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eliminary evidence for associations between molecular
arkers and quantitative traits in a set of bread wheat
riticum aestivum L.) cultivars and breeding lines
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ntroduction

Bread wheat (Triticum aestivum L., 2n = 6x = 42,
BDD), is the most dominant cereal crop species world-
e with approximately 600 Mt of wheat harvested

rldwide, of which about 80% is used for human food

[1]. Iran is considered as a primary center of wheat genetic
diversity, and a recent study indicated Caspian Iran to be
the main source of the wheat D genome [2,3]. Bread wheat
is the major staple of Iranian diet and energy intake and its
yield has always been a major concern for agronomists and
wheat producers in Iran. In Iran, since 1942, breeding efforts
have led to the development of many cultivars adapted to
various climatic conditions and a wide range of tempera-
tures. To enrich the genetic variation of Iranian wheat
germplasm, a number of exotic wheat materials have also
been introduced into the Iranian wheat germplasm in
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A B S T R A C T

The identification of polymorphic markers associated with various quantitative traits

allows us to test their performance for the exploitation of the extensive quantitative

variation maintained in gene banks. In the current study, a set of 97 wheat germplasm

accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic

traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers,

generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both

neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed

that the accessions could be divided into four genetically distinct groups, indicating the

presence of a population structure in current wheat germplasm. Associations between

molecular markers and 18 agronomic traits were analyzed using the mixed linear model

(MLM) approach. A total of 94 loci were found to be significantly associated with

agronomic traits (P � 0.01). The highest number of bands significantly associated with the

18 traits varied from 11 for number of spikelets spike�1 (NSS) to two for grain yield in row

(GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The

results of the current study provide useful information about the performance of

retrotransposon-based and ISSR molecular markers that could be helpful in selecting

potentially elite gene bank samples for wheat-breeding programs.
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collaboration with international research centers, such as
CIMMYT [4]. However, as the size of the germplasm
increases, utilizing such enriched variation available for
various quantitative traits is difficult. Therefore, new tools
are required for mining quantitative trait variation within
germplasm resources very rapidly and efficiently [5].

A new useful tool is the identification of polymorphic
markers associated with phenotypic variation for various
traits in natural populations or a random set of individuals
by means of association analysis [6,7]. This approach
presents a number of advantages over conventional QTL
mapping for the development of new cultivars via marker-
assisted selection [6]. QTL mapping requires a bi-parental
mapping population showing segregation usually for a
specific trait of interest that is time-consuming and
expensive [8]. In contrast, association analysis utilizes
ancestral recombination and genetic diversity within a
natural population to dissect various quantitative traits
[9]. However, population structure caused by natural/
artificial selection and complex familial relationships are
the main constraints for a successful association analysis
that can result in spurious marker–trait associations in
human or plant genetics [10,11]. These factors could make
it difficult to distinguish the true linkage disequilibrium
(LD) between physically linked loci from the LD resulted
from unlinked loci causing positively false associations
between polymorphic markers and phenotypic variation.
Population structure can be inferred by the STRUCTURE
software developed by Pritchard et al. [12], which assigns
individuals to subpopulations (Q-matrix) using the Bayes-
ian clustering method. The pairwise familiar relationships
between individuals (K-matrix) can be estimated based on
marker data using various computer programs such as
TASSEL, developed by Bradbury et al. [13]. Yu et al. [10] have
developed a unified linear mixed model for association
analysis that accounts for both Q- and K-matrix (also known
as Q + K model), implemented in TASSEL. This method has
proven to be a powerful approach that effectively decreases
type-I error rates (false positives) and increases the power
of the marker–trait association tests [10].

Previous studies have shown that there is a consider-
able genetic variation within bread wheat germplasm hold
by Seed and Plant Improvement Institute (SPII, Karaj, Iran)
based on SSRs [4], ISSRs, and retrotransposon-based
markers [14,15]. However, detailed analysis of associations
between marker polymorphisms and phenotypic varia-
tions for such a germplasm remained untapped and
uncharacterized. In this study, ISSR, REMAP, and IRAP
markers were used to examine the preliminary evidence
for associations between molecular markers and quanti-
tative traits variation in a diverse set of 97 bread wheat
cultivars and lines. We applied a mixed linear model
method incorporating both population structure and
genetic relatedness to assess marker–trait associations.

2. Materials and methods

2.1. Plant material and phenotypic data

The plant material comprised 97 accessions including
48 Iranian bread wheat (T. aestivum L.) cultivars and

49 breeding lines provided by the Seed and Plant Improve-
ment Institute, Karaj, Iran (Supplementary Table 1).
All accessions were planted at experimental farm of Faculty
of Agriculture, Urmia University, Urmia (Iran), during the
2012–2013 growing season. The experiment was conducted
on the basis of randomized complete block design (RCBD)
with three replications. The experimental plot consisted of a
1-m-long single row with a spacing of 30 cm. During the
growing season, the data were recorded on the basis of five
individual plants for each plot. Eighteen agronomical traits
including plant height (cm), peduncle length (cm), flag leaf
length (cm), flag leaf width (cm), flag leaf area (cm2), flag leaf
weight (g), stem diameter (mm), number of node, days to
flowering, spike length (cm), awn length (cm), spike density,
biological yield in row (g), number of spikelets spike�1,
number of grains spike�1, grain yield in row (g), thousand
grain weight (g) and harvest index (%) were considered in
this study based on IBPGR descriptors [16]. Since we were
not interested in the variation within accessions due to the
highly selfing nature of wheat, the data for each trait were
averaged prior to analysis and expressed as plot value per
accession. Phenotypic means calculated for each accession
were used for subsequent association analysis. Descriptive
statistics such as minimum, maximum, mean, standard
deviation, environmental coefficient of variation and broad
sense heritability were determined for each phenotypic
trait.

2.2. Genomic studies

Genomic DNA was extracted from young leaves of 20-
day-old seedlings of five plants from each genotype using
the method described by Ausubel et al. [17], with minor
modifications.

The concentration and quality of genomic DNA was
determined by a spectrophotometer and by 0.8% agarose
gel electrophoresis. Primer combinations, PCR conditions,
electrophoresis and visualization of PCR products for ISSR
and retrotransposon-based markers (IRAP and REMAP)
have been described by Dashchi et al. [14] and Nasri et al.
[15], respectively. In total, 23 ISSR, 9 IRAP, and 20 REMAP
primers were chosen to test for associations between
markers and 18 quantitative traits in the current study.

2.3. Analysis of genetic structure and marker-trait

associations

We used the program STRUCTURE version 2.3.4 [12] to
investigate the genetic structure (Q) among wheat
accessions on the basis of ISSR, IRAP and REMAP markers.
The number of groups (K) was set from 1 to 20, and
10 independent runs were performed for each K. A length
of 100,000 burn-in and 100,000 MCMC (Markov Chain
Monte Carlo) replications were used for the analysis of the
genetic structure. The admixture model with correlated
allele frequencies was considered. To determine the
optimal number of groups, as described by Evanno et al.
[18], an ad hoc statistic DK was applied. The neighbour-
joining clustering algorithm among accessions was run on
the basis of the whole number of markers using the
TASSEL 3 software [13].
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Prior to the analysis of marker-trait associations, all
ds with minor allele frequencies less than 0.05 or major
uencies greater than 0.95 were removed from the
lysis. Two statistical models were used and compared:

e Q model incorporating the Q-matrix as covariate and
erformed using a general linear model (GLM);
e Q + K model incorporating both the Q- and K-matrices

sing the mixed linear model (MLM) implemented in
ASSEL 3.

The Q-matrix was extracted from the STRUCTURE
put from the identified optimal group, i.e. K = 4 for

 current studied population. The K-matrix is a matrix of
rwise relatedness between accessions calculated from
rker data using the TASSEL 3 software. For all traits, the

 K model performed significantly better than the Q

model. Thus, we concluded that MLM approach can
significantly reduce the spurious marker–trait associations
(type-I error showing false positives). Hence, only the
results obtained from MLM were shown and discussed for
this study. Significant associations between a marker locus
and a trait (i.e. whether a QTL was associated with a marker
or not) was indicated by the P-value, and the magnitude of
QTL effects was examined by R2-marker. A false discovery
rate (FDR) of 0.01 was used as a threshold for significant
association using Bonferroni’s correction [19].

3. Results

3.1. Phenotypic analysis

Basic descriptive statistics for quantitative traits are
presented in Table 1. The data showed a wide range of

le 1

criptive statistics of the 18 traits studied in 97 wheat cultivars and breeding lines.

aits Abbreviations Min. Max. Mean Standard deviation CV h2

ant height (cm) PLH 34.25 125.37 88.74 16.09 11.08 88.74

duncle length (cm) PDL 10.40 59.83 36.31 8.18 19.74 43.57

g leaf length (cm) FLL 15.17 31.45 24.26 3.11 12.53 40.00

g leaf width (cm) FLW 1.10 2.25 1.71 0.27 9.92 67.39

g leaf area (cm2) FLA 21.48 70.71 41.94 10.19 17.86 57.96

g leaf weight (g) FLT 0.09 0.38 0.20 0.07 18.62 71.11

em diameter (mm) STD 2.65 5.20 3.85 0.66 11.38 63.70

mber of node NON 3.67 5.67 4.67 0.39 10.76 17.70

ys to flowering DTF 108.33 137.00 122.75 6.58 1.97 86.32

ike length (cm) SPL 5.75 16.18 11.47 2.31 8.73 81.69

n length (cm) AWN 0.00 13.40 6.60 2.94 20.72 79.56

ike density SPD 8.60 24.69 15.17 3.65 14.02 71.67

ological yield in row (g) BIY 178.13 1283.20 716.86 220.65 19.29 66.59

mber of spikelets spike�1 NSS 8.33 22.33 16.61 2.41 11.06 53.98

mber of grains spike�1 NGS 8.67 91.67 46.63 24.19 15.51 89.95

ain yield in row (g) GRY 39.00 479.50 221.29 92.72 20.41 76.90

ousand grain weight (g) TGW 12.06 83.61 36.05 14.34 19.82 74.51

rvest index (%) HAI 6.43 77.73 37.73 14.69 17.49 79.25

1. A biplot detected the maximum peak at K = 4 (the optimum number of clusters) based on Evanno et al.’s [18] prediction in the studied wheat
plasm.
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variation for all studied traits. The maximum value of
environmental coefficient of variation (CV) observed for
awn length (20.72%) and grain yield in row (20.41%). The
other remaining traits recorded moderate to low CV values,
ranging from 19.82% for thousand-grain weight to 1.97%
for days to flowering. Broad sense heritability (h2) is a
suitable indicator of the trait repeatability and the
proportion of trait variation accounted for by genetic
factors. The minimum amount of heritability obtained for
number of node (17.70%). Twelve out of the 18 studied
traits showed a value of broad-sense heritability of more
than 65% (Table 1).

3.2. Population structure

Genome of studied individuals was surveyed using
9 IRAP, 20 REMAP and 23 ISSR primers. A total of 658 clear

and reproducible bands were scored, of which 86% (572)
were polymorphic among genotypes. No less common loci
with frequency lower than 50% were amplified. The
number of total loci per primer ranged from 7 (UBC844)
to 18 (wilma-bagy2), with an average of 12.65. The number
of polymorphic loci per primer ranged from 5 to 18. The
size of the amplified fragments ranged from 75 to 2000 bp.

The results of model-based clustering analyses showed
the highest peak at K = 4 (Fig. 1), suggesting that the
analyzed wheat germplasm can be divided into four
genetically distinct groups or populations (Fig. 2). In
general, most of the lines located in population A and B,
while most of the cultivars were in populations C and D.
Individuals with a cluster membership coefficient higher
than 0.8 in a population were assigned to that population,
while those with a cluster membership coefficient less
than 0.8 were considered as mixed individuals. Based on

Fig. 2. Bayesian model-based clustering of 97 bread wheat individuals using IRAP, REMAP and ISSR markers. Each color shows a sub-population or cluster.

Fig. 3. Neighbor-joining dendrogram of 97 wheat genotypes based on ISSR, IRAP and REMAP markers; colors correspond to structure-derived sub-
populations.
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 criterion, three mixed genotypes were identified in
h population of A and B. In populations C and D, 8 and

ixed samples were detected, respectively. Overall,
mixed individuals (15.5%) were found at K = 4. Cluster
lysis using the neighbor-joining method also placed the
died germplasm into four main groups, which was
stly in concordance with the results of the model-based
stering method (Fig. 3).

 Analysis of marker–trait associations

The MLM method was used to identify associations
ween markers and studied traits. Significant associa-
s between markers and morphological traits along

with their corresponding R2 and P-value are presented in
Table 2. All markers reported in this table were significant
at a comparison-wise error rate of 0.01. Ninety-four loci
were identified to be associated with studied traits, consist
of 41 ISSRs, 10 IRAPs and 43 REMAPs. The highest number
of associated markers (11) was found for the number of
spikelet spike�1, while the lowest was for the grain yield in
row (2). Locus ISSR16-9 (A12) was associated with three
traits (peduncle length, flag leaf area, and flag leaf width).
Out of the associated IRAP loci, IRAP2-7 (flag leaf area and
flag leaf width) and IRAP5-8 (number of spikelets spike�1

and awn length) was linked each with two traits.
REMAP13-10 was linked with three traits (spike density,
days to flowering, and spike length). Each associated

le 2

of the markers associated with the studied traits in bread wheat collection.

arker P R2 Marker P R2 Marker P R2

Plant height Peduncle length Days to flowering

SR5-7 0.001 0.10 ISSR21-3 0.005 0.07 ISSR3-2 3.00E-04 0.08

SR6-1 4.00E-04 0.12 ISSR6-11 0.007 0.06 ISSR18-2 0.007 0.03

SR21-3 0.004 0.08 ISSR9-9 0.009 0.06 REMAP11-6 0.003 0.05

AP8-14 0.003 0.08 ISSR16-9 0.008 0.06 REMAP9-14 0.006 0.04

MAP8-5 0.004 0.08 ISSR21-10 0.009 0.06 REMAP13-10 0.008 0.03

MAP9-14 0.001 0.10 REMAP11-12 0.008 0.06 REMAP2-1 0.009 0.05

REMAP7-5 0.010 0.04

Flag leaf length Flag leaf area Stem diameter

SR12-13 0.010 0.06 ISSR16-9 0.002 0.06 ISSR23-10 0.005 0.03

SR1-10 0.004 0.08 IRAP2-7 0.010 0.04 ISSR23-6 0.008 0.03

MAP11-2 0.007 0.07 REMAP17-10 0.006 0.05 IRAP2-9 0.004 0.03

MAP10-3 0.003 0.08 REMAP15-14 0.003 0.06 REMAP10-8 0.003 0.03

Flag leaf weight Number of node Thousand grain weight

SR7-10 0.004 0.05 ISSR11-10 5.00E-04 0.10 ISSR23-1 7.00E-04 0.09

SR1-3 0.005 0.05 ISSR11-4 0.004 0.08 REMAP3-13 0.004 0.05

MAP5-7 0.001 0.06 ISSR6-4 0.009 0.07 REMAP1-11 0.004 0.06

MAP20-1 0.007 0.05 REMAP3-10 0.006 0.07 REMAP13-6 0.005 0.06

REMAP14-2 0.010 0.05

Flag leaf width Number of spikelets spike�1 Spike length

SR16-5 0.005 0.04 ISSR6-1 0.002 0.10 ISSR18-2 0.009 0.06

SR16-9 0.002 0.06 ISSR5-12 0.002 0.10 IRAP5-13 0.010 0.06

AP2-7 0.001 0.07 ISSR16-6 0.009 0.06 REMAP13-8 5.00E-04 0.10

MAP15-14 0.002 0.05 IRAP5-8 0.003 0.08 REMAP15-1 0.005 0.07

MAP7-5 0.004 0.05 IRAP2-13 0.009 0.06 REMAP13-10 3.00E-05 0.10

MAP15-2 0.008 0.04 REMAP15-1 0.004 0.07

MAP17-7 0.008 0.04 REMAP19-1 0.003 0.09

REMAP13-9 0.009 0.06

REMAP13-8 0.003 0.08

REMAP4-9 0.010 0.06

REMAP8-13 0.010 0.06

Awn length Spike density Number of grains spike�1

SR15-4 0.001 0.10 ISSR9-9 0.002 0.09 ISSR3-2 0.001 0.04

SR16-5 0.004 0.08 ISSR14-4 0.001 0.08 ISSR21-12 0.006 0.03

AP7-13 0.002 0.09 REMAP13-10 4.59E-06 0.17 ISSR3-3 0.005 0.03

AP5-8 0.002 0.09 REMAP13-11 0.002 0.08 IRAP8-7 0.007 0.03

MAP19-13 0.002 0.09 REMAP18-2 0.008 0.06 REMAP4-1 0.001 0.05

REMAP20-4 0.008 0.07 REMAP15-9 7.00E-04 0.02

Biological yield Grain yield Harvest index

SR21-9 0.009 0.06 ISSR2-6 0.009 0.04 ISSR13-10 0.002 0.04

SR13-7 0.009 0.06 REMAP4-1 0.002 0.06 ISSR2-6 0.003 0.04

MAP13-8 0.001 0.10 ISSR13-7 0.006 0.03

ISSR21-9 0.007 0.03
REMAP10-1 0.010 0.03
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marker explained a maximum regression from 2% (number
of grains spike�1) to 17% (spike density) of the total
available variation for the individual associated traits.

4. Discussion

Genetic diversity in wheat was increasingly narrowed
down during the second part of the 20th century due to the
wide adoption of improved semi-dwarf wheat cultivars
and modern breeding practices [20]. Hence, knowledge
about the genetic diversity and relationships of genotypes
provides useful information to address breeding programs
and germplasm resource management [21–23]. However,
the high level of polymorphism detected in the studied
germplasm may be attributed to the different pedigrees of
the genotypes (Supplementary Table 1) and high inser-
tional activity of the retroelements used for designing IRAP
and REMAP primers [15]. Both Bayesian-based clustering
method and neighbor-joining analysis placed 97 wheat
genotypes in four distinct groups, suggesting that retro-
transposon-based and ISSR markers provide powerful tools
to investigate genetic relationships among wheat cultivars
and lines.

A wide range of variation detected for morphological
traits in the studied germplasm and molecular markers
used in this study provide an opportunity to test prelimi-
nary evidence for marker–trait associations. Since mapping
information of markers was not available, the extent of
disequilibrium among the linked markers remains the
challenge in association analysis. However, the MLM
method was applied in this study which accounts for both
kinship and population structure. A cut-off value of 0.01 for
the false discovery rate was used to identify the associated
loci. Ninety-four loci (IRAP = 10; REMAP = 43; ISSR = 41)
showed significant association (P � 0.05) with QTLs, con-
trolling the studied traits in the association panel (Table 2).
Some markers were linked with more than one trait:
REMAP13-10 with days to flowering, spike length and spike
density, REMAP4-1 with grain yield in row and number of
grains spike�1, IRAP2-7 with the flag leaf area and flag leaf
width, IRAP5-8 with number of spikelets spike�1 and awn
length, ISSR16-9 with the flag leaf area, flag leaf width and
peduncle length, ISSR2-6 with grain yield in row and
harvest index. Markers associated with more than one trait
might be due to the pleiotropic effects of the marker loci or
close linkage between the loci controlling the traits. An
important advantage of association mapping is that it is
highly efficient in detecting multiple QTLs in the same
genetic network at the same time, and provides opportu-
nities to understand the pleiotropic effects of some
chromosome regions, QTLs or genes [24,25]. The common
markers lead to an increase in the efficiency of MAS in
plant-breeding programs via simultaneous selection for
several traits. Highly significant markers with great R2

values such as REMAP13-10 (R2 = 0.17, associated with
spike density) and ISSR6-1 (R2 = 0.12, associated with plant
height) would be interesting for further work. Although
such results require further validation in mapping popu-
lations or different germplasms, the markers showing
highest effects provide ideal candidates for future studies

noteworthy that the type and number of the markers as
well as association analysis with unmapped dominant
markers used in the current study may not be enough for
identifying markers associated with morphological traits in
wheat.

5. Conclusion

A wide range of variation was found for the traits in the
studied wheat collection, which allow us to detect marker–
trait associations in this germplasm. Also, retrotranspo-
sons and ISSR markers revealed high level of insertional
polymorphism and genetic variability in this collection.
MLM-based association analysis identified 94 loci signifi-
cantly related to the 18 traits. Markers REMAP13-10 and
ISSR6-1 with a large size of R2 values and low level of P-
values would be potentially ideal markers to be used in
wheat-breeding programs. Also, identified markers linked
with more than one trait in the current study may increase
the efficiency of MAS in wheat breeding programs via
simultaneous selection for several traits.
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