Unexpected synthesis of aziridines under $\mathbf{C u (I)}$ catalyzed Kinugasa conditions assisted by microwaves irradiation

Heithem Abda, ${ }^{\text {a }}$ Kaiss Aouadi, ${ }^{\text {a }}{ }^{\text {, }}$ Jihed Brahmi, ${ }^{\text {a }}$ Moncef Msaddek, ${ }^{\text {a }}$ and Sébastien Vidal ${ }^{\text {b }}$

Experimental Section

General methods: Thin-layer chromatography (TLC) was carried out on aluminum sheets coated with silica gel $60 \mathrm{~F}_{254}$ (Merck). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using a Bruker DRX400 spectrometer with the residual solvent as the internal standard. The chemical shifts are expressed on the δ scale in parts per million (ppm). The following abbreviations are used to explain the observed multiplicities: s, singlet; d, doublet; dd, doublet of doublets; ddd, doublet of doublet of doublets; t , triplet; m, multiplet; br, broad. NMR solvents were purchased from Eurisotop (Saint Aubin, France). MS (ESI) data were recorded in the positive mode using a Bruker MicrOTOF-Q II spectrometer. Structure elucidation was deduced from 1D and 2D NMR spectroscopy which allowed signal assignments based on COSY and HSQC correlations and by X-ray diffraction analysis.

General Procedure: Reaction of nitrone 1 with alkynes.

In a Biotage Initiator $5-\mathrm{mL}$ vial, $\mathrm{CuI}(100 \mathrm{mg})$ was suspended in anhydrous DMF (1 mL). The vial was flushed with argon and $\mathrm{Et}_{3} \mathrm{~N}$ ($3 \mathrm{eq}, 1.26 \mathrm{mmol}, 127 \mathrm{mg}$), then alkyne ($4 \mathrm{eq}, 1.68$ mmol) was added. The solution was stirred for 10 min at $0^{\circ} \mathrm{C}$ and nitrone $1(1 \mathrm{eq}, 0.42 \mathrm{mmol}$, 100 mg) in anhydrous DMF (1 mL) was added. The vial was sealed with a septum cap and was irradiated by microwaves at $100^{\circ} \mathrm{C}$. TLC monitoring ($\mathrm{EtOAc} / \mathrm{PE} 5 / 5$) showed full conversion after 2 h . The crude mixture was dissolved in biphasic mixture $\left(\mathrm{EtOAc} / \mathrm{H}_{2} \mathrm{O}, 50\right.$ $\mathrm{mL}, 1 / 1$). The aqueous layer was separated and then extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and washed with brine $(2 \times 30 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered, concentrated and purified by flash silica gel column chromatography (EtOAc/PE 1/3) to provide aziridines 3-4.
(1'R,2'S,5S,5'R,6R)-6-benzoyl-2'-isopropyl-3,5'-dimethyl-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (4a)

Obtained as a white solid ($75 \mathrm{mg}, 52 \%$) following general procedure: alkyne $\mathbf{2 a}(171 \mathrm{mg})$.
(4a) White solid ; M.p. $182-183{ }^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{\mathrm{f}}=0.46(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=-85.7(\mathrm{c}=$ $\left.0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.34\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.5.84 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J=5.92 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89-0.92(\mathrm{~m}, 1 \mathrm{H}), 1.05\left(\mathrm{t}, 1 \mathrm{H}, J_{\text {gem }}=12.1\right.$ $\mathrm{Hz}), 1.11-1.16(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}), 1.62(\mathrm{dq}, 1 \mathrm{H}, J=$ $10.2, J=7.8, J=4.7 \mathrm{~Hz}), 1.69-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.02$ $(\mathrm{m}, 1 \mathrm{H}), 2.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.14(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 3.57(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.47-7.52(\mathrm{~m}$, 2 H , Harom), 7.62 (tt, $1 \mathrm{H}, J=6.1 \mathrm{~Hz}, J=4.2 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}$, Harom), 8.07-8.15 (m, 2H, Harom); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3,21.3,21.8,24.2,24.5,25.5\left(\mathrm{NCH}_{3}\right), 29.2$,
34.8, 42.3, 42.9, 44.9, 49.6, 85.7, 128.4, 128.9, 134.1, 137.3, 169.6 (C=O), 193.6(C=O); HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 341.2224$; found 341.2228 .

(1'R,2'S,5S,5'R,6S)-2'-isopropyl-3,5'-dimethyl-6-(4-methylbenzoyl)-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (3b) and (1'R,2'S,5S,5'R,6R)-2'-isopropyl-3,5'-dimethyl-6-(4-methylbenzoyl)-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (4b)

Compounds 3b ($47 \mathrm{mg}, 13 \%$) and 4b ($190 \mathrm{mg}, 53 \%$) were obtained following general procedure: alkyne 2b (194 mg).

(3b) Yellow amorphous solid; $\mathrm{R}_{\mathrm{f}}=0.56(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=+100.0\left(\mathrm{c}=0.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.87\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.93(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 0.94-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.05\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{gem}}=12.8 \mathrm{~Hz}\right), 1.48-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.66(\mathrm{~m}, 3 \mathrm{H})$, $1.77-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.65\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.24(\mathrm{~d}, 1 \mathrm{H}, J=$ $2.0 \mathrm{~Hz}), 3.30(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.0 \mathrm{~Hz}$, Harom), $7.88(\mathrm{~d}, 2 \mathrm{H}, J=8.2 \mathrm{~Hz}$, Harom); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3,21.3,21.9,22.3,24.1,24.6,25.5\left(\mathrm{NCH}_{3}\right)$, $28.7,34.7,39.8,43.2,45.5,48.1,85.7,128.6,129.6,134.0,145.0,170.8(\mathrm{C}=\mathrm{O})$, 192.7 (C=O); HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 355.2380$; found 355.2378.

(4b) White solid; M.p. $177-178^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{\mathrm{f}}=0.42(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=-9.8(\mathrm{c}=$ $\left.0.7, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.36\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=6.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.90-0.96(\mathrm{~m}, 1 \mathrm{H}), 1.03\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{gem}}=13.4 \mathrm{~Hz}\right)$, $1.14-1.19(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{ddd}, 1 \mathrm{H}, J=9.1 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.93-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.59(\mathrm{~s}, 3 \mathrm{H}$, NCH_{3}), $3.14(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}$, $3.56(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}), 7.27-7.30(\mathrm{~m}, 2 \mathrm{H}$, Harom), 7.988.00 (m, 2H, Harom); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3,21.4\left(\mathrm{CH}_{3}\right), 21.8,21.9,24.2$, $24.5,25.5\left(\mathrm{NCH}_{3}\right), 29.2,34.8,42.2,43.0,44.9,49.6,85.6,128.6,129.6,135.0,145.1,169.7$ (C=O), 193.2 (C=O); HRMS (ESI): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$355.2380; found 355.2371 .

(1'R,2'S,5S,5'R,6S)-2'-isopropyl-6-(4-methoxybenzoyl)-3,5'-dimethyl-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (3c) and (1'R,2'S,5S,5'R,6R)-2'-isopropyl-6-(4-methoxybenzoyl)-3,5'-dimethyl-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (4c)

Compounds 3c ($80 \mathrm{mg}, 21 \%$) and $\mathbf{4 c}$ ($194 \mathrm{mg}, 52 \%$) were obtained following general procedure: alkyne 2c (221 mg).

(3c)* Yellow amorphous solid; $\mathrm{R}_{\mathrm{f}}=0.38(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $0.90\left(\mathrm{~d}, 6 \mathrm{H}, J=6.7 \mathrm{~Hz}, 2 \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96-0.99(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.27$ $(\mathrm{m}, 1 \mathrm{H}), 1.50(\mathrm{ddd}, 1 \mathrm{H}, J=8.8 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}$), 1.59-1.65 (m, 3H), 1.76-1.79 (m, 3 H), $2.66\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.22(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.29(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.88(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 6.95(\mathrm{dt}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=2.8 \mathrm{~Hz}, \mathrm{H}-\mathrm{arom}), 7.98(\mathrm{dt}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, \mathrm{H}-$ arom).$^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3,21.4,22.4,24.2,24.6,25.5\left(\mathrm{NCH}_{3}\right), 28.7,34.8$, 39.8, 43.2, 45.4, 48.1, $55.7\left(\mathrm{OCH}_{3}\right), 85.7,114.1,130.7,131.0,164.1,170.7(\mathrm{C}=\mathrm{O}), 191.3$ (C=O); HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 371.2320$; found 371.2317 .

* Compound 3 c is contaminated by unknown products.

(4c) White solid; M.p. $165-166^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{\mathrm{f}}=0.28(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=-6.1(\mathrm{c}=0.8$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.39\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.85(\mathrm{~d}, 3 \mathrm{H}, J=6.7$ $\left.\mathrm{Hz}, \mathrm{CH}_{3}\right), 0.86\left(\mathrm{~d}, 3 \mathrm{H}, J=6.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.89-0.92(\mathrm{~m}, 1 \mathrm{H}), 1.03\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{gem}}=13.3 \mathrm{~Hz}\right)$, $1.18-1.23(\mathrm{~m}, 1 \mathrm{H}), 1.37(\mathrm{ddd}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}), 1.59-1.64(\mathrm{~m}, 1 \mathrm{H})$, $1.70-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.91-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.11(\mathrm{~d}, 1 \mathrm{H}, J=$ $5.1 \mathrm{~Hz}), 3.52(\mathrm{~d}, 1 \mathrm{H}, J=5.2 \mathrm{~Hz}), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.95(\mathrm{dt}, 2 \mathrm{H}, J=9 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}$, Harom), 8.07 (dt, $2 \mathrm{H}, J=9 \mathrm{~Hz}, J=2.9 \mathrm{~Hz}$, Harom); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=18.3$, 21.5, 21.8, 24.2, 24.5, $25.5\left(\mathrm{NCH}_{3}\right), 29.2,34.8,42.1,43.0,44.8,49.6,55.7\left(\mathrm{OCH}_{3}\right), 85.6$, 114.1, 130.7,130.8, 164.2,169.7 (C=O), 191.9 (C=O); HRMS (ESI): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 393.2149$; found 393.2140.

(1'R,2'S,5S,5'R,6R)-2'-isopropyl-3,5'-dimethyl-6-(4-nitrobenzoyl)-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (4d)
Obtained as a yellow solid ($157 \mathrm{mg}, 64 \%$) following general procedure: alkyne $\mathbf{2 d}(277 \mathrm{mg})$.

(4d) Yellow solid; M.p. $188-189^{\circ} \mathrm{C}\left(\mathrm{Et}_{2} \mathrm{O}\right) ; \mathrm{R}_{\mathrm{f}}=0.56(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=+50.0(\mathrm{c}=$ $\left.0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=4.1 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.92(\mathrm{~d}, 3 \mathrm{H}, J=$ $\left.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.94\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96-1.00(\mathrm{~m}, 1 \mathrm{H}), 1.46\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{gem}}=12.9 \mathrm{~Hz}\right)$, 1.53 (ddd, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}$), 1.62-1.67 (m, 3H), 1.82-1.96 (m, 3H), 2.67 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.21(\mathrm{~d}, 1 \mathrm{H}, J=2.0 \mathrm{~Hz}), 3.28(\mathrm{~d}, 1 \mathrm{H}, J=1.7 \mathrm{~Hz}), 8.15(\mathrm{dt}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=$ 2.2 Hz, Harom), 8.34 (dt, $2 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}$, Harom); ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=18.3,21.5,22.4,24.1,24.5,25.6\left(\mathrm{NCH}_{3}\right), 28.9,34.7,40.7,43.1,46.0,48.1,85.9$, 124.1, 129.6, 140.7, 150.7, 169.9 (C=O), 192.3 (C=O); HRMS (ESI): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 386.2074$; found 386.2074.

$\stackrel{\sim}{n}$
- ©

$\begin{array}{lllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ f 1(\mathrm{ppm})\end{array} \quad 90$
(1'R,2'S,5S,5'R,6S)-2'-isopropyl-6-(6-methoxy-2-naphthoyl)-3,5'-dimethyl-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (3e) and (1'R,2'S,5S,5'R,6R)-2'-isopropyl-6-(6-methoxy-2-naphthoyl)-3,5'-dimethyl-1,3-diazaspiro[bicyclo[3.1.0]hexane-2,1'-cyclohexan]-4-one (4e)
Compounds $\mathbf{3 e}(50 \mathrm{mg}, 12 \%)$ and $\mathbf{4 e}(215 \mathrm{mg}, 51 \%)$ were obtained following general procedure: alkyne $2 \mathbf{e}$ (305 mg).

(3e) Yellow amorphous solid; $\mathrm{R}_{\mathrm{f}}=0.54(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=+17,1\left(\mathrm{c}=1.4, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=0.90\left(\mathrm{~d}, 3 \mathrm{H}, J=2.0 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91\left(\mathrm{~d}, 3 \mathrm{H}, J=2.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, 0.93-0.95 (m, 1H), $0.97\left(\mathrm{~d}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.46\left(\mathrm{t}, 1 \mathrm{H}, J_{\text {gem }}=12.9 \mathrm{~Hz}\right), 1.50-1.54$ (ddd, $1 \mathrm{H}, J=9.0 \mathrm{~Hz}, J=3.5 \mathrm{~Hz}, J=1.3 \mathrm{~Hz}), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.80(\mathrm{~m}$, $2 \mathrm{H}), 1.86-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.35(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}), 3.38(\mathrm{~d}, 1 \mathrm{H}, J=2.0$ $\mathrm{Hz}), 3.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.16(\mathrm{~d}, 1 \mathrm{H}, J=2.4 \mathrm{~Hz}$, Harom), 7.19-7.22 (dd, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=$ 2.5 Hz, Harom $)$, 7.76-7.79 (d, $1 \mathrm{H}, J=8.7 \mathrm{~Hz}, H a r o m), 7.83(\mathrm{~d}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}$, Harom), 7.99 $\left(\mathrm{dd}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}\right.$, Harom), $8.46\left(\mathrm{~d}, 1 \mathrm{H}, J=1.3 \mathrm{~Hz}\right.$, Harom) ${ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.4,21.4,22.5,24.1,24.6,25.5\left(\mathrm{NCH}_{3}\right), 28.7,34.7,40.0,43.2,45.6,48.1$, $55.6\left(\mathrm{OCH}_{3}\right), 85.8,106.0,120.2,124.7,127.6,127.8,130.3,131.3,131.9,137.7,160.3,170.8$ $(\mathrm{C}=\mathrm{O}), 192.6(\mathrm{C}=\mathrm{O})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 421.2486$; found 421.2484.

(4e) Amorphous solid; $\mathrm{R}_{\mathrm{f}}=0.34(\mathrm{EtOAc} / \mathrm{PE}, 5 / 5) ;[\alpha]_{\mathrm{D}}{ }^{20}=-40.0\left(\mathrm{c}=0.3, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ;{ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=0.18\left(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.87\left(\mathrm{~d}, 3 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.88\left(\mathrm{~d}, 3 \mathrm{H}, J=1.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.91-0.92(\mathrm{~m}, 1 \mathrm{H}), 1.03\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{gem}}=13.2 \mathrm{~Hz}, \mathrm{H}-6 ’ \mathrm{a}\right), 1.20-$ $1.23(\mathrm{~m}, 1 \mathrm{H}), 1.39\left(\mathrm{ddd}, 1 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=3.4 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime}\right), 1.62-1.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 3'a), 1.73-1.80 (m, 2H), 1.85-1.96 (m, 1H), 1.98-2.02 (m, 1H), $2.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 3.16(\mathrm{~d}$, $1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{H}-5), 3.69(\mathrm{~d}, 1 \mathrm{H}, J=5.1 \mathrm{~Hz}, \mathrm{H}-6), 3.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.15(\mathrm{~d}, 1 \mathrm{H}, J=2.4$ Hz, H-arom), $7.20-7.23$ (dd, $1 \mathrm{H}, J=8.9 \mathrm{~Hz}, J=2.5 \mathrm{~Hz}$, Harom), $7.78(\mathrm{~d}, 1 \mathrm{H}, J=8.7 \mathrm{~Hz}$, Harom), $7.86(\mathrm{~d}, 1 \mathrm{H}, J=9.0 \mathrm{~Hz}$, Harom), $8.05(\mathrm{dd}, 1 \mathrm{H}, J=8.6 \mathrm{~Hz}, J=1.8 \mathrm{~Hz}$, Harom), 8.59 $(\mathrm{d}, 1 \mathrm{H}, J=1.4 \mathrm{~Hz}$, Harom $){ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=18.3,21.2,21.9,24.2,24.5$, $25.5\left(\mathrm{NCH}_{3}\right), 29.3,34.8,42.2,43.2,44.8,49.7,55.6\left(\mathrm{OCH}_{3}\right), 85.7,106.0,120.3,124.4,127.5$, $127.8,130.4,131.4,133.0,137.8,160.3,169.7(\mathrm{C}=\mathrm{O}), 193.0(\mathrm{C}=\mathrm{O})$; HRMS (ESI): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 443.2305$; found 443.2291 .

