Supporting Information for

Slow magnetic relaxation in mononuclear tetrahedral cobalt(II) complexes with 2-(1H-imidazol-2-yl)phenol based ligands

Axel Buchholz,^{*a*} Abiodun O. Eseola,^{*b*} and Winfried $Plass^{a,*}$

^{*a*} Lehrstuhl für Anorganische Chemie II, Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany

 b Department of Chemical Sciences, Redeemers University, Redemption City, Ogun State, Nigeria

* sekr.plass@uni-jena.de

Figure S1: Magnetization vs. H plots at different temperatures for the complexes $[Co(L^1)_2]$ (1) (top), $[Co(L^2)_2]$ (2) (middle), and $[Co(L^3)_2]$ (3) (bottom); lines represent the simulated values from the best fit parameters (see text); data at 2 K were not used in the fit procedure.

Figure S2: Magnetization vs. B/T plots at different temperatures for the complexes $[Co(L^1)_2]$ (1) (top), $[Co(L^2)_2]$ (2) (middle), and $[Co(L^3)_2]$ (3) (bottom); lines represent the simulated values from the best fit parameters (see text); data at 2 K were not used in the fit procedure.

Figure S3: Temperature dependence of the in-phase χ' ac susceptibility for the complexes $[Co(L^1)_2]$ (1) (top), $[Co(L^2)_2]$ (2) (middle), and $[Co(L^3)_2]$ (3) (bottom) at different frequencies with an applied dc field of 400 Oe; lines are guides for the eye.