Supporting Information

X-ray Data Collection, Structure Solution, and Refinement of $[\eta^5:\kappa^1-C_5Me_4SiMe_2CH_2C(^tBu)N]_2U$, 2. A red crystal of approximate dimensions 0.07 x 0.14 x 0.52 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (25 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. The diffraction symmetry was 2/*m* and the systematic absences were consistent with the monoclinic space group $P2_1/c$ that was later determined to be correct. The structure was solved by direct methods and refined on F² by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. At convergence, wR2 = 0.0510 and Goof = 1.028 for 370 variables refined against 8250 data (0.76Å), R1 = 0.0202 for those 7297 data with I > 2.0 σ (I).

X-ray Data Collection, Structure Solution, and Refinement of $(C_5Me_4SiMe_3)_2U(C=CPh)_2$, 4. A red crystal of approximate dimensions 0.04 x 0.13 x 0.26 mm was mounted on a glass fiber and transferred to a Bruker SMART APEX II diffractometer. The APEX2¹ program package was used to determine the unit-cell parameters and for data collection (20 sec/frame scan time for a sphere of diffraction data). The raw frame data was processed using SAINT² and SADABS³ to yield the reflection data file. Subsequent calculations were carried out using the SHELXTL⁴ program. There were no systematic absences nor any diffraction symmetry other than the Friedel condition. The centrosymmetric triclinic space group $P\overline{1}$ was assigned

and later determined to be correct. The structure was solved by direct methods and refined on F^2 by full-matrix least-squares techniques. The analytical scattering factors⁵ for neutral atoms were used throughout the analysis. Hydrogen atoms were included using a riding model. At convergence, wR2 = 0.0473 and Goof = 1.048 for 402 variables refined against 8689 data (0.76Å), R1 = 0.0191 for those 8094 data with I > 2.0 σ (I).

Table 1. X-ray Data Collection Parameters for $[\eta^5:\kappa^1-C_5Me_4SiMe_2CH_2C(^tBu)N]_2U$, **2** and $(C_5Me_4SiMe_3)_2U(C\equiv CPh)_2$, **4**.

Empirical Formula	2	4
	$C_{34}H_{58}N_2Si_2U$	$C_{40}H_{52}Si_2U$
Formula weight	789.03	827.03
Temperature (K)	153(2) K	153(2) K
Crystal system	Monoclinic	Triclinic
Space Group	$P2_{1}/c$	$P\bar{1}$
a (Å)	14.345(4)	9.9155(4)
b (Å)	14.466(4)	10.5054(4)
c (Å)	17.331(5)	18.6237(7)
α (deg)	90	89.5796(5)
β (deg)	98.946(3)	84.8150(5)
γ (deg)	90	74.9561(5)
Volume (Å ³)	3552.8(16)	1865.55(13)
Z	4	2
$\rho_{calcd}~(Mg/m^3)$	1.475	1.472
μ (mm ⁻¹)	4.660	4.440

$R1^a$ (I 2.0 σ (I))	0.0202	0.0191
wR2 ^{b} (all data)	0.0510	0.0473

Table 2. Selected bond distances (Å) and angles (deg) for $[\eta^5:\kappa^1-C_5Me_4SiMe_2CH_2C(^tBu)N]_2U$, **2**.

Bond Distances and Angles	2
U1-(C1-C5) _{centroid}	2.473
U1-(C18-C22) _{centroid}	2.482
U1-N1	2.173(2)
U1-N2	2.173(2)
N1-C13	1.264(3)
N2-C30	1.268(3)
(C1-C5) _{centroid} -U1-(C18-C22) _{centroid}	139.7
(C1-C5) _{centroid} -U1-N1	100.7
U1-N1-C13	152.64(2)
U1-N2-C30	152.47(2)
N1-U1-N2	110.06(7)

Table 3. Selected bond distances (Å) and angles (deg) for

Bond Distances and Angles	4
U1-(C1-C5) _{centroid}	2.448
U1-(C13-C17)centroid	2.451
U1-C25	2.390(2)
U1-C33	2.369(3)

 $(C_5Me_4SiMe_3)_2U(C\equiv CPh)_2, 4.$

C25-C26	1.214(3)
(C1-C5) _{centroid} -U1-(C13-C17) _{centroid}	143.8
(C1-C5) _{centroid} -U1-C25	104.0
C25-U1-C33	101.39(9)

References

- 1. APEX2 Version 2.2-0 Bruker AXS, Inc.; Madison, WI 2007.
- 2. SAINT Version 7.46a, Bruker AXS, Inc.; Madison, WI 2007.
- Sheldrick, G. M. SADABS, Version 2008/1, Bruker AXS, Inc.; Madison, WI 2008.
- Sheldrick, G. M. SHELXTL, Version 6.12, Bruker AXS, Inc.; Madison, WI 2001.
- International Tables for X-Ray Crystallography 1992, Vol. C., Dordrecht: Kluwer Academic Publishers.

Definitions:

wR2 =
$$[\Sigma[w(F_o^2 - F_c^2)^2] / \Sigma[w(F_o^2)^2]]^{1/2}$$

 $R1 = \Sigma ||F_o|\text{-}|F_c|| \ / \ \Sigma |F_o|$

Goof = S = $[\Sigma[w(F_o^2 - F_c^2)^2] / (n-p)]^{1/2}$ where n is the number of reflections and p is the total number of parameters refined.

The thermal ellipsoid plot is shown at the 50% probability level.