Supporting Information

Reduction of carbonyl compounds by Raney Ni-Al Alloy, Al powder in the presence of noble metal catalysts in Water

Ummey Rayhan,^{a,b} Jung Hee Do,^a Takashi Arimura,^c and Takehiko Yamato^{a,*}

^aDepartment of Applied Chemistry, Faculty of Science and Engineering, Saga University, Honjo-machi 1 Saga, 840-8502, Japan

E-mail: yamatot@cc.saga-u.ac.jp

^bDepartment of Chemistry, Dhaka University of Engineering and Technology, Gazipur Gazipur-1700, Bangladesh

E-mail: rayhanchem@yahoo.com

^cNational Institute of Advanced Industrial Science and Technology, AIST Central 5, 1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan

E-mail: takashi-arimura@aist.go.jp

Table of Contents

2. Table S1	S3
3. Table S2	S4
4. Table S3	S4
5. Table S4	S4
6. Table S5	S5
7. Fig S6	S5
8. Fig S7: GC of Table 2 Entry 1	S6
9. Fig S8: GC of Table 2 Entry 2	S7
10. Fig S9: GC of Table 2 Entry 3	S7
11. Fig S10: GC of Table 2 Entry 4	S8
12. Fig S11: GC of Table 2 Entry 5	S8
13. Fig S12: GC of Table 7 Entry 1	S9
14. Fig S13: GC of Table 7 Entry 2	S9
15. Fig S14: GC of Table 7 Entry 3	S10
16. Fig S15: GC of Table 7 Entry 4	S10
17. Fig S16: GC of Table 7 Entry 5	S11
18. Fig S17: GC of Table 9 Entry 1	S11

1 Experimental section

1.1 General Remarks

All melting points are uncorrected. ¹H NMR spectra were recorded at 300 MHz on a Nippon Denshi JEOL FT-300 NMR spectrometer in CDCl₃ with Me₄Si as an internal reference. IR spectra were measured as KBr pellets on a Nippon Denshi JIR-AQ2OM spectrometer. Mass spectra were obtained on Shimadzu GC-MS-QP5050A Ultrahigh Performance Mass Spectrometer AOC-20I, 100V using a direct-inlet system. GLC analyses were performed with a Shimadzu gas chromatograph, GC-2010.

1.2 Reagent list

Raney Ni–Al alloy (50:50, wt %) (Wako), Al powder (500 wt%) (53–150 μm, 99.5%) (Wako), Pt/C, Pd/C, Ru/C and Rh/C (5 wt%) (Wako), Distilled water (Wako)

1.3 Typical procedure

To the mixture of substrate (20 mg, 0.11mmol) (Wako), Raney Ni–Al alloy (50:50, wt %), Al powder (500 wt %) (53–150 μ m, 99.5%) (Wako) and Pt/C, Pd/C, Ru/C and Rh/C (20 mg) (4.5 mole % metal) (Wako) was added H₂O (0.5 mL) (Wako distilled water). After heating at 60–80 °C for 3–18 h, the mixture was cooled to room temperature. The solution was diluted with 1 mL of water and then stirred overnight at room temperature in a sealed tube. After 24 h, the solution was extracted with diethyl ether (2 mL× 3) following the reported procedures [32]. The organic layer was combined, dried with MgSO₄, filtered through a cotton layer and concentrated in vacuum to give the corresponding hydrogenated product. The yields were determined by GLC analysis by using the standard compound (1,2,3,4-tetrahydronaphthalene) and products were identified by GC-MS.

Reduction of benzophenone (1a)

Table S1 Effects of the reaction temperature for hydrogenation of benzophenone (1a) by using Raney Ni–Al alloy in water^{a,b}

Entry	Temp.			Yield(%) ^{d,e}		recovery
	(°C)	2a	3 a	4a	5a	1a
1	r.t	0	0	0	0	100
2	r.t ^c	91	0	8	0	1
3	40	15	38	1	1	46
4	60	93[86]	0	7	0	0
5	80	77	0	18	3	2
6	100	49	0	46	4	0

^{*a*}Substrate: 20 mg, Ni–Al alloy: 100 mg (500 wt%), H₂O: 0.5 mL, ^{*b*}Conditions: time: 3 h, ^{*c*}time: 24 h, ^{*d*}The yields were determined by GLC, ^{*e*}The Isolated yields are shown in square bracket.

Entry	Time			Yield(%) ^{c,d}		recovery
	(h)	2a	3 a	4a	5a	1 a
1	0.25	2	0	0	0	98
2	0.5	8	16	0	0	76
3	1	14	0	2	0	84
4	2	76	6	5	0	12
5	2.5	78	3	7	0	12
6	3	93[86]	0	7	0	0
7	4	90	2	7	0	0
8	8	88	1	10	0	0

Table S2 Effects of time for hydrogenation of benzophenone (1a) by using Raney Ni–Al alloy in water^{a,b}

^{*a*} Substrate: 20 mg, Ni–Al alloy: 100 mg (500wt%), H₂O: 0.5 mL, ^{*b*} Condition: temp: 60 °C, ^{*c*} The yields were determined by GLC, ^{*d*} The Isolated yields are shown in square bracket.

Table S3 Effects of catalysis for hydrogenation of benzophenone (1a) in water^{*a,b*}

Entry	Raney Ni–Al (wt%)	2a	3 a	Yield(%) ^{c,d} 4a	5a	recovery 1a
1	50	0	0	0	0	100
2	100	0	0	0	0	100
3	200	2	0	0	0	98
4	300	79	13	3	0	5
5	400	85	0	7	0	6
6	500	93[86]	0	7	0	0

^{*a*} Substrate: 20 mg, H₂O: 0.5 mL, ^{*b*} Conditions: time: 3 h, temp: 60 °C, ^{*c*} The yields were determined by GLC, ^{*d*} The Isolated yields are shown in square bracket.

Table S4 Effects of amount of water for hydrogenation of benzophenone (1a) by using Raney Ni–Al alloy a,b

Entry	H ₂ O			Yield(%) ^{c,d}		recovery
	(mL)	2a	3 a	4a	5a	1 a
1	0.25	84	5	9	0	2
2	0.50	93[86]	0	7	0	0
3	0.75	87	0	12	1	0
4	1.0	82	1	10	1	6
5	1.5	73	1	9	1	16
6	2.0	73	1	11	2	13

^{*a*} Substrate: 20 mg, Ni–Al alloy: 100 mg (500wt%), ^{*b*} Conditions: time: 3 h, temp: 60 °C, ^{*c*} The yields were determined by GLC, ^{*d*} The Isolated yields are shown in square bracket.

Reduction of diphenylmethanol (3a)

Table S5 Reduction of diphenylmethanol (3a) by using Raney Ni–Al alloy in water^{*a,b*}

Entry	Time		Yield(%) ^{c,d}		recovery
	(h)	2a	4a	5a	3 a
1	0.25	0	0	0	100
2	0.50	10	0	0	89
3	0.75	24	1	0	75
4	1	27	1	0	72
5	1.5	62	3	0	36
6	2	83	4	0	13
7	2.5	94	6	0	0
8	3	93[86]	7	0	0
9	12	84	16	0	0
10	24	75	25	0	0

^{*a*} Substrate: 20 mg, Ni–Al alloy: 100 mg (500 wt%), H₂O: 0.5 mL, ^{*b*} Condition: temp: 60 °C, ^{*c*} The yields were determined by GLC, ^{*d*} The Isolated yields are shown in square bracket.

Kinetic study of reduction of benzophenone:

Fig S6: Reduction of benzophenone by using Raney Ni-Al alloy in water; Time effect.

GC Condition:

	Rate (°C/min)	Temperature (°C)	Hold (min)
1	-	100	-
2	2	200	5

	Rate (°C/min)	Temperature (°C)	Hold (min)
1	-	100	-
2	4	280	5

and

Fig S7: Reduction of Benzophenone using Ni–Al alloy and H₂O at 60 $^{\circ}\text{C}$ for 3 h

GC of Table 2 Entry 2

Fig S8: Reduction of 4-Methylbenzophenone using Ni–Al alloy and H₂O at 60 °C for 3 h

GC of Table 2 Entry 3

Fig S9: Reduction of 4-Methoxybenzophenone using Ni–Al alloy and H₂O at 60 °C for 3 h

Fig S10: Reduction of 4-tert-butylbenzophenone using Ni–Al alloy and H₂O at 60 °C for 3 h

GC of Table 2 Entry 5

Fig S11: Reduction of 4-Chlorobenzophenone using Ni–Al alloy and H₂O at 60 °C for 3 h

GC of Table 7 Entry 1

Fig S12: Reduction of Benzophenone using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 °C for 18 h

GC of Table 7 Entry 2

Fig S13: Reduction of 4-Methylbenzophenone using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 °C for 18 h

GC of Table 7 Entry 3

Fig S14: Reduction of 4-Methoxybenzophenone using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 $^{\circ}$ C for 18 h

GC of Table 7 Entry 4

Fig S15: Reduction of 4-*tert*-butylbenzophenone using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 °C for 18 h

Fig S16: Reduction of 4-Chlorobenzophenone using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 $^{\circ}$ C for 18 h

GC of Table 9 Entry 1

Fig S17: Reduction of Diphenylmethanol using Ni–Al alloy, Al powder, Pt/C and H₂O at 80 °C for 18 h