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Abstract. The neutral theory of biodiversity and biogeography has stimulated much research in com-
munity ecology. Here, exact results are used to apply neutral model predictions to large regional sam-
ples. Three complementary neutral models are presented: the Ewens canonical neutral model, a
model of subdivided ecological communities, and a “diversity begets diversity” neutral model. For
all three models, an exact sampling formula is provided, and a new R package neutr, is presented.
This package is used to fit species abundances from regional inventories of tropical forest trees in the
Amazon, tropical Africa and Southeast Asia. It is shown that the neutral models fit well empirical data
for all but the few most abundant species (from 6 to 40 depending on the continent). When the pa-
rameter θ is taken as an index or regional diversity, the Amazonia and Southeast Asia emerge with
similar regional diversities (θ = 654 for Amazonia, versus θ = 726 for Southeast Asia), with a less diverse
tropical African tree flora (θ = 219). The model infers 10,141 tree species with at least 50 individuals in
Amazonia, 3477 in tropical Africa and 9915 in Southeast Asia. The spatially subdivided neutral model
provides clear evidence for a spatial substructure in all three regional floras. These results show how
neutral models are useful to explore regional patterns of species abundance and to provide insights
about regional species pools.
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1. Introduction

Patterns of species abundance and rarity are an im-
portant dimension of biological diversity. A species
can be rare because it is limited by its physiology,
by local biotic constraints on its abundance, or by
its limited geographical distribution [1–3]. These di-
verse causes for rarity also reflect the fundamentally
different reasons why species are threatened. Species
that are locally abundant but geographically limited
may be threatened with extinction if their habitat is
transformed, as is the case with certain species of
forest tree in the tropics. Highly specialized sap-
sucking insects may be threatened because the trees
on which they feed are removed. Finally, the degrada-
tion of restricted habitats can lead to the disappear-
ance of species, as for example on the island of Saint

Helens [4]. Although rare species exert great fascina-
tion, the question of why some species are abundant
locally or regionally is no less interesting. The most
abundant species are most relevant to many ecosys-
tem processes. In a study of Amazonian rain for-
est trees, ter Steege et al. have shown that no more
than 227 tree species make up half of the trees in this
biome, out of more than 6700 species [5]. These were
called hyperdominant species. Patterns of abun-
dance for Amazonian rain forest trees [5] are repre-
sented in Figure 1 for illustration.

The motivation for this contribution is to under-
stand the processes underlying regional patterns of
species abundance. One way to contribute to this
research is to ask to what extent empirical species
abundance distributions deviate from those of re-
gional species pools generated purely from random
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Figure 1. Rank abundance distribution of trop-
ical tree species in three continents. These em-
pirical distributions are scaled such that the
sum of the relative abundances is equal to one.
Red: Amazon; green: tropical Africa; blue:
Southeast Asia. Data from [6].

processes. Here, I provide a self-contained treatment
of neutral models of relevance in the study of species
abundance distributions, together with a code for the
algorithms in the R statistical language. Then I illus-
trate this method with regional species abundance
data for three tree flora (Amazonia, Africa, Southeast
Asia).

The neutral theory of biodiversity and biogeogra-
phy [7] has emerged from the mathematics inspired
by population genetics theory of the 1970s, and it has
generated much debate in ecology. The theory has
shed light on questions such as: how are the sampled
individuals distributed between species? how many
species remain to be discovered after a given num-
ber of individuals have been sampled? How repre-
sentative are samples of larger ecological communi-
ties? When I was invited to contribute to the pages
of this journal, I took opportunity to return to a de-
bate on neutral models of species abundance that
have animated the scientific community in ecology.
Neutral models are now in the toolkit of ecologists
for the analysis of species abundance [5]. Yet, many
important results on neutral models tend to be over-
looked in the modern literature and regularly redis-
covered [8]. In addition, since the 1970s, impor-
tant research in probability theory has been devel-
oped [9–14], some of which is relevant to quantitative
research on biodiversity.

This study explores models of species abundance
that mimic the process of species discovery in a real

situation, where individual organisms are identified
to the species one at a time. The first organism is al-
ways a new species in the sample, the second may
be a representative of the first species or of a new
species, and so on. For such a model to make sense,
it is assumed that organisms are identified one by
one, through a classical taxonomic study. Bulk iden-
tification methods, using mass sequencing of envi-
ronmental DNA for microbial species provide a dif-
ferent context to the study of biological diversity in
that species are substituted for molecular operational
taxonomic units, and individuals are not always ob-
servable or even clearly defined [15]. With that lim-
itation in mind, it is still helpful to explore the pat-
terns of species abundance in discrete assemblages
of organisms [16]. The goal here is to return to known
mathematical formulation of neutrality, provide sev-
eral representations of the model and show that these
representations are quite flexible.

Here, I first review the mathematical foundations
of two standard models of species abundance, the
canonical neutral model, and a spatially subdivided
version of this model. I also discuss a model that
has not been explored in the context of species abun-
dance distributions, which models the hypothesis
that the addition of species to a community may in-
crease the resources and biotic interactions, mak-
ing that community hospitable to a greater number
of species, or in short “diversity begets diversity”, as
proposed by Whittaker [17]1. It is curious that this
“diversity begets diversity” model has never received
proper quantitative mathematical treatment in the
ecological literature and one aim of this contribution
is to promote this discussion [9, 11].

In Section 2, I present the fascinating mathemat-
ical results associated with three neutral models. In
Section 3, I illustrate the application of these models

1The hypothesis that diversity begets diversity has been
extremely popular in the recent literature, yet the history of
this catchy term is quite obscure. It is generally traced back to
Robert H. Whittaker (1972, p. 216) [17] who writes that “facilita-
tion of increase in species number in interacting trophic levels is
reciprocal. We should thus expect diversity to increase in parallel
on any adjacent trophic levels and, in fact, throughout the various
groups of interacting species that the community comprises.” In
fact similar ideas are already present in Allee et al. (1949) textbook
on animal ecology [18, p. 695]. Vane-Wright (1978) referred explic-
itly to the diversity begets diversity mechanism in an evolutionary
context [19].
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to practical examples of parameter inference for em-
pirical samples of tropical forest trees. Finally, I dis-
cuss the possible ramifications of the theory of ran-
dom partitions for the study of empirical patterns of
biodiversity.

2. Three neutral models of biodiversity

In ecology, models have been referred to as neutral in
the sense that individuals all have the same prospects
of reproduction and mortality, whatever the species
to which they belong [20]. In probability theory, the
more general notion of exchangeability is defined: a
model is exchangeable if the probability distribution
of the class abundances {n1,n2, . . . ,nk }, where ni is
the abundance of species i , does not depend on the
labels of the classes [21,22]. This property is essential
in order to obtain exact mathematical results on the
probability distribution of the model. This probabil-
ity distribution, when known, can then be used as a
likelihood function to compare the model to empir-
ical species abundance distributions. In Section 2.1,
an intuitive construction is provided in the form of
urn models.

Model 1 is the canonical neutral model, for which
the probability distribution of species abundances is
the Ewens sampling formula [23], explained in Sec-
tion 2.2. I also present the species individual curve
for Model 1, and the Griffiths–Engen–McCloskey for-
mula, which allows samples conforming to Model 1
to be drawn in a time proportional to the number of
species k rather than the number of individuals n.
Models 2 and 3 are two possible generalizations of
Model 1. Model 2, presented in Section 2.3, assumes
a spatially subdivided system, with limited dispersal
between local sites. Under general assumptions, this
Model 2 is also associated with a probability distri-
bution for species abundances, and the model pa-
rameters can be estimated by maximal likelihood es-
timation. The second generalization, Model 3 (Sec-
tion 2.4), implements the “diversity begets diversity”
model. It turns out to be a equivalent to a model
first developed in [9], with the same properties as the
canonical neutral model but with the addition of one
parameter.

2.1. Urn model representation

The process of species discovery can be summarized
in generic terms using so-called urn models [24]. The

“urn” represents the system (here, a sample, or an
ecological community), and it is populated by “balls”,
which represent objects (here, individuals). The ob-
jects may belong to two or more classes, which are
usually represented by the color of a ball. The urn
representation is relevant when an operator picks
balls and performs a number of operations based on
this sampling. A lottery is an example of a game that
can be represented as an urn model, other examples
including election systems [25, 26] or sports [27].

In the Pólya urn model [24, 28], an urn is initially
filled with ni balls of color i , and the balls are drawn
one by one, being replaced in the urn after its color
has been observed. The construction process is as
follows. When a ball is drawn, it is replaced in the
urn together with a new ball of the same color. The
most abundant color tends to be selected more often,
so its abundance increases more rapidly. This Pólya
urn model resembles the species sampling process,
where a color symbolizes a species. Note that even
if the process is stochastic, the abundance of each
species depends on the initial condition of the sys-
tem, i.e., the initial abundance of the species.

A slight variant of the Pólya urn model, due to
Hoppe [29], is directly related to the problem of
species sampling. It assumes that initially the urn
contains a single black ball. The construction pro-
cess is as follows. When the black ball is picked, it
is replaced in the urn together with a ball of a com-
pletely new color. When any other ball is picked, it
is replaced in the urn together with another ball of
the same color. All the colored balls have the same
chance of being chosen, which we define as a unit
“weight”. In contrast, the black ball has a weight θ,
which is a positive real number. The parameter θ is
proportional to the probability of adding a new color
in the urn per iteration. This method yields a par-
tition of the colored balls, and this partition depends
on the single parameter θ. This is the basis of Model 1
presented below, also called the “canonical neutral
model”. It is a drastic simplification of reality, but is
amenable to exact probabilistic results.

In large biological assemblages of organisms, geo-
graphical structure can become an important factor,
and can invalidate the assumption of perfect mixing,
i.e., the assumption that there is a single urn from
which one samples the balls. For example, the Ama-
zon is a large collection of trees (on the order of
4×1011, see [5]), covering more than 6 million square
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kilometers, and assemblages of tree species differ
west and east of the Amazon. Spatially subdivided
models have been developed to account for this ef-
fect, where local sites are considered as a dispersal-
limited sample of the regional pool [7, 30, 31]. The
goal is to predict the local distribution of individu-
als between species in a local community, as a func-
tion of immigration rates and regional species diver-
sity [7, 32, 33]. The influence of space on the canoni-
cal neutral model is discussed in Model 2 below.

In Model 3, the diversity begets diversity model,
the rate of species appearance depends on the num-
ber of species in the system, which is denoted kn

(the subset n is because the number of species de-
pends on n, the number of individuals). As will be
explained below (Section 2.4), one definition of this
model is through an urn scheme, sometimes referred
to as the Blackwell–MacQueen model [9,11,34]. After
n − 1 individuals have been sampled, the probabil-
ity of sampling an altogether new species (i.e., the
probability of sampling the black ball) is equal to
(θ+σkn)/(θ+n), so for any value of σ> 0, the prob-
ability to pick a new species is proportional to the
number of existing species kn . In the special caseσ=
0, this model is equivalent to the Hoppe urn model
(Model 1). The probability of adding one individual
to species i (i.e., the probability of sampling a colored
ball) is equal to (ni −σ)/(θ+n), so each of the colored
balls is picked slightly less often than expected by
chance, and the rarest colors, represented by a single
ball in the urn, are counter-selected. Biologically, rare
species are likely to be less viable than expected by
chance due to reproductive difficulties, both pre- and
postzygotic [35–37]. Crucially, the complete sam-
pling theory is known for this third urn model, as
described below, so it lends itself to statistical infer-
ence [9, 11].

2.2. Canonical neutral model (model 1)

The first model describes a natural partition of n
objects into k classes. This partitioning could con-
cern many real-life situations, and has been ap-
plied in population genetics (number of allelic copies
in a population, [23]), linguistics (number of word
occurrences in a book [38]), and ecology (species
abundance in a sample [39]). The question of how to
partition discrete collections is also relevant to many
other fascinating problems in mathematics [13, 14].

All the results in this section are classic but they
are still provided as they provide essential context
to Models 2 and 3. An excellent introduction is
found in Ewens’ textbook (2004 edition, Chapters 3,
9, and 11, [8]).

In a sample of organisms, let us assume that the
species have been labeled: the species differ in de-
tectable ways, such as a taxonomic feature. We de-
note ni the abundance of species i , and n = ∑k

i=1 ni

the total number of organisms sampled, where k
the total number of distinct species. The sample
is fully described by the vector {n1,n2, . . . ,nk }, and
the system is described by a probability distribution
p(n1,n2, . . . ,nk ) to find the system in a given state. A
different description of the state of the system is as
follows. Let ar be the number of species with ex-
actly r individuals in the sample (which can be zero).
The total number of individuals is n = ∑∞

r=1 r ar .
The difference with the above description is that ar

are random numbers, and that the total number of
species in the sample k = ∑∞

r=1 ar is the sum of
random numbers, and is therefore also a random
number. In this second representation, species are
unlabeled.

In the Hoppe urn model, step one draws the
black ball with probability one, generating one new
species. At the nth draw, n −1 individuals have been
sampled, and the probability of sampling an alto-
gether new class (or color) is equal to θ/(θ+n), while
the probability of adding one object to class i is equal
to ni /(θ + n). The Hoppe urn model generates a
population of n objects, and patterns of class abun-
dance are parameterized only by θ. This construc-
tion turns out to be equivalent with Fisher–Wright
model of population genetics [8,29], or the dispersal-
unlimited neutral model in ecology [40]. Consider
a time-dependent system of N individuals such that
all individuals die exactly at the end of the time step
and are replaced by a multinomial draw of their off-
spring. In addition, with probability ν they are re-
placed by a totally new species. This means that new
species can arise at a rate Nν = θ (new species per
time step). This system is assumed to be large in
the sense that any sample n verifies n ≪ N . This
process soon reaches a dynamic equilibrium where
the appearance of new species is balanced by the
extinction of rare species. Hoppe [29] has shown that
the urn model generates a typical configuration of
the above model at dynamic equilibrium.
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In the Fisher–Wright model, the probability F2(t )
that two randomly chosen individuals belong to the
same species at time t is computed as follows [8,
41, 42]. For two individuals to belong to the same
species, none of the two individuals can be a new
species (probability (1−ν)2), and they can descend
from the same parent (probability 1/N ) or from two
different parents already of the same species at the
previous time step (probability F2(t − 1)). This rea-
soning is summarized in the equation: F2(t ) = (1−
ν)2(1/N + (1 − 1/N )F2(t − 1)). At dynamic equilib-
rium, F2 = F2(t ) = F2(t − 1), and substituting in the
equation, one finds F2 = 1/(1− N + N (1−ν)−2). For
N large and ν small, this results in: F2 = 1/(1+θ).
This result is equivalent with the Hoppe urn model,
since the probability of picking any one ball in the
urn is 1/(1+θ). The same reasoning can be applied
one step further to the probability of picking three
individuals of the same species F3(t ). Three situa-
tions can arise: (i) all three could descend from the
same parent (probability 1/N 2), (ii) they could de-
scend from two parents (probability 3(N −1)) already
of the same species at time t−1 (probability F2(t−1)),
or (iii) they could descend from three different par-
ents (probability (N −1)(N −2)) already of the same
species at time t−1 (probability F3(t−1)). At dynamic
equilibrium, the formula reads: F3 ∼ 2/(2+θ)F2. This
reasoning for two and three individuals can be ex-
tended to compute the probability of picking n in-
dividuals of the same species [23], which is Fn =
(n −1)!/(θ(θ+1) · · · (θ+n −1)).

The denominator of this expression, θ(θ+1) · · · (θ+
n − 1), is an important mathematical quantity in
this theory, and for this reason it deserves a spe-
cific notation: θ(n) = θ(θ+ 1) · · · (θ+n − 1), which is
called the increasing factorial power, or sometimes
the “Pochhammer symbol”. θ(n) may be expressed
in terms of the usual Gamma function as follows:
θ(n) = Γ(θ+n)/Γ(θ). An expansion of θ(n) as a poly-
nomial is known and it turns out to be useful below:

θ(n) =
n∑

k=0
S(n,k)θk (1)

where the coefficients S(n,k) are called the absolute
value of the Stirling number of the first kind.

The above calculus on the probabilities Fn sug-
gests that the computation of the complete proba-
bility distribution of the state {n1,n2, . . . ,nk }, denoted

pθ(n1,n2, . . . ,nk ), is possible. Ewens [23] has com-
puted pθ(n1,n2, . . . ,nk ) as a closed-form expression,
and Karlin and McGregor have provided a formal
proof for this formula by recurrence [43]. This result
is known as the Ewens sampling formula [13, 14]:

pθ(n1,n2, . . . ,nk ) = θk

θ(θ+1) · · · (θ+n −1)

n!

k !
∏k

j=1 n j

= θk

θ(n)

n!

k !
∏k

j=1 n j
. (2)

Intuitively, the factor θk reflects the selection of the
black ball exactly k times, and the denominator
θ(n) is the product of the successive masses in the
urn on each of the first n draws. The coefficient
n!/(k !

∏k
j=1 n j ) is valid here in the case of labeled par-

titions. Using the vector {a1, a2, . . . , ar } instead, the
partitions are unlabeled and the Ewens sampling for-
mula is rewritten as follows:

pθ(a1, a2, . . . , ar , . . .) = θk

θ(n)

n!∏n
j=1 j a j a j !

. (3)

Equations (2) and (3) may look scary but in fact the
dependence on θ of pθ is quite simple, and the rest of
the formula is the result of a combinatorial exercise.
Having these formulas available makes it possible to
explore a variety of problems, a few of which I report
here.

A first natural question is how many classes, or
species, are in a sample of n individuals given the
parameter θ. From the Ewens sampling formula,
the probability Pθ,n(k) of finding k species in the
sample of size n must be proportional to θk /θ(n),
and since Pθ,n(k) is a probability distribution, then∑n

k=1 Pθ,n(k) = 1. So it follows that
∑n

k=1 ckθ
k =

θ(n), where ck is the proportionality constant (i.e.,
Pθ,n(k) = ck (θk /θ(n))). It now becomes clear why
Equation (1) was reported above: comparing the two
formulas it appears that ck must be equal to S(n,k),
therefore:

Pθ,n(k) = S(n,k)
θk

θ(n)
(4)

which is the first remarkable exact result from
Model 1. Next, from the construction of Hoppe
urn model, the expected number of species in the
sample, kn =∑n

k=1 kPθ,n(k) increases with n as

kn =
n−1∑
j=0

θ

θ+ j
. (5)
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For large sample sizes n, it is useful to replace the
summation term by a closed-form expression. It
turns out that the above formula is equal to:

kn = θψ(0)(θ+n)−θψ(0)(θ) (6)

where ψ(0)(θ) = (d/dθ) ln(Γ(θ)) is the digamma func-
tion (the first derivative of the log-Gamma function).
This formula must respect the initial condition that
there must be exactly one species in the sample if
n = 1, or: k1 = 1. It is true, although not immediately
obvious, that k1 = θψ(0)(θ + 1) − θψ(0)(θ) = 1. This
is because the Gamma function verifies the follow-
ing condition: Γ(θ+ 1) = θΓ(θ), which itself implies:
ψ(0)(θ + 1) = (d/dθ) ln(Γ(θ + 1)) = (d/dθ) ln(θΓ(θ)) =
1/θ+ψ(0)(θ). This demonstrates that k1 = 1 for this
model.

It may also be shown that the variance of k is equal
to

var(k)n =
n∑

k=1
k2Pθ,n(k)− (kn)2 =

n−1∑
j=0

θ j

(θ+ j )2 . (7)

Now, defining the log-likelihood function for
Model 1 as Lk (θ) = lnPθ(k) from Equation (4), the
maximum likelihood estimate of θ, θ, verifies the fol-
lowing equation: (d/dθ)Lk (θ) = 0 which turns out to
be exactly Equation (5). So Equation (6) can be used
to calculate the maximum likelihood estimate of pa-
rameter θ given n and k in a sample. This approach
also gives access to the variance of θ, σ2

θ
, through the

formula d2L(θ)/dθ2 =−1/σ2
θ

:

1

σ2
θ

= kn

θ
2 −

n−1∑
j=0

1

(θ+ j )2
. (8)

In the literature on species diversity estimation,
the estimated number of species in a sample kn has
been explored in the limit of a large sample sizes n.
Using the first order approximation of the digamma
function ψ(0)(x) ∼ ln(x) for x large, and Equation (6),
it is apparent that:

kn ∼ θ ln
(
1+ n

θ

)
. (9)

Thus the expected number of species kn in a sample
increases roughly as the logarithm of sample size for
large samples, a scaling relationship first proposed in
the form of (9) by Fisher (1943) [44]. Note that Fisher
(1943) used the notation θ =α, which was later called
Fisher’sα in the biological diversity literature [45,46].
The depth of Fisher’s intuition concerning this model
has already been pointed out by Watterson [47] in

the context of population genetics, see also Tavaré’s
recent review [14].

Finally, the following result turns out to be use-
ful. A second generative process, the residual alloca-
tion model, has been shown to converge to the Ewens
sampling formula. This construction has been pop-
ularized under the name Griffiths–Engen–McCloskey
model by Ewens [8], in light of the pioneering works
of [39, 48]. Let {W1,W2, . . . ,Wk } be a vector of inde-
pendently identically distributed random numbers
drawn from the beta probability distribution with pa-
rameters (1,θ): Beta(1,θ) = θ(1−W )θ−1. Let us define
the variables {V1,V2, . . . ,Vk } as follows:

V1 =W1,Vk =Wk

k−1∏
i=1

(1−Wi ). (10)

This model has an intuitive interpretation as a broken
stick model, and it has been explored in the species
abundance literature [39, 49, 50]: a random fraction
W1 of a stick of unit length is labeled 1. The random
fraction W2 of the unlabeled portion of the stick, of
length 1 − W1, is then labeled with species 2, with
a length W2(1 − W1), and so forth. The sequence
{V1,V2, . . . ,Vk } can be used to generate a multinomial
sample {n1,n2, . . . ,nk } with weights {V1,V2, . . . ,Vk } it
was shown that this construction verifies the Ewens
sampling formula Equation (2) [11]. The Griffiths–
Engen–McCloskey is extremely helpful computation-
ally because it allows to generate a partition structure
of n objects, with n possibly very large, while drawing
only on the order of k random samples, with typically
k ≪ n.

2.3. Neutral model with dispersal limitation
(model 2)

Spatial extensions of Model 1 have been developed
early on in the context of population genetics [30,
41, 51], with subsequent applications in ecology and
biogeography [7, 52]. One possible framework is as
follows: a region is considered as a collection of
K local sites (“demes” in the parlance of popula-
tion genetics), and each local site has a total size
{N1, . . . , NK }. Within a local site, individuals inter-
act directly, whereas local sites are only connected
through migration. This framework is the multi-
deme model of population genetics [30, 53] and
the metapopulation model of population dynam-
ics [52]. Within-site processes (local reproduction,
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interactions) are the dominant processes over small
time scales compared with the genealogical pro-
cesses occurring across local sites and over much
longer time scale [30]. A similar setting arises in spa-
tial interacting particle systems, such as chemical re-
actions [10, 54].

An historically important special case, due to
Hubbell [7], is one where a single site is sampled.
Conceptually, this model is parameterized by the
same parameter θ as above, which describes the re-
gional species pool. An additional parameter m (0 ≤
m ≤ 1) represents the probability that a new indi-
vidual appears in the focal community through im-
migration rather than due to local reproduction. If
m ∼ 1, all the local recruits are immigrants, and the
local structure becomes irrelevant, in which case the
Ewens sampling formula Equation (2) applies, to-
gether with the results of the previous section. In
the more general case of an arbitrary parameter m,
a closed-form solution of the general sampling for-
mula does exist and it generalizes Equation (2) [32,
40]. With I = m/(1−m)(n − 1) a rescaled migration
parameter, the generalized version of the sampling
formula is (see Equation (6) in [32]):

pθ,I (n1,n2, . . . ,nk )

= θk

θ(n)

n!

k !
∏k

j=1 n j

n∑
j=k

(
K ( j )

θ(n)

θ( j )

I j

I (n)

)
. (11)

This sampling formula involves a summation term
and series of numbers K ( j ) which are defined as the
coefficients of the polynomial

n∑
j=k

K ( j )x j =
k∏

i=1

ni∑
ai=1

S(ni , ai )S(ai ,1)

S(ni ,1)
xai (12)

where S(n, a) are again the unsigned Stirling num-
bers of the first kind (Equation (1)). However, for rela-
tively large values of n, an exact calculation of the co-
efficients K ( j ) is difficult (but see [33, 55]), and is im-
possible for very large sample sizes. For this reason
Hubbell’s dispersal-limited neutral model is of lim-
ited use in many practical cases.

Let us now turn to Model 2. One far more in-
teresting model of spatially subdivided popula-
tions is the K -deme model, with K local samples
(or demes), of size {N1, . . . , NK }. Assume that the
regional relative species abundance distribution is
given by {x1, . . . , xk }, where xi is the regional rela-
tive abundance of species i , and

∑
i xi = 1. Denote

{n1 j , . . . ,nk j } the species abundances in deme j ,

such that
∑

i ni j = N j . Finally, assume that each
local deme j has an immigration rate m j , with
m j ∈ [0,1] (or equivalently the rescaled immigration
rate I j = m j /(1−m j )(N j − 1)). This model could
describe an archipelago with K islands, some far
away from the continent (m ≪ 1) and others closer,
as in the insular theory of biogeography [56]. In this
case, the sampling formula px,I(ni j ), i ∈ {1, . . . ,k},
j ∈ {1, . . . ,K } can be written as [33]:

px,I(ni , j ) =
K∏

j=1

N j !∏k
i=1 ni j !

∏k
i=1(I j xi )(ni j )

I
(N j )
j

. (13)

In Model 2, the regional species abundance x is as-
sumed known, rather than resulting from a neutral
regional dynamics as in Model 1, so the parameter
θ is absent. It may also be assumed that the local
species abundances ni j are a representative and un-
biased sample of the regional species pool, imply-
ing that the vector x can be approximated by xi =∑K

j=1 ni j /
∑K

j=1 N j [33]. A less straightforward alter-
native consists in assuming that the region follows
Model 1, compute θ and deduce x [57]. From Equa-
tion (13), the likelihood function for this problem is:

Lx,ni , j (I) =C+
K∑

j=1

(
k∑

i=1
ln
Γ(I j xi +ni j )

Γ(I j xi )
− ln

Γ(I j +N j )

Γ(I j )

)
(14)

with C a constant, and using again the equality x(n) =
Γ(x +n)/Γ(x).

Note also that px,I(ni , j ) is the product of the prob-
abilities for each of the K demes. The maximum like-
lihood estimate of I j is obtained for the condition:
∀ j , ∂Lx,ni , j (I)/∂I j = 0, and this implies that the mi-
gration parameter I j can be estimated independently
of all other model parameters through the following
equation, for all j :

k∑
i=1

xi [ψ(0)(I j xi +ni j )−ψ(0)(I j xi )]

=ψ(0)(I j +N j )−ψ(0)(I j ) (15)

ψ(0)(θ) = (d/dθ) ln(Γ(θ)). From Equation (15), or by
maximization of Equation (14), the parameters I j of
Model 2 can be simply inferred at each site j .

2.4. Neutral “diversity begets diversity” model
(model 3)

A second natural extension of Model 1 is one where
the probability of creating new species increases with
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the number of species in the sample. The idea of this
model is that species entering a community generate
the conditions for the establishment of more species
than originally possible. Formally, the rate of species
appearance is not strictly equal to θ but increases
with the number of extant species k as θ+σk, where
σ is a new parameter in the model compared with
Model 1.

As outlined above, let us first represent this model
as an urn scheme. After n −1 individuals have been
sampled, the probability of adding one individual to
species i (i.e., sampling a colored ball) is equal to
(ni −σ)/(θ+n), while the probability of sampling an
altogether new species (i.e., sampling the black ball)
is equal to (θ+σk)/(θ+n). In the special case σ =
0, this model is equivalent to the Hoppe urn model
(Model 1). Values 1 ≥ σ ≥ 0 imply that rare species
tend to be picked less, and that more new species
arise. As σ → 1, the probability of picking a single-
ton species vanishes, and at σ= 1, species cannot in-
crease in abundance and each new individual rep-
resents a different species. This model was intro-
duced by Blackwell and MacQueen [34] in the early
1970s, then was formally studied by Pitman and col-
leagues [9, 58, 59].

In Model 3, the expected number of species k is
given by the summed probability of picking the black
ball at each step:

kn+1 =
n∑

j=0

θ+k jσ

θ+ j
= kn + θ+knσ

θ+n

= θ

θ+n
+

(
1+ σ

θ+n

)
kn . (16)

This equation has an exact solution, with the bound-
ary condition k1 = 1:

σkn = Γ(θ+1)

Γ(θ+σ)

Γ(n +θ+σ)

Γ(n +θ)
−θ. (17)

The validity of the boundary condition k1 = 1 is
verified immediately from the equality: Γ(1 + θ +
σ) = (θ+σ)Γ(θ+σ). The asymptotic regime at large
sample size n is obtained with the Stirling formula
Γ(x) ≈p

2πxx−1/2e−x , valid for large x and applied on
Equation (17):

kn ≈ Γ(θ+1)e−σ

Γ(θ+σ)σ
nσ− θ

σ
. (18)

This complements the asymptotic regime of Equa-
tion (9) in the case σ > 0. Interestingly, the power-
law species accumulation curve emerges from this
simple generalization of Model 1. The discussion

of whether the species accumulation curve should
follow a logarithmic or a power-law shape has been
much discussed in the ecological literature for at least
a century [60].

Let us now turn to the existence of a sampling for-
mula for Model 3. Pitman has shown that a sampling
formula analogous to that of Ewens can also be de-
rived in this case [58] and that it has the following
form:

pθ,σ(n1,n2, . . . ,nk )

= θ(θ+σ) · · · (θ+ (k −1)σ)

θ(n)

k∏
j=1

(1−σ)(n j −1). (19)

This formula is called the two-parameter Pitman
sampling formula [9, 11, 58, 59]. Noticing that the
numerator in the above equation can be rewritten
σk (θ/σ)(k), it follows that:

pθ,σ(n1,n2, . . . ,nk ) = σk (θ/σ)(k)

θ(n)

k∏
j=1

(1−σ)(n j −1).

(20)
Using again the fact that the increasing factorial
obeys the following relationship: x(n) = Γ(x+n)/Γ(x),
Equation (19) can be rewritten in terms of the
Gamma function:

pθ,σ(n1,n2, . . . ,nk )

=σk Γ(θ)

Γ(θ+n)

Γ(θ/σ+k)

Γ(θ/σ)

k∏
j=1

Γ(n j −σ)

Γ(1−σ)
. (21)

In empirical species abundance studies, one ob-
jective is to infer the values of model parameters
θ, σ given the observed vector n1,n2, . . . ,nk . In the
case of the Ewens sampling formula, the number of
species k and the sampling size n are jointly suffi-
cient to estimate the parameter θ. It is no longer
the case in this two-parameter Model 3. How-
ever, it remains true that Equation (21) can be
used to define a log-likelihood function Ln(θ,σ) =
ln pθ,σ(n1,n2, . . . ,nk ), which takes the form:

Ln(θ,σ)

= ln

[
σk

Γ(1−σ)k

Γ(θ)

Γ(θ+n)

Γ(θ/σ+k)

Γ(θ/σ)

k∏
j=1

Γ(n j −σ)

]
.

(22)

The values of θ, σ such that the partial derivatives of
Ln(θ,σ) vanish yield the necessary conditions for the
existence of maximum likelihood estimates θ, σ:

∂Ln

∂θ
(θ,σ) = 0,

∂Ln

∂σ
(θ,σ) = 0. (23)
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Finding best-fit parameters θ, σ can be obtained by
solving these two equations jointly, but it is simpler to
maximize the function Ln(θ,σ) (Equation (22)). The
numerical problem of finding θ, σ given the vector
n is therefore easily resolved (see next section for a
numerical implementation).

Importantly, species abundance distributions for
Model 3 can be generated through a random alloca-
tion model (Griffiths–Engen–McCloskey construc-
tion) similar to that in Model 1. Let {W1,W2, . . . ,Wk }
be a vector of i.i.d. random draws with Wi from
the probability distribution Beta(1 − σ,θ + kσ),
with 0 ≤σ≤ 1. Define the variables {V1,V2, . . . ,Vk }
as follows:

V1 =W1, Vk =Wk

k−1∏
i=1

(1−Wi ). (24)

This model generates variables {V1,V2, . . . ,Vk }. A sam-
ple of n individuals from a multinomial distribution
with weights {V1,V2, . . . ,Vk } is denoted {n1,n2, . . . ,nk }
and it was shown [11, 59] that this sample verifies the
Pitman sampling formula Equation (19).

2.5. Numerical analyses

To perform empirical analyses, I have written the
package neutr in the R Statistical Language [61],
available at https://github.com/jeromechave/neutr.

Parameters can be fit against the empirically
observed species abundance data. For Model 1,
function optim.ewens() optimizes Equation (2).
It has the empirical species abundance as an ar-
gument and returns parameter θ and the maxi-
mal log-likelihood value. For Model 2, the func-
tion optim.multideme() takes as argument a
matrix with entry the abundance ni j (species i
in deme j ) and it optimizes Equation (13). This
function returns a vector of parameters I j =
m j /(1−m j )(n j − 1), one per deme, and m j . Impor-
tantly, the optim.multideme() function assumes
that the regional species abundance distribution is
the sum of all local species abundances. For Model 3,
the function optim.pitman() takes the empiri-
cal species abundance as an argument, plus initial
values of θ, σ and returns the best-fit parameters
θ, σ and the maximal log-likelihood value based on
Equation (22).

Another set of functions return typical species
abundance distribution generated by Models 1

and 3. Package neutr includes the function
generate.hoppe.urn0() that generates a species
abundance distribution according to the Hoppe urn
model (Model 1). It takes parameter value θ and
sampling size n as an argument, and returns one
possible species abundance distribution and the
species number kn inferred from Equation (6). There
are at least two ways to code this process. Drawing
balls one at a time results in a relatively inefficient
procedure (but function generate.hoppe.urn0()
does this in an efficient way). The alternative is to
generate random variables according to the resid-
ual allocation model described in Equation (10),
and to perform a single multinomial sampling
of n individuals with weights {V1,V2, . . . ,Vk }. This
second ultrafast procedure is coded in function
generate.hoppe.urn(). Package neutr also in-
cludes the function generate.pitman.urn() that
generates a species abundance distribution accord-
ing to the Pitman model (Model 3). These two last
functions have been coded to run with sample sizes
of more than 1012.

The three models can also be compared: Model 1
is nested within both Models 2 and 3, but the number
of kp parameters vary (kp = 1 for Model 1, kp = K
for Model 2, and kp = 2 for Model 3). It is possible
to compare the models based on some form of the
Akaike Information Criterion [62].

Package neutr bears resemblance with pack-
age untb [63], which implements Model 1, but not
its Griffiths–Engen–McCloskey construction. Also,
packages ecolottery [64] and package GUILDS [55]
both implement Models 1 and some forms of Model 2
based on the coalescent, as first proposed by [40].
To my knowledge, Model 3 and its Griffiths–Engen–
McCloskey construction have never been imple-
mented in a R package.

3. Application to the tropical tree flora

3.1. Datasets

An empirical application of the above theory is now
provided for three large empirical data sets taken
from numerous tropical forest inventories around
the world and reproduced as a Supplementary Infor-
mation of [6]. It contains a total of over a million sam-
pled trees all identified to the species, for a total area
of forest sampled of 2324 ha (23.24 km2; summary

https://github.com/jeromechave/neutr
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in Table 1). This is a huge sampling size, although
it is very small compared with the ca. 10.7 million
km2 of tropical forests [65]. Since the exact species
name is not reported in this data set, it is impossi-
ble to estimate the exact number of species in to-
tal, although the species overlap across continents is
small, and the species total is likely to be close to the
sum (9765 species). The raw data is plotted as a rank-
abundance curve in Figure 1.

Briefly, the data have been obtained using a stan-
dard method in tropical forest science: standard ar-
eas, usually squares of one hectare (100 × 100 m), are
positioned on the ground, and all trees with at least
10 cm in trunk diameter are mapped, tagged using
a permanent tag (in plastic or metal), and identified
to the species [66]. Establishing a permanent forest
inventory plot requires several days of work in the
field, and complete botanical identification is usually
much more time consuming. The above data set is
therefore the result of a long term vision, and hard
work of a large scientific community from across the
tropics.

3.2. Results

For Model 1, the estimate of parameter θ for all three
data sets is provided using the empirical values of n
and k with Equation (6). I used the empirical values
of θ and Equation (10) to produce 1000 neutral distri-
butions for each of the three empirical distributions.
Figure 1 reveals that the fit to the data is not bad, ex-
cept for a small number of the most abundant species
(see [67] for a similar pattern). It is therefore interest-
ing to explore if the goodness of fit improves when
the top species are removed.

To estimate the goodness of fit, one method
is to define a distance between the observed
Pobs and the theoretical Ptheor distributions.
I use the Kullback–Leibler distance, defined by
KL = ∑k1

i=1 Ptheor ln(Ptheor/Pobs), with k1 the min-
imum of the non-null values of both observed
and theoretical distributions. Successively remov-
ing 1,2, . . . of the top species, a new value of θ was
computed, and the Kullback–Leibler distance was
calculated. Figure 2 shows the shape of the Kullback–
Leibler distance against successive removals of top
species. The removal of 13, 5, and 40 top species,
for the Amazon, tropical Africa and Southeast Asia
respectively, resulted in a massive improvement of

the model’s goodness of fit as see in Figure 2 and in
Table 2. Removing the ultradominant species results
in a much improved fit (compare Figures 1 and 3),
even though the neutral model tends to underesti-
mate slightly the abundance of the rare species (right
panel of Figure 3).

The multideme model (Model 2) can be fitted with
the maximization of Equation (15). The distribu-
tion of m values, which represent the fraction of in-
dividuals drawn from the regional pool rather than
from the local site, peaks at m = 0.122 for Amazonia,
m = 0.094 for Africa and m = 0.127 for Southeast Asia
(Figure 4). This shows that local sites are dispersal-
limited in similar ways across continents on average.
Sites-specific parameters m could be interpreted as
an environmental filtering effect, since m measures
how dissimilar the local assemblage is from the re-
gional one [33].

A fit of the data set against the two-parameter
Model 3 is illustrated in Figure 5. The fit is not im-
proved for the Amazonia and tropical Africa data
(σ values <10−7), and barely so for Southeast Asia
(σ = 0.034). Thus, for these data sets, Model 3 does
not result in a better fit of the data than Model 1.

The neutral model represents well tropical tree
species abundances at regional scale, and this find-
ing is used to extrapolate species numbers [5]. As-
suming that the Amazonian tropical forest covers
about 6.3 million km2, with an average 500 trees per
hectare, the estimated number of trees is N ≈ 3.15×
1011. Using the value of θ reported in Table 2 and
N in Equation (6) yields kN = 13,081 species. Us-
ing the improved estimate of θ after the removal of
ultra-dominant species yields kN = 13,440 species.
The values for the two other continents are reported
in Table 3. It is also possible to estimate the num-
ber of species with at least 50 individuals overall
(a lower bound of the minimum viable population
size [68]) to avoid the pitfall of predicting the occur-
rence of species represented by a handful of individ-
uals in a region [35] (Table 3). For Amazonia, the
resulting number is kN ,n>50 = 10,141 species, very
close to the latest estimate of 10,071 species reported
in [69].
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Figure 2. Kullback–Leibler distance between observed and simulated distributions replicated 1000
times, after sequentially removing 1 to 50 of the most abundant species. The minimal Kullback–Leibler
distance, number of species to remove to minimize the distance, and θ are reported in Table 2. Color
codes as in Figure 1.

Table 1. Statistics of the data used in this study

Region Nb trees Nb species Cumul. area (ha) Nb plots

Amazon 821,670 4670 1590 1417

Tropical Africa 210,313 1509 504 483

Southeast Asia 100,152 3586 201 230

Total 1,021,974 NA 2324 2130

The table reports the total number of trees sampled, total number of species,
cumulative sampled area (in hectares, ha), and total number of permanent
sampling plots in the biome. Data from Ref. [6].

4. Discussion

4.1. Three neutral models

The three models presented here are only a few ex-
amples of the many systems that can be framed as
urn models [24]. The reader may be surprised to read
no mention of the coalescent theory, even if Model 1
is the key building block of this theory [12, 70]. The
coalescent is a powerful approach, but the choice
was made here to focus solely on species abundance

distribution and efficient numerical analyses can be
performed without resorting to coalescent models.
There is no doubt that exploring further applications
of the coalescent in ecology should be a rewarding
effort.

The three models presented here are neutral in
the following sense. All three describe a partition
of the collection into disjoint subsets (classes), such
that the objects within each class are interchange-
able, and the abundance ni ≥ 1 within class i is
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Table 2. Best fit of the canonical neutral model after removing a number of the top species (see Figure 2
for an illustration)

Region Initial θ Min. Kullback–Leibler Nb. of ultradominant species θ of best model

Amazon 654.3 2748.6 13 673.19

Tropical Africa 219.7 1077.0 6 226.69

Southeast Asia 726.8 299.9 40 778.23

Empirical values of parameter θ are reported before (first column) and after (last column) the
ultradominant species have been removed. Column “Min. Kullback–Leibler” reports the mean
value of the minimal Kullback–Leibler distance between model and observations (average across
1000 values).

Table 3. Estimated number of species in tropical forests based on an extrapolation of Model 1

Region Area (M km2) Nb trees (estimated) Nb species Nb species with at least 50 ind.

Amazon 6.3 3.15×1011 13,081 10,141 ± 91

Tropical Africa 2.9 1.45×1011 4,462 3,477 ± 51

Southeast Asia 1.1 0.55×1011 13,186 9,915 ± 90

The estimated number of species is provided together with the estimated number of species with at
least 50 individuals.

Figure 3. Fit of the rank abundance distribu-
tions after removing the ultradominant species
(see Table 2). Color codes are as in Figure 1.

a random number that fully describes the class.
The models are thus fully described by the prob-
ability distribution p(n1, . . . ,nk ) of the sequence
of random numbers {n1, . . . ,nk }, where

∑k
i=1 = n,

and this probability distribution function is invari-
ant under any permutation η of the class labels:
p(n1, . . . ,nk ) = p(nη(1), . . . ,nη(k)). This last property
is called exchangeability, and the probability distri-
bution p(n1, . . . ,nk ) is then called exchangeable [71].
It turns out that there is a formal equivalence be-
tween the statement (1) the random partition has

Figure 4. Estimation of the local m parameters
for all the sites in the three continents. The fig-
ure reports the density distribution of m values.
Color codes are as in Figure 1.

the property of exchangeability and (2) the property
that Models 1 and 3 can be constructed as urn pro-
cesses and as random allocation processes (Propo-
sition 9 in [59]). This is an important result because
it provides a rigorous definition of the concept of
class equivalence in neutral models in ecology and
population genetics.

Another property common to exchangeable
models is that a random partition following Equa-
tions (10) and (24) define a size-biased partition of



Jerome Chave 131

Figure 5. Fit of the rank abundance distribu-
tions (thick solid lines) against Model 3 (n =
100 simulations, thin solid lines), in linear–log
axes, which allow a better display of the tail of
the distribution (rare species). Compare with
Figure 1 for a similar representation in log–log
axes. Color codes are as in Figure 1.

{V1,V2, . . . ,Vk } that can be used to define an ordered
series of relative abundances Pi , i ∈ {1, . . . ,k}, with
P1 ≥ P2 ≥ ·· · ≥ Pk , such that

∑k
i=1 Pi = 1. The prob-

ability distribution of this collection is unchanged
upon the removal of the first species P1 and normal-
ization P ′

i = Pi /(1−P1), i > 1, since the new sequence
has exactly the same formal structure. This provides
the opportunity to generate a test of neutrality by
sequentially removing the first species, the second
species, and so forth, until the empirical data best fits
the model. This idea provides an intuitive method to
define a notion related to that of species hyperdom-
inance in a species assemblage [5]. Here, a concept
related to hyperdominance, ultradominance, is de-
fined: a top species is ultradominant if is removal
significantly improves the fit of the neutral model.
More precisely, ultradominant species are the first U
species such that the series PU+1 ≥ PU+2 ≥ ·· · ≥ Pk

minimizes the distance between the neutral model fit
and the empirical observations (cf. [67] for a related
discussion). This definition is relative to a choice of
distance on probability distributions, and also on the
choice of the neutral model (Model 1, 2, 3 or another
variant). As shown in the Section 3.2 (Figure 2), the
number of ultradominant species is usually far lower
than that of hyperdominant species.

The one-parameter (θ) Model 1 is a special case
of a more general two-parameter (θ,σ) Model 3.
When σ = 0, Models 1 and 3 are equal. Model 3
turns out to have a biological interpretation as a
species abundance model where diversity begets di-
versity: new species tend to be picked with prob-
ability (θ+kσ)/(θ+n) (0 ≤ σ ≤ 1), when k species
are already present, so more often than expected
by chance. With respect to the asymptotic scaling
regime n ≫ 1, Equations (9) and (18) are two well-
known scaling relationships in ecology and there has
been much literature on whether the species accu-
mulation curve kn should follow a logarithmic shape
kn ∼ θ ln(n) (as proposed by Fisher 1943) or a power-
law shape kn ∼ nσ. Models 1 and 3 show that the two
regimes are consistent with a single representation of
a model of exchangeable random partitions. While
Model 3 did not provide a better fit of empirical data
than Model 1 for tropical tree species, it is possible
that species assemblages at higher trophic levels are
more likely to verify the conditions of Model 3.

The dispersal-limited neutral model of [7] is his-
torically important in the context of ecology and bio-
geography. However, Hubbell’s two-parameter (θ,m)
generalization of Model 1 is not framed as an urn
model or a random allocation model. An urn repre-
sentation of Hubbell’s model is possible, but it is not
straightforward2. This is a special form of a hierar-
chical urn construction, such that the construction
of the second urn depends on that of the first urn,
but not the other way around. Here, I define Model 2
as a neutral model of K subdivided assemblages,
or multi-deme model, a more useful alternative in
practical situations. Though only one result is pre-
sented and studied here, many other results have
been obtained, and it is an area where coalescent
based numerical analyses are most useful [12, 51].

2Define two urns, the first with a black ball with weight θ, the
second empty. First, draw J balls from the first urn exactly as in
the Hoppe urn scheme, generating the sequence of ball colors:

n[1]
1 , . . . ,n[1]

k
, with n[1] = J = ∑k

i=1 n[1]
i . Here the notation “[1]”

represents the first urn. Then turn to the second urn. At step n,
either (1) pick one ball from the first urn with probability I /(I +n);

this ball is of color i with probability n[1]
i /J ; add a new ball of the

same color i in the second urn (so: n[2]
i → n[2]

i + 1), or (2) with
probability n/(I +n), pick a ball in the second urn, and add one
ball of the same color. In the second urn, the total number of
n[2] = n =∑k

i=1 n[2]
i (usually, n ≪ J ).
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4.2. Implications for tropical forests

A remarkable feature is that neutral models fit ex-
tremely well tree species abundance data [5, 7]. The
only departure from this neutral fit appears to be for
the most abundant species, which I have here infor-
mally called ultradominant species. Ultra-dominant
species are the most abundant species that tend to
depart from the prediction of the canonical neutral
model (Model 1), and a simple empirical method is
proposed here to detect these species. When ultra-
dominant species are removed from the analysis, the
neutral model reproduces empirical observations
extremely well in the three regional tropical tree data
sets explored here (Figure 2). The nature of ultra-
dominant species is unclear, but it would be interest-
ing to explore the commonalities of ultra-dominant
species, and possible biological explanations for
their occurrence.

A second insight from this analysis stems from the
fit of the multi-deme model (Model 2) to the same
three regional tropical tree data sets. The finding of
Figure 3 is that most local sites significantly depart
from a hypothesized random sample of the regional
species pool, detected by m values much lower than
unity. In a dispersal-limited interpretation [7], this
suggests that a relatively constant proportion of the
reproduction events are local, the rest being immi-
gration events. The alternative explanation is that bi-
otic or abiotic effects exert a major influence on the
floristic composition of each local community, and
m < 1 values in the multi-deme model reflect these
environmental filtering effects [33].

In the Ewens canonical model, θ is a natural mea-
sure of local diversity, which is a convenient prop-
erty of the model. However, non-parameteric meth-
ods of biodiversity estimation have also been devel-
oped, and they are often presented as more robust
than parametric methods [72, 73]. It is not the goal
of the present contribution to discuss this issue at
length. One known limitation of Model 1 is that the θ
parameter cannot be estimated with confidence for
small sample sizes. A method such as Model 2 may
provide a useful alternative to Model 1 and it would
be interesting to explore the scale dependence of
the m parameter (i.e., how m varies with decreasing
sample sizes n).

The notion of neutrality has generated a heated
debate in ecology [7,20,74–76]. Part of the debate has

been motivated by a narrow definition of neutrality.
The questions raised relate to the fact that this model
ignores so many important features as to become
useless or event dangerous [77]. Species differ not
only in abundance but also in ecological traits, and
individuals within species also differ in size, meta-
bolic capacity, and fitness. A second class of cri-
tiques of ecological neutrality is that tests of the the-
ory are not robust because independent estimates of
the parameters cannot be accessed [74]. A last class
of critiques relate to the consistency of the ecological
neutral model with respect to the dominant theory
in ecology, niche theory, which interprets patterns
of species occurrence in the light of competition be-
tween species [78]. Sampling methods that make the
assumption of neutrality (in the sense of exchange-
ability), are however more general than commonly
discussed in the ecology literature. One strength of
these models presented here is that they are naturally
associated with a method of exact inference, which
makes it possible to compare model and data quan-
titatively. By analogy, the analysis of selectively neu-
tral alleles in natural populations is a useful tool set
of population genetics, and helps infer past popu-
lation sizes, and phases of demographic expansions
and bottlenecks [8, 79].

In ecology, the development of the neutral math-
ematical tool set has not been as rapid as in genet-
ics. One limitation has been that, unlike in genet-
ics, methods for analyzing huge data sets has been
relatively less in need in ecology. The situation is
changing now with the rapid rise of DNA-based ecol-
ogy [15], in which samples are not of individuals but
of sequences, and with applications in tropical for-
est research [80]. Provided that sequence abundance
data can be interpreted biologically, the question of
the structure of sequence abundance distributions
can be explored with the same approach as outlined
here.

Why should a model as simple as Model 1 provide
such an excellent fit to regional tropical tree abun-
dance data? The neutral hypothesis cannot be valid
over ecological and evolutionary time scales. Yet, re-
gional species assemblages result from such a myriad
of local processes, both biotic and abiotic, that large
enough samples of regional patterns average over
these effects. Half a century ago, Robert H. Whit-
taker wrote [17]: “The enigma of the diversity of the
tropical rainforest should be expected to open itself
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to no single key, and may be enigmatic to the extent
we have yet to comprehend the full implications of
biotic differentiation and interaction, the complexity
[. . . ] that is feasible and has evolved in these forests”.
To this day, this analysis still holds, and the successes
of the neutral theory to replicate broad patterns re-
mains a mystery. Even if the details of species per-
sistence and coexistence may be explained by fun-
damentally different processes [2], the laws of large
numbers provide important insights into key ques-
tions on the regional species abundance patterns.
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