## checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

### **Datablock: shelxl**

Bond precision: C-C = 0.0225 A Wavelength=0.71073

Cell: a=22.5641(9) b=37.1408(15) c=30.0021(11)

alpha=90 beta=105.686(1) gamma=90

Temperature: 173 K

Calculated Reported
Volume 24206.8(16) 24206.8(16)

Space group C 2/c C 2/c Hall group -C 2yc -C 2yc

Moiety formula C62 H48 Cu3 N3 O15, C ((C18 H16 O4)2, (Cu 2+)2,

C3 N O H7)2 )1.5 Sum formula C63 H48 Cu3 N3 O15 C63 H69 Cu3 N3 O15

 Sum formula
 C63 H48 Cu3 N3 O15
 C63 H69 Cu

 Mr
 1277.70
 1298.83

 Dx,g cm-3
 0.701
 0.713

Z 8 8 8 8 8 0.557 0.557 F000 5232.0 5400.0

F000' 5241.90

h,k,lmax 26,44,35 26,44,35 Nref 21466 21379

Tmin, Tmax 0.783, 0.841

Tmin' 0.783

Correction method= Not given

Data completeness= 0.996 Theta(max)= 25.070

R(reflections) = 0.0808( 12669) wR2(reflections) = 0.2465( 21379)

11

S = 1.030 Npar= 685

The following ALERTS were generated. Each ALERT has the format test-name\_ALERT\_alert-type\_alert-level.

Click on the hyperlinks for more details of the test.

#### Alert level A

PLAT201\_ALERT\_2\_A Isotropic non-H Atoms in Main Residue(s) ......

# 🚇 Alert level B

PLAT220\_ALERT\_2\_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.6 Ratio C111 PLAT341\_ALERT\_3\_B Low Bond Precision on C-C Bonds ..... 0.0225 Ang

#### Alert level C

CHEMW03\_ALERT\_2\_C The ratio of given/expected molecular weight as calculated from the \_atom\_site\* data lies outside the range 0.99 <> 1.01

> From the CIF: \_cell\_formula\_units\_Z TEST: Calculate formula weight from \_atom\_site\_\*

mass num sum 12.01 63.00 756.69 48.00 1.01 48.38 3.00 42.02 14.01 16.00 15.00 239.99 63.55 3.00 190.64 Ο

1277.72 Calculated formula weight

PLAT041\_ALERT\_1\_C Calc. and Reported SumFormula Strings Differ PLAT042\_ALERT\_1\_C Calc. and Reported MoietyFormula Strings Differ PLAT068\_ALERT\_1\_C Reported F000 Differs from Calcd (or Missing)... ? PLAT202\_ALERT\_3\_C Isotropic non-H Atoms in Anion/Solvent ...... PLAT213\_ALERT\_2\_C Atom C9 3.2 prola has ADP max/min Ratio ..... PLAT213\_ALERT\_2\_C Atom C18 PLAT213\_ALERT\_2\_C Atom C59 has ADP max/min Ratio ..... 4.0 prola has ADP max/min Ratio ..... 3.3 prola PLAT222\_ALERT\_3\_C Large Non-Solvent H Uiso(max)/Uiso(min) .. 5.4 Ratio PLAT234\_ALERT\_4\_C Large Hirshfeld Difference O10 -- C31 .. 0.18 Ang. PLAT241\_ALERT\_2\_C Check High Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for PLAT242\_ALERT\_2\_C Check Low Ueq as Compared to Neighbors for C121 C131 Cu1 Cu3 C14 C56 PLAT334\_ALERT\_2\_C Small Average Benzene C-C Dist. C12 -C17 1.37 Ang.

#### Alert level G

FORMU01\_ALERT\_1\_G There is a discrepancy between the atom counts in the \_chemical\_formula\_sum and \_chemical\_formula\_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from \_chemical\_formula\_sum: C63 H69 Cu3 N3 O15

Atom count from \_chemical\_formula\_moiety:C6039 H14038 Cu2 N2001 O200 FORMU01\_ALERT\_2\_G There is a discrepancy between the atom counts in the

\_chemical\_formula\_sum and the formula from the \_atom\_site\* data.

Atom count from \_chemical\_formula\_sum:C63 H69 Cu3 N3 O15

Atom count from the \_atom\_site data: C63 H48 Cu3 N3 O15

CELLZ01\_ALERT\_1\_G Difference between formula and atom\_site contents detected. CELLZ01\_ALERT\_1\_G WARNING: H atoms missing from atom site list. Is this intentional?

> From the CIF: \_cell\_formula\_units\_Z 8 TEST: Compare cell contents of formula and atom\_site data

Z\*formula cif sites diff atom C 504.00 504.00 0.00 552.00 384.00 168.00 Η 24.00 24.00 0.00 Cu 24.00 24.00 0.00 N 120.00 120.00 0.00 Ο

HYDTR01\_ALERT\_1\_G Extra text has been found in the \_refine\_ls\_hydrogen\_treatment fi Explanatory text should be in the \_publ\_section\_refinement field. Hydrogen treatment given as constrained Hydrogen treatment identified as constr PLAT002\_ALERT\_2\_G Number of Distance or Angle Restraints on AtSite PLAT004\_ALERT\_5\_G Info: Polymeric Structure Found with Dimension . 3 PLAT005\_ALERT\_5\_G No \_iucr\_refine\_instructions\_details in CIF .... PLAT072\_ALERT\_2\_G SHELXL First Parameter in WGHT Unusually Large. 0.15 PLAT194\_ALERT\_1\_G Missing \_cell\_measurement\_reflns\_used datum .... PLAT195\_ALERT\_1\_G Missing \_cell\_measurement\_theta\_max datum .... ? PLAT196\_ALERT\_1\_G Missing \_cell\_measurement\_theta\_min datum .... ? PLAT196\_ALERT\_1\_G Missing \_cell\_measurement\_theta\_min datum ....

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT343\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT344\_ALERT\_2\_G Check sp? Angle Range in Main Residue for ..

PLAT344\_ALERT\_2\_G Check sp? Angle Range in Solvent/Ion for ... C112 C113 C121 C122 C123 C131 C133 C132 1.82 Ang. PLAT432\_ALERT\_2\_G Short Inter X...Y Contact N131 .. C132 .. PLAT432\_ALERT\_2\_G Short Inter X...Y Contact C131 .. C132 .. PLAT432\_ALERT\_2\_G Short Inter X...Y Contact C132 .. C133 .. 2.71 Ang. 3.16 Ang. ! PLAT606\_ALERT\_4\_G VERY LARGE Solvent Accessible VOID(S) in Structure PLAT860\_ALERT\_3\_G Note: Number of Least-Squares Restraints ...... 4

- 1 ALERT level A = Most likely a serious problem resolve or explain
- 3 ALERT level B = A potentially serious problem, consider carefully

PLAT869\_ALERT\_4\_G ALERTS Related to the use of SQUEEZE Suppressed

18 ALERT level C = Check. Ensure it is not caused by an omission or oversight

!

- 26 ALERT level G = General information/check it is not something unexpected
- 11 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
- 28 ALERT type 2 Indicator that the structure model may be wrong or deficient
- 4 ALERT type 3 Indicator that the structure quality may be low
- 3 ALERT type 4 Improvement, methodology, query or suggestion
- 2 ALERT type 5 Informative message, check

#### Our explanations to Checkcif Alert level A and B:

Level A

1. PLAT201\_ALERT\_2\_A Isotropic non-H Atoms in Main Residue(s) ...... 11

The DMF molecules, which are weakly coordinated to the Cu atoms and at least in one case explicitly disordered, have very high anisotropic thermal displacement parameters. Most of atoms comprising these molecules were refined with restricted isotropic thermal displacement parameters.

The SQUEEZE procedure (Platon) was applied to remove the disordered guest molecules of DMF in the large pores of the structure.

Level B

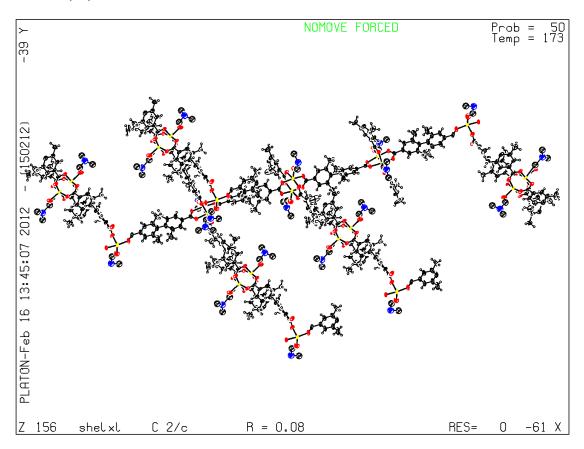
PLAT220\_ALERT\_2\_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.6 Ratio

- 2. This effect is due to the high isotropic parameters of the weakly coordinated DMF molecules (see 1.)
- 3. PLAT241\_ALERT\_2\_B Check High Ueq as Compared to Neighbors for C111

C111 is an atom of a weakly coordinated DMF molecule, which neighbors the O-anchor atom which is coordinated to the Cu-atom and has inherently lower  $U_{eq}$ .

4. PLAT341\_ALERT\_3\_B Low Bond Precision on C-C Bonds ... 0.0225 Ang See 1.

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special\_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


#### **Publication of your CIF in IUCr journals**

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica*, *Journal of Applied Crystallography*, *Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

#### **Publication of your CIF in other journals**

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 15/02/2012; check.def file version of 10/02/2012

