Electronic Supporting Information

Supramolecular Chemistry with Uranyl Tetrahalide ($\left[\mathrm{UO}_{2} \mathrm{X}_{4}\right]^{2-}$) Anions

Nicholas P. Deifel, ${ }^{a}$ and Christopher L. Cahill ${ }^{*}{ }^{a}$
${ }^{a}$ Department of Chemistry, The George Washington University, $72521^{\text {st }}$ Street NW, Washington, D.C. 20052. E-mail: cahill@gwu.edu

Synthesis of 2-5

$\left[\mathrm{UO}_{2} \mathrm{Br}_{4}\right]\left(\mathrm{C}_{12} \mathbf{H}_{\mathbf{1 4}} \mathrm{N}_{\mathbf{2}}\right)(\mathbf{2})$

Compound 2 was prepared by dissolving 0.128 g of $\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water (4.0 $\mathrm{mL})$ and $\mathrm{HBr}\left(0.40 \mathrm{~mL}, 48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ in a 25 mL Erlenmeyer flask. To this yellow solution, 1,2-bis(4-pyridyl)ethane (0.051 g) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 2 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 45 days X-ray quality crystals were obtained.

$\left[\mathrm{UO}_{2} \mathrm{Br}_{4}\right]\left(\mathrm{C}_{\mathbf{1 2}} \mathrm{H}_{\mathbf{1 2}} \mathbf{N}_{\mathbf{2}}\right)(\mathbf{3})$

Compound 3 was prepared by dissolving 0.256 g of $\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water (2.5 $\mathrm{mL})$ and $\mathrm{HBr}\left(0.75 \mathrm{~mL}, 48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ in a 25 mL Erlenmeyer flask. To this yellow solution, trans-1,2-bis(4-pyridyl)ethylene $(0.250 \mathrm{~g})$ in water $(2.5 \mathrm{~mL})$ and $\mathrm{HBr}(0.75 \mathrm{~mL}$, 48% in $\mathrm{H}_{2} \mathrm{O}$) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, yellow, Xray quality crystals were obtained as a mixture with white solids. These were easily physically separated under magnification.
$\left[\mathrm{UO}_{2} \mathrm{Br}_{4}\right]\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3}\right)_{2} \cdot \mathbf{2 B r} \cdot \mathbf{2 \mathrm { H } _ { 2 } \mathrm { O }}$ (4)
Compound 4 was prepared by dissolving 0.258 g of $\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water $(2.5$ $\mathrm{mL})$ and $\mathrm{HBr}\left(0.75 \mathrm{~mL}, 48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ in a 25 mL Erlenmeyer flask. To this yellow solution, $4,4^{\prime}$-dipyridylamine (0.239 g) in water (2.5 mL) and $\mathrm{HBr}(0.75 \mathrm{~mL}, 48 \%$ in $\mathrm{H}_{2} \mathrm{O}$) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, large X-ray quality crystals were obtained.

$\left[\mathrm{UO}_{2} \mathrm{Br}_{4}\right]\left(\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}\right)_{2} \cdot \mathbf{2 B r}(5)$

Compound 5 was prepared by dissolving 0.261 g of $\mathrm{UO}_{2}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ in water $(2.5$ $\mathrm{mL})$ and $\mathrm{HBr}\left(0.75 \mathrm{~mL}, 48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ in a 25 mL Erlenmeyer flask. To this yellow solution, 4,4 '-trimethylene dipyridine (0.236 g) in water (2.5 mL) and $\mathrm{HBr}(0.75 \mathrm{~mL}$, 48% in $\mathrm{H}_{2} \mathrm{O}$) was added. The resulting mixture was evaporated using gentle heat to an approximate volume of 4 mL and allowed to cool. The flask was then covered with a piece of Parafilm into which several holes were punched. After 2.5 months, yelloworange, X-ray quality crystals were obtained.

Table S1a. Hydrogen bonds for 1a [A and deg.].

D-H...A				
		$d(D-H)$	$d(H . . . A)$	$d(D \ldots A)$

Symmetry transformations used to generate equivalent atoms:
\#1-x,-y,-z \#2 -x+2,-y+1,-z+1 \#3 x,y+1,z

Table S2. Hydrogen bonds for 2 [A and deg.].

D-H...A	$d(D-H)$	$d(H \ldots A)$	$d(D . . . A)$	$<(D H A)$
$N(1)-H(1) \ldots \operatorname{Br}(2) \# 3$	0.86	2.77	$3.456(3)$	137.4
$\mathrm{~N}(1)-\mathrm{H}(1) \ldots \operatorname{Br}(1) \# 3$	0.86	2.84	$3.468(3)$	131.1

Symmetry transformations used to generate equivalent atoms:
\#1-x,-y,-z \#2 -x,-y+1,-z+1 \#3-x+1,-y+1,-z
Table S3. Hydrogen bonds for $\mathbf{3}$ [A and deg.].

D-H...A	d(D-H)	d(H...A)	d(D...A)	$<(D H A)$
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \operatorname{Br}(1) \# 3$	0.86	2.71	$3.459(3)$	146.4
$\mathrm{~N}(1)-\mathrm{H}(1) \ldots \mathrm{Br}(2) \# 3$	0.86	2.94	$3.487(3)$	122.9

Symmetry transformations used to generate equivalent atoms:
\#1-x,-y,-z \#2 -x-1,-y+1,-z+1 \#3 x+1,y,z

Table S4. Hydrogen bonds for 4 [A and deg.].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} . . . \mathrm{A})$	$\mathrm{d}(\mathrm{D} . . . \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \operatorname{Br}(1) \# 2$	0.86	2.72	$3.455(4)$	144.0
$\mathrm{~N}(1)-\mathrm{H}(1) \ldots \operatorname{Br}(3) \# 2$	0.86	3.06	$3.620(5)$	124.4
$\mathrm{~N}(3)-\mathrm{H}(3) \ldots \mathrm{OW} 1 \# 3$	0.86	1.90	$2.724(5)$	159.8
$\mathrm{~N}(2)-\mathrm{HN} 2 \ldots \mathrm{Br}(3) \# 4$	$0.73(4)$	$2.65(4)$	$3.374(4)$	$171(4)$

Symmetry transformations used to generate equivalent atoms:
\#1-x+2,-y,-z+2 \#2-x+1,-y,-z+1 \#3 x,y,z+1
\#4 -x+1,-y+1,-z+1

Table S5. Hydrogen bonds for 5 [A and deg.].

D-H...A	$\mathrm{d}(\mathrm{D}-\mathrm{H})$	$\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$	$\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$	$<(\mathrm{DHA})$
$\mathrm{N}(1)-\mathrm{H}(1) \ldots \operatorname{Br}(3) \# 2$	0.86	2.41	$3.221(8)$	157.5
$\mathrm{~N}(2)-\mathrm{H}(2) \ldots \mathrm{Br}(3)$	0.86	2.34	$3.187(6)$	168.1

Symmetry transformations used to generate equivalent atoms:
\#1 -x,-y,-z \#2 x,y-1,z+1

