data_k05kcm23 _audit_creation_method SHELXL-97 _chemical_name_systematic ? ; ? _chemical_name_common ? _chemical_melting_point ? _chemical_formula_moiety _chemical_formula_sum 'C16 H20 Cl6 N2 O2 Sn' _chemical_formula_weight 603.73 loop_ _atom_type_symbol _atom_type_description _atom_type_scat_dispersion_real _atom_type_scat_dispersion_imag _atom_type_scat_source 'C' 'C' 0.0033 0.0016 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'H' 'H' 0.0000 0.0000 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Cl' 'Cl' 0.1484 0.1585 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'N' 'N' 0.0061 0.0033 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'O' 'O' 0.0106 0.0060 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' 'Sn' 'Sn' -0.6537 1.4246 'International Tables Vol C Tables 4.2.6.8 and 6.1.1.4' _symmetry_cell_setting ? _symmetry_space_group_name_H-M ? loop_ _symmetry_equiv_pos_as_xyz 'x, y, z' '-x, -y, -z' _cell_length_a 7.37800(10) _cell_length_b 7.44800(10) _cell_length_c 11.5170(2) _cell_angle_alpha 97.6240(10) _cell_angle_beta 91.4810(10) _cell_angle_gamma 117.3890(10) _cell_volume 554.243(14) _cell_formula_units_Z 1

```
_cell_measurement_temperature
                                  150(2)
                                 ?
_cell_measurement_reflns_used
cell measurement theta min
                                 ?
                                 ?
_cell_measurement_theta_max
_exptl_crystal_description
                              ?
                            ?
_exptl_crystal_colour
                              ?
_exptl_crystal_size_max
                             ?
_exptl_crystal_size_mid
                             ?
_exptl_crystal_size_min
                               ?
_exptl_crystal_density_meas
_exptl_crystal_density_diffrn
                               1.809
_exptl_crystal_density_method
                                'not measured'
_exptl_crystal_F_000
                             298
exptl absorpt coefficient mu
                                1.891
_exptl_absorpt_correction_type
                                ?
_exptl_absorpt_correction_T_min ?
exptl absorpt correction T max ?
_exptl_absorpt_process_details ?
_exptl_special_details
?
;
_diffrn_ambient_temperature
                                150(2)
_diffrn_radiation_wavelength
                               0.71073
_diffrn_radiation_type
                            MoK\a
_diffrn_radiation_source
                             'fine-focus sealed tube'
_diffrn_radiation_monochromator graphite
_diffrn_measurement_device_type ?
                                 ?
_diffrn_measurement_method
_diffrn_detector_area_resol_mean ?
_diffrn_standards_number
diffrn standards interval count ?
_diffrn_standards_interval_time
                                ?
_diffrn_standards_decay_%
                               ?
diffrn reflns number
                             8539
_diffrn_reflns_av_R_equivalents 0.0270
_diffrn_reflns_av_sigmaI/netI
                               0.0261
_diffrn_reflns_limit_h_min
                              -8
                               8
diffrn reflns limit h max
_diffrn_reflns_limit_k_min
                              -8
_diffrn_reflns_limit_k_max
                               8
diffrn reflns limit 1 min
                              -13
_diffrn_reflns_limit_l_max
                              13
_diffrn_reflns_theta_min
                             3.85
_diffrn_reflns_theta_max
                              24.97
_reflns_number_total
                            1909
reflns number gt
                            1890
```

reflns threshold expression >2sigma(I) ? computing data collection ? _computing_cell_refinement ? _computing_data_reduction _computing_structure_solution ? _computing_structure_refinement 'SHELXL-97 (Sheldrick, 1997)' computing molecular graphics _computing_publication_material ? _refine_special_details Refinement of F^2[^] against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^{2^{}} > 2sigma(F^{2^{}})$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and Rfactors based on ALL data will be even larger. : _refine_ls_structure_factor_coef Fsqd refine ls matrix type full _refine_ls_weighting_scheme calc _refine_ls_weighting details 'calc w=1/[$s^2(Fo^2)$ +(0.0120P)²+0.2090P] where P=(Fo²+2Fc²)/3' _atom_sites_solution_primary direct _atom_sites_solution_secondary difmap _atom_sites_solution_hydrogens geom refine ls hydrogen treatment mixed _refine_ls_extinction_method none ? _refine_ls_extinction_coef _refine_ls_number_reflns 1909 _refine_ls_number_parameters 136 refine ls number restraints 0 _refine_ls_R_factor_all 0.0156 _refine_ls_R_factor_gt 0.0154 refine ls wR factor ref 0.0390 _refine_ls_wR_factor_gt 0.0388 _refine_ls_goodness_of_fit_ref 1.104 _refine_ls_restrained_S_all 1.104 refine ls shift/su max 0.001 _refine_ls_shift/su_mean 0.000 loop_ _atom_site_label _atom_site_type_symbol _atom_site_fract_x _atom_site_fract_v _atom_site_fract_z

atom site U iso or equiv _atom_site_adp_type atom site occupancy _atom_site_symmetry_multiplicity _atom_site_calc_flag _atom_site_refinement_flags _atom_site_disorder_assembly atom site disorder group Sn Sn 0.5000 0.0000 0.0000 0.01455(7) Uani 1 2 d S . . Cl1 Cl 0.16150(6) -0.22514(6) 0.05433(3) 0.02076(10) Uani 1 1 d ... Cl2 Cl 0.64998(6) -0.18451(6) 0.09292(3) 0.02024(10) Uani 1 1 d ... Cl3 Cl 0.56731(6) 0.22768(6) 0.18357(3) 0.02169(10) Uani 1 1 d . . . O1 O 1.36508(17) 0.52884(18) 0.36931(10) 0.0281(3) Uani 1 1 d . . . N1 N 1.2489(2) 0.4143(3) 0.14543(14) 0.0232(3) Uani 1 1 d ... H10A H 1.216(4) 0.497(4) 0.120(2) 0.050(7) Uiso 1 1 d . . . H10B H 1.262(4) 0.338(4) 0.087(2) 0.055(7) Uiso 1 1 d . . . H10C H 1.366(4) 0.494(4) 0.186(2) 0.052(7) Uiso 1 1 d . . . C1 C 1.1055(2) 0.2873(3) 0.22441(14) 0.0224(3) Uani 1 1 d . . . H1A H 1.0878 0.1459 0.2086 0.027 Uiso 1 1 calc R . . H1B H 0.9697 0.2812 0.2104 0.027 Uiso 1 1 calc R . . C2 C 1.1941(2) 0.3834(2) 0.35142(14) 0.0199(3) Uani 1 1 d . . . C3 C 1.0664(2) 0.2936(2) 0.44582(14) 0.0189(3) Uani 1 1 d . . . C4 C 1.1441(3) 0.3808(2) 0.56302(14) 0.0220(3) Uani 1 1 d . . . H4 H 1.2768 0.4952 0.5808 0.026 Uiso 1 1 calc R . . C5 C 1.0272(3) 0.2998(3) 0.65272(14) 0.0255(4) Uani 1 1 d . . . H5 H 1.0795 0.3592 0.7323 0.031 Uiso 1 1 calc R ... C6 C 0.8340(3) 0.1323(3) 0.62699(15) 0.0257(4) Uani 1 1 d . . . H6 H 0.7537 0.0786 0.6891 0.031 Uiso 1 1 calc R . . C7 C 0.7570(3) 0.0425(3) 0.51110(15) 0.0240(4) Uani 1 1 d . . . H7 H 0.6257 -0.0741 0.4939 0.029 Uiso 1 1 calc R . . C8 C 0.8728(2) 0.1238(2) 0.42053(14) 0.0216(3) Uani 1 1 d . . . H8 H 0.8200 0.0636 0.3410 0.026 Uiso 1 1 calc R . . loop _atom_site_aniso_label _atom_site_aniso_U_11 atom site aniso U 22 atom site aniso U 33 _atom_site_aniso_U_23 _atom_site_aniso_U_13 atom site aniso U 12 Sn 0.01356(10) 0.01427(10) 0.01314(10) -0.00040(6) -0.00002(6) 0.00500(7) Cl1 0.0150(2) 0.0224(2) 0.0208(2) 0.00499(16) 0.00225(15) 0.00495(17) C12 0.0202(2) 0.0200(2) 0.0205(2) 0.00314(15) -0.00052(15) 0.00952(17) C13 0.0228(2) 0.0233(2) 0.01627(19) -0.00566(15) -0.00246(15) 0.01108(17) 01 0.0199(6) 0.0277(6) 0.0269(6) -0.0001(5) -0.0011(5) 0.0043(5) N1 0.0233(8) 0.0247(8) 0.0223(8) 0.0046(7) 0.0031(6) 0.0116(7) C1 0.0190(8) 0.0241(8) 0.0211(8) 0.0038(7) 0.0021(6) 0.0075(7) C2 0.0193(8) 0.0202(8) 0.0227(8) 0.0005(6) -0.0015(6) 0.0123(7) C3 0.0203(8) 0.0198(8) 0.0211(8) 0.0015(6) 0.0009(6) 0.0136(7)

C4 0.0228(9) 0.0189(8) 0.0233(8) -0.0017(6) -0.0024(7) 0.0105(7) C5 0.0346(10) 0.0264(9) 0.0182(8) -0.0015(7) 0.0002(7) 0.0180(8) C6 0.0305(9) 0.0266(9) 0.0247(9) 0.0058(7) 0.0077(7) 0.0167(8) C7 0.0218(9) 0.0213(8) 0.0301(9) 0.0038(7) 0.0026(7) 0.0111(7) C8 0.0220(8) 0.0232(8) 0.0209(8) -0.0007(7) -0.0023(7) 0.0129(7)

_geom_special_details

All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. ;

loop_

geom bond atom site label 1 _geom_bond_atom_site_label_2 _geom_bond_distance _geom_bond_site_symmetry_2 _geom_bond_publ_flag Sn Cl3 2.4107(4) 2 655 ? Sn Cl3 2.4107(4) . ? Sn Cl1 2.4386(4) 2 655 ? Sn Cl1 2.4386(4).? Sn Cl2 2.4467(4) . ? Sn Cl2 2.4467(4) 2_655 ? O1 C2 1.215(2) . ? N1 C1 1.483(2).? N1 H10A 0.83(3).? N1 H10B 0.86(3).? N1 H10C 0.87(3).? C1 C2 1.524(2).? C1 H1A 0.9900 . ? C1 H1B 0.9900.? C2 C3 1.478(2) . ? C3 C8 1.394(2).? C3 C4 1.399(2).? C4 C5 1.381(2).? C4 H4 0.9500 . ? C5 C6 1.386(2).? C5 H5 0.9500 . ? C6 C7 1.388(2).? C6 H6 0.9500 . ? C7 C8 1.386(2).? C7 H7 0.9500.? C8 H8 0.9500.?

loop_

_geom_angle_atom_site_label_1 _geom_angle_atom_site_label 2 _geom_angle_atom_site_label_3 _geom_angle _geom_angle_site_symmetry_1 _geom_angle_site_symmetry_3 _geom_angle_publ_flag Cl3 Sn Cl3 180.000(11) 2_655 . ? Cl3 Sn Cl1 89.722(13) 2_655 2_655 ? Cl3 Sn Cl1 90.278(13) . 2_655 ? Cl3 Sn Cl1 90.278(13) 2 655.? Cl3 Sn Cl1 89.722(13) . . ? Cl1 Sn Cl1 180.00(3) 2_655 . ? Cl3 Sn Cl2 90.030(13) 2_655 . ? Cl3 Sn Cl2 89.970(13) . . ? Cl1 Sn Cl2 88.929(13) 2_655 . ? Cl1 Sn Cl2 91.071(12) . . ? Cl3 Sn Cl2 89.970(13) 2 655 2 655 ? Cl3 Sn Cl2 90.030(13) . 2_655 ? Cl1 Sn Cl2 91.071(13) 2_655 2_655 ? Cl1 Sn Cl2 88.929(13) . 2_655 ? Cl2 Sn Cl2 180.000(19) . 2_655 ? C1 N1 H10A 114.2(17) . . ? C1 N1 H10B 110.8(17) . . ? H10A N1 H10B 109(2) . . ? C1 N1 H10C 108.3(16) . . ? H10A N1 H10C 103(2) . . ? H10B N1 H10C 111(2)..? N1 C1 C2 108.49(13) . . ? N1 C1 H1A 110.0 . . ? C2 C1 H1A 110.0 . . ? N1 C1 H1B 110.0 . . ? C2 C1 H1B 110.0 . . ? H1A C1 H1B 108.4 . . ? O1 C2 C3 123.83(15) . . ? O1 C2 C1 118.35(14) . . ? C3 C2 C1 117.82(14) . . ? C8 C3 C4 119.73(15) . . ? C8 C3 C2 121.53(15) . . ? C4 C3 C2 118.73(15) . . ? C5 C4 C3 119.75(15) . . ? C5 C4 H4 120.1 . . ? C3 C4 H4 120.1 . . ? C4 C5 C6 120.25(16) . . ? C4 C5 H5 119.9 . . ? C6 C5 H5 119.9 . . ? C5 C6 C7 120.43(16) . . ? C5 C6 H6 119.8 . . ? C7 C6 H6 119.8 . . ? C8 C7 C6 119.66(16) . . ?

C8 C7 H7 120.2 . . ? C6 C7 H7 120.2 . . ? C7 C8 C3 120.15(15) . . ? C7 C8 H8 119.9 . . ? C3 C8 H8 119.9 . . ?

_diffrn_measured_fraction_theta_max 0.983 _diffrn_reflns_theta_full 24.97 _diffrn_measured_fraction_theta_full 0.983 _refine_diff_density_max 0.285 _refine_diff_density_min -0.702 _refine_diff_density_rms 0.071