in

retinal cells in a dose-dependent manner. The over-expression was transient, being

switched off when cadmium was removed. The involvement of RBBP6 and CRYL1 in the

onset of cadmium-induced morphological alterations in adult zebrafish retina is

discussed.
�C 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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proliferation. CRYL1 is a lens protein with enzymatic
features first identified in rabbit and hare [18], down-
regulated in hepatic cancer cells [19,20]. These two genes
are both involved in eye development and in cellular
response to cell diseases [21–23]. Since zebrafish eyes are
particularly sensitive to Cd toxicity [10,11,24], we decided
to investigate the expression of these 2 genes in zebrafish
adult eyes by using in situ hybridization analysis, in natural
conditions and after 30 days of Cd-exposure. In particular,
an environmental concentration [5,11] and two sub-lethal
concentrations (20 and 40 mM) were tested. To obtain
information on the reversibility of the treatment, a group
of animals exposed to 40 mM were maintained for 7 days in
clean water and then subjected to in situ hybridization. The
analyses demonstrated that both l-crystallin and retino-
blastoma binding protein 6 are Cd-sensitive and are
upregulated by the metal in a dose-dependent manner.

Our data suggest an involvement of RBBP6 and CRYL1
proteins in the onset of morphological alterations previ-
ously observed in the zebrafish retina after exposure to
cadmium.

2. Materials and methods

2.1. Animals and cadmium treatments

Adult and healthy zebrafish (Danio rerio) of both sexes
were obtained from a specialized supplier and kept in
standard conditions as previously described [25] in a 50-L
housing tank for at least 2 weeks to acclimate before the
experiments. Embryos were obtained as described by
Westerfield [26]. Animal collection and housing were
approved by the National Committee of the Italian
ministry of health, and all experiments were conducted
with the authority of the University Federico II ethical
animal care and use committee. The experiments complied
with the current laws of the European Union.

At the developmental stages of blastula (4 h after
fertilization), an experimental group of 100 embryos were
allowed to grow for 4 h in the embryo’s medium added
with CdCl2 for a final concentration of 20 mM Cd.
Progression of embryonic development was scored by
light microscopic observation. At the end of the treatment,
embryos at the developmental stages of gastrula (approxi-
mately 80% epiboly) were washed, collected and processed
for molecular analysis.

For the treatment of adult specimens, the animals were
separated in four groups of 20 and housed in 10-L tanks
with the respective treatment. The animals were trans-
ferred to the test aquarium filled with reverse osmosis
water and kept in continuously aerated water, 25 � 2 C,
under a 14–10 h light/dark cycle photoperiod, fed three times
a day with TetraMin Tropical Flake fish. The treatments were
as follows: group 1, 1.5 mM Cd; group 2, 20 mM Cd; group 3,
40 mM Cd. The control group (group 4) was kept in the same
conditions as the other groups, but without the addition of
cadmium in the reverse osmosis water. Treatment was static
(solutions remained unchanged throughout the duration of
the test), lasted for 30 days and did not induce any evidence
of physical or behavioral stress.

2.2. Total RNA isolation

Total RNAs from zebrafish embryos developed under
natural (control) and Cd-contaminated (Cd-treated) condi-
tions were extracted according to the TRI-REAGENT (Sigma
Aldrich) protocol. Turbo DNA-free kit (Ambion) was used to
digest the trace amounts of genomic DNA contamination in
RNA. The two populations of total RNAs were dissolved in
diethylpyrocarbonate (DEPC)-treated water and stored at
�75 8C. The concentration and purity of RNA samples were
determined by UV absorbance spectrophotometry; RNA
integrity was checked using formaldehyde–agarose gel
electrophoresis.

2.3. Differential display reverse transcriptase (RT)-PCR

DDRT-PCR was essentially performed as described
previously [12,27]. Briefly, DNA-free total RNA (0.4 mg)
extracted from either control or Cd-treated zebrafish
embryos was reverse-transcribed in a 20-mL reaction
mixture at 37 8C for 60 min with MMLV-reverse transcrip-
tase and a set of two, one base anchored oligo(dT) primers.
Amplification of cDNA fragments was performed using
combinations of the anchored primers from the reverse-
transcription step and 10 different upstream primers; all
PCRs were repeated twice using the same cDNA sample.
Aliquots (3 mL each) of amplification products were
resolved on a 2% agarose gel (20 � 25 cm) with ethidium
bromide in TAE buffer. Using a sharp, clean razor blade, a
rectangular piece of gel corresponding to an individual
band of interest was excised and the cDNA fragment
recovered using a gel extraction kit (5PRIME). The eluted
cDNA was re-amplified in a PCR reaction using the same
pair of primers used in the differential display reaction. The
Cd-responsive fragments were inserted into a pCRII-TOPO
vector (Invitrogen) and cloned following the manufactu-
rer’s instructions. Recombinant plasmid DNA was se-
quenced bidirectionally by the DNA sequencing service of
Primm Biotech, using T7 and T3 primers. The homology
search of genes was performed by online-based FASTA and
BLAST programs through the European Molecular Biology
Laboratory (EMBL) nucleotide sequence database at
European Bioinformatics Institute (http://www.ebi.ac.uk).

2.4. In situ hybridization

At the end of the treatments, adult zebrafish were
anesthetized with MS222 (tricaine methanesulfonate,
1:15,000 w/v) and sacrificed by decapitation. Heads were
rapidly dissected, fixed in Bouin’s solution and processed
for paraffin wax embedding according to routine protocols
[28]. Sections (5–7 mm) were mounted on superfrost glass
slides (Menzel-Glaser, Germany) and used for in situ

hybridization [29]. In particular, they were fixed in
paraformaldehyde 4% PBS (137 mM NaCl, 2.7 mM KCl,
10 mM Na2HPO4, 2 mM KH2PO4) pH 7.4 for 20 min, and
incubated in PK buffer (Tris-HCl, 0.2 M, pH 7.4, EDTA
0.01 M, pH 8, proteinase K, 10 mg/mL, H2Odepc) at 37 8C for
15 min. After washing in PBS, they were incubated at 42 8C
for 90 min in a prehybridization mix containing formam-
ide, SSC 4� and 1� Denhart’s solution. Hybridization was

http://www.ebi.ac.uk/
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ried out at 42 8C overnight using a dig-labeled cDNA
be encoding a fragment of Danio rerio RBBP6 or CRYL1.
tions were washed in SSC 2� (Tris-HCl 0.1 M, pH 7.5,
l 0.1 M, H2Odepc) and in Buffer I containing the blocking

gent (0.5%). Digoxigenin was revealed by incubating
tions with an AP-conjugated anti-dig antibody diluted
00 overnight. Slides were washed in Buffer I, incubated
h levamisole-Tween20 1� for 15 min and revealed with
-Purple. Dig-labeled cDNA probes were generated by

 using the DIG High Prime DNA labeling and detection
ter kit I (Roche Diagnostics, Germany). In the negative
trol, the hybridization solution did not contain the
A probe.

esults

 Identification of CRYL1 and RBBP6 as Cd-responsive

es in zebrafish embryos

Comparison of mRNA expression patterns between
trol and Cd-treated zebrafish gastrulae allowed us to
ntify two cDNA fragments whose expression were
egulated following Cd-exposure (Fig. 1).
The two fragments were re-amplified, cloned and
uenced; the retrieved nucleotide sequences were
pared against EMBL nucleotide sequence database.

 results of BLAST analysis, reported in Table 1, clearly
wed that the clone DD1 corresponds to a 254 bp
ment of the D. rerio gene encoding crystallin lambda 1
YL1) and the clone DD2 corresponds to a 161 bp

fragment of the D. rerio gene for the retinoblastoma protein
binding protein 6 (RBBP6).

3.2. Effects of cadmium on the expression of CRYL1 gene in

zebrafish adult eyes

Cadmium treatment did not induce significant mor-
phological alterations; treated retinae in fact, showed only
occasional and modest disorganized areas. These extended
for a few square microns, and were more usually located in
the outer layers, involving in particular the pigmented
epithelium that appeared dislocated into the nervous
retina (Fig. 2C, G).

After in situ hybridization, all control (Fig. 2A) and 1.5-
mM-cadmium-treated (Fig. 2B) retinae were consistently
negative. In contrast, the retinae of animals exposed to
cadmium at 20 mM showed a significant labeling (Fig. 2C),
localized on the inner and outer nuclear layers (Fig. 2C), on
the optical fibers and on the scattered ganglion cell nuclei
(Fig. 2E). At higher magnification (Fig. 2D), labeling was
also observed on the horizontal cells of the outer plexiform
layer.

The retinae of animals exposed to cadmium at 40 mM
had labeled inner and outer nuclear layers (Fig. 2F) and, to
a lesser extent, optic fibers (Fig. 2G). The nuclei in the
ganglionic layer were only occasionally labeled (Fig. 2F and
G), and the horizontal cells were always unlabeled as most
of the optic fibers (Fig. 2G).

Exposure of these animals to a 7-day period of recovery
in uncontaminated water induced no substantial changes
in labeling localization. The two nuclear layers and the

1. Representative differential display electrophoresis of mRNA from control and Cd-treated zebrafish. Total RNA from control and Cd-treated embryos

 reverse-transcribed using the 3’-primer oligo (dT) H-T11A: 5’-AAGCTTTTTTTTTTTA. DD1 fragment was amplified by PCR reaction using the H-T11A

er and the 5’-random primer: 5’-AAGCTTCTCAACG-3’; DD2 fragment using the H-T11A primer and the 5’-random primer: 5’-AAGCTTTGGTCAG-3’. PCR

tions were performed in duplicate for each cDNA sample to minimize artefacts. The arrows indicate the two cDNA bands that were recovered from the

le 1

t analysis of Cd-regulated cDNAs.

one Base pairs Effect of

cadmium

Sequence homology EMBL accession

number

Identity (%) E-score

1 254 + Danio rerio crystallin, lambda 1, mRNA BC121722 99.6 6.9�124

2 161 + Danio rerio retinoblastoma protein binding protein 6, mRNA BG737479 99.2 6.6�64
 and analyzed further.
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horizontal cells (Fig. 2G–I) remained labeled and unla-
beled, respectively. In contrast, in the ganglionic and
optical layers, labeling completely disappeared (Fig. 2H).

3.3. Effects of cadmium on the expression of RBBP6 genes in

zebrafish adult eyes

Control (Fig. 3A) and 1.5 mM cadmium treated retinae
(Fig. 3B) were always unlabeled in contrast to retinae of
animals treated with 20 mM Cd that had labeled inner
nuclear layers. Labeling distribution and intensity were
clearly non-uniform, being more intense close to the
emergence of the optic nerve (Fig. 3C) and in the distal
retina (Fig. 3D and E). The outer nuclear layer, the plexiform
layers and the ganglionic cell layer were always unstained
(Fig. 3C–F). The labeling distribution did not change in
correspondence of morphologically altered areas (Fig. 3F).

The retinae of 40-mM-Cd-treated animals showed an
intense labeling distributed consistently on both inner and
outer nuclear layers (Fig. 3G–I). Plexiform and ganglionic
cell layers remained always unstained (Fig. 3H).

Exposure of 40 mM Cd treated animals to a 7-day period
of recovery in uncontaminated water induced a significant
decrease in labeling (Fig. 3J–L). The outer nuclear layer was
completely unstained, while the inner nuclear layer
appeared faintly and discontinuously labeled, with a
pattern very much resembling that observed in 20 mM
Cd treated retinae.

4. Discussion

It is widely demonstrated that cadmium alters/dere-
gulates gene expression in animal tissues [12,27,30];
nevertheless, the exact mechanism and the consequences
of the changes induced are not always clear. In some cases,
even the nature of the proteins/genes up/down-regulated
is unknown [12,27].

The data herein described contribute to the compre-
hension of the molecular response to cadmium intoxica-
tion by identifying another two genes, CRYL1 and RBBP6,
that in Danio rerio are upregulated by metal intoxication in
a dose- and time-dependent manner. This occurs at the
gastrula stage and, in the adult, in the retina, a target organ
for cadmium toxicity [10,11].

RBBP6 is a protein primarily involved in the control of
apoptosis and cell differentiation [17,31], and, therefore, it
is not surprising that it is over-expressed in the two
nuclear cell layers. In Danio, the photoreceptors and the
inner nuclear layer cells are extensively damaged by
cadmium exposure, eliminated via apoptosis and substi-
tuted by newly differentiated glial Muller cells
[11]. RBBP6-driven cells replacement would contribute
to the restoration of the retinal integrity, avoiding more
significant structural alterations comparable to those
occurring, for example, in lizard embryos, where extensive
folding is reported [32] or in invertebrates, such as the
crustacean nauplii [33,34].

Fig. 2. Localization of CRYL1-mRNA in retinae of control (A) and cadmium treated (B-I) Danio rerio. A and inset and (B) unlabeled retinae. Notice the

photoreceptors (*) and the retinal pigmented epithelium (white *). (C) Labeling of inner (INL) and outer (ONL) nuclear layers and of ganglion cell layer

(arrow). Note the partially dislocated pigmented epithelium (white *). (D) Detail of labeled nuclear layers and horizontal cells (arrow). (E) Ganglion cell

layer; labeled nuclei (white arrow) and optic fiber (OF) surrounding unlabeled nuclei (arrow). (F) Labeled nuclear layers (*) and occasional ganglion cell

nuclei (arrow). (G) Detail of labeled nuclear layers. Notice the interrupted outer nuclear layer (white arrow) and the labeled ganglion cell nuclei (arrow). (H)

Labeled nuclear layers (*). (I) Detail. Bars: A, D, e, I: 10 mM; C: 25 mM; B, F–H: 50 mM.
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The same apparently does not occur in ganglion cells in
ich cytoplasm vacuolization and nuclear pycnosis have

 been reported [11], but the expression of RBBP6 is not
ivated. A possible explanation is in the origin of the
erent retinal components. In the embryo, a first wave of
rogenesis originates the ganglion cells, while other
neural genes will lead to the differentiation of inner and
er nuclear cells during another two successive differ-
iation waves [35]. Being this considered, it appears
sible that ganglion cells have a different, genetic,

susceptibility to metal contamination. No data are
available, as far as we are aware, about the transcriptional
activity of RBBP6 gene or about the presence of the protein,
in this retinal layer in normal eyes.

Lambda-crystallin 1 has a completely different function
with respect to RBBP6 being involved in NADH-binding [36]
and in the control of the redox state [37]. For these reasons,
it is constitutively expressed in the retinal nuclear and
ganglion cells layers of vertebrates [38], where it would
protect from light damage [39]. In cadmium-exposed Danio,

3. Localization of RBBP6-mRNA in retinae of control (A) and cadmium treated (B–L) Danio rerio. (A) and (B) unlabeled retinae (*); lens (L) and retinal

ented epithelium (white *); (C) moderate and discontinuous labeling on the inner nuclear layer (arrows). Retinal pigmented epithelium (white *) and

rgence of the optic nerve (*). (D) Distal retina with labeled inner nuclear layer (arrow). (E) Detail of a distal anterior retina with a spot of intensely

led cells (arrow). (F) Dislocated pigmented epithelium (white *) and faintly labeled inner nuclear layer (*). (G) Intensely labeled nuclear layers (*). (H)

il showing the outer (ONL) and inner (INL) nuclear layers. (I) Further detail. (J) Faintly and discontinuously labeled inner nuclear layer (arrow). Detail of

led inner nuclear layer (INL) in the proximal (K) and distal (L) retina. Bars: A, G, J: 120 mM; E–F, H–I, 25 mM; B–D, K–L: 50 mM.
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the oxidative stress is high [40] and it is conceivable that
increased crystallin levels will match redox homeostasis
needs. Overexpression of lambda-crystallin 1, in effect, is
induced in several models, including isolated clonal cells
lines obtained from tumors, indicating that the gene is part
of a distinctive expression profile induced by the ion [41].

What is unexpected, in Danio, is the absence of
messengers in controls. Low levels of transcript and/or a
rapid messenger turnover may be postulated to explain the
observation, but further investigations aiming at deter-
mining the protein concentration are needed to clarify
such a striking difference with other species [38].

In conclusion, it can be postulated that the upregulation
of RBBP6 and CRYL-1 induced by cadmium exposure helps
in protecting the retina, and maybe also the embryos, of
Danio rerio from metal cytotoxicity.

Disclosure of interest

The authors declare that they have no competing
interest.
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