Electronic Supporting Information

Supramolecular Chemistry with Uranyl Tetrahalide $([UO_2X_4]^{2\mathchar`})$ Anions

Nicholas P. Deifel, and Christopher L. Cahill*. a

^{*a*} Department of Chemistry, The George Washington University, 725 21st Street NW, Washington, D.C. 20052. E-mail: cahill@gwu.edu

Synthesis of 2-5

$[UO_2Br_4](C_{12}H_{14}N_2)$ (2)

Compound **2** was prepared by dissolving 0.128 g of UO₂(CH₃COO)₂·2H₂O in water (4.0 mL) and HBr (0.40 mL, 48% in H₂O) in a 25 mL Erlenmeyer flask. To this yellow solution, 1,2-bis(4-pyridyl)ethane (0.051 g) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 2 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 45 days X-ray quality crystals were obtained.

$[UO_2Br_4](C_{12}H_{12}N_2)(3)$

Compound **3** was prepared by dissolving 0.256 g of $UO_2(CH_3COO)_2 \cdot 2H_2O$ in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) in a 25 mL Erlenmeyer flask. To this yellow solution, trans-1,2-bis(4-pyridyl)ethylene (0.250 g) in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, yellow, X-ray quality crystals were obtained as a mixture with white solids. These were easily physically separated under magnification.

$[UO_2Br_4](C_{10}H_{11}N_3)_2 \cdot 2Br \cdot 2H_2O$ (4)

Compound **4** was prepared by dissolving 0.258 g of $UO_2(CH_3COO)_2 \cdot 2H_2O$ in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) in a 25 mL Erlenmeyer flask. To this yellow solution, 4,4'-dipyridylamine (0.239 g) in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, large X-ray quality crystals were obtained.

$[UO_2Br_4](C_{13}H_{16}N_2)_2 \cdot 2Br(5)$

Compound **5** was prepared by dissolving 0.261 g of $UO_2(CH_3COO)_2 \cdot 2H_2O$ in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) in a 25 mL Erlenmeyer flask. To this yellow solution, 4,4'-trimethylene dipyridine (0.236 g) in water (2.5 mL) and HBr (0.75 mL, 48% in H₂O) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, yellow-orange, X-ray quality crystals were obtained.

Table S1a. Hydrogen bonds for 1a [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Br(1)#3	0.86	2.62	3.319(4)	
N(1)-H(1)Br(2)#3	0.86	3.08	3.704(4)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x+2,-y+1,-z+1 #3 x,y+1,z

Table S2. Hydrogen bonds for 2 [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1)-H(1)Br(2)#3 N(1)-H(1)Br(1)#3	0.86 0.86	2.77 2.84	3.456(3) 3.468(3)		

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x,-y+1,-z+1 #3 -x+1,-y+1,-z

Table S3. Hydrogen bonds for 3 [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Br(1)#3	0.86	2.71	3.459(3)	
N(1)-H(1)Br(2)#3	0.86	2.94	3.487(3)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z #2 -x-1,-y+1,-z+1 #3 x+1,y,z

Table S4.	Hydrogen	bonds for 4	[A and	deg.].
-----------	----------	-------------	--------	--------

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Br(1)#2 N(1)-H(1)Br(3)#2 N(3)-H(3)OW1#3 N(2)-HN2Br(3)#4	0.86 0.86 0.86 0.73(4	2.72 3.06 1.90 4) 2.65(4	2.724(5)	124.4 159.8

Symmetry transformations used to generate equivalent atoms: #1 -x+2,-y,-z+2 #2 -x+1,-y,-z+1 #3 x,y,z+1 #4 -x+1,-y+1,-z+1

 Table S5.
 Hydrogen bonds for 5 [A and deg.].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
N(1)-H(1)Br(3)#2	0.86	2.41	3.221(8)	
N(2)-H(2)Br(3)	0.86	2.34	3.187(6)	

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z = #2 x,y-1,z+1