

Supplementary material: Catalytic hydro-deoxygenation of acetic acid, 4-ethylguaiacol, and furfural from bio-oil over Ni₂P/HZSM-5 catalysts

Jundong Wang^a, Lokmane Abdelouahed^a, Michael Jabbour^a and Bechara Taouk^{*, a}

^a Normandie Université, INSA Rouen Normandie, UNIROUEN, LSPC-Laboratoire de Sécurité des Procédés Chimiques, 685 Avenue de l'Université, 76801
Saint-Étienne-du-Rouvray, France *E-mails*: jundong.wang@insa-rouen.fr (J. Wang), lokmane.abdelouahed@insa-rouen.fr (L. Abdelouahed), michael.jabbour@univ-rouen.fr (M. Jabbour), bechara.taouk@insa-rouen.fr
(B. Taouk)

1. Pyridine Fourier Transform Infrared Spectroscopy (FT-IR) characterization

Generally, the acid sites of catalysts include Brønsted and Lewis acid sites. For Ni₂P-based catalysts, the Brønsted acid sites could be attributed to the surface PO-H groups, and Lewis acid sites are the Ni species with a partial positive charge (Ni^{δ +}) [1]. In Figure 3, the bands that appeared at 1440 and 1588 cm^{-1} were assigned to pyridine adsorbed on the Lewis acid sites. whereas the presence of band at 1488 cm⁻¹ was attributed to pyridine adsorbed on both the Lewis and Brønsted acid sites based on the literature [2,3]. Besides, IR spectra of 5% Ni₂P/HZSM-5 catalysts show a similar acidity compared to 10% Ni₂P/HZSM-5. Besides, the intensity of the bands on both 5% and 10% Ni₂P/HZSM-5 catalysts reduced with an increase of the desorption temperature from 100 to 400 °C and was weak at 150, 275, and 400 °C desorption temperature.

Supplementary Figure S1. IR spectra of Ni₂P/HZSM-5 catalysts at 100 °C desorption temperature (with/without adsorption of pyridine).

2. Effect of catalysts on acetic acid HDO

As shown in Table S1, the conversion rate and DOD reached around 81% and 77%, respectively. Clearly, results showed that these catalysts were effective in

^{*} Corresponding author.

Supplementary Figure S2. Effects of catalysts on acetic acid HDO (400 $^{\circ}$ C, 0.5 MPa, 0.05 mL/min acetic acid, 40 mL/min H₂, 10 mL/min N₂, reaction time: 90 min): (A) Selectivity of chemical composition in liquid phase; (B) Selectivity of chemicals in gas phase.

	Conditions ^a		
Item	5% Ni ₂ P/HZSM-5	10% Ni ₂ P/HZSM-5	
Conversion rate & DOD (wt%)			
$X_{\text{acetic acid}}$	80	81	
DOD	77.0	76.1	
Yield of products (wt%)			
$Y_{ m Liq. (free water)}$	33.09	32.87	
Y _{Gas}	41.02	39.66	
$Y_{ m H_2O}$	25.89	27.46	

Supplementary Table S1. Comparison of different catalysts in acetic acid HDO

^a Fixed conditions: 0.43 g 5% Ni₂P/HZSM-5; 0.47 g 10% Ni₂P/HZSM-5; 400 °C, 0.5 MPa, 0.05 ml/min of acetic acid, H₂: 40 ml/min, N₂: 10 ml/min, 90 min.

catalyzing the HDO reaction.

The effect of the 5% and 10% Ni₂P/HZSM-5 catalysts on the selectivity for the chemical composition in liquid products of acetic acid HDO is compared in Figure S2A. Ketones and aromatic hydrocarbons were the primary products using 5% Ni₂P/HZSM-5, with the selectivity of 11.2% and 13.8%. The 10% Ni₂P/HZSM-5 showed similar values of 12.6% for ketones and 12.9% for aromatic hydrocarbons.

Figure S2B shows the effect of the 5% and 10% $Ni_2P/HZSM$ -5 catalysts on the selectivity for chemicals of acetic acid HDO in gas products. It can be seen that CO, CO₂ and CH₄ were obtained as the main products of acetic acid HDO on $Ni_2P/HZSM$ -5 catalysts with the selectivities of 24.7% for CO and of 13.1% for CO₂. The highest selectivity of CH₄ (14.3%)

was obtained using 10% Ni₂P/HZSM-5. Probably, the high content of Ni₂P facilitates the decarboxylation reaction of acetic acid for more CH₄ and CO₂ formation. However, the 10% Ni₂P/HZSM-5 catalyst showed a slightly lower selectivity of CO₂ than the value from 5% Ni₂P/HZSM-5. This can be explained by the fact that some of the CO₂ and CO was further reacted with H₂ via the methanation reaction to form CH₄ and H₂O. Similarly, Zhang et al. [4] performed the methanation of CO2 over Ni/Al2O3 and found that the nickel loading of 27.5% allowed the best activity for CH₄ formation at 400 °C. What's more, a higher yield of H₂O using 10% Ni₂P/HZSM-5 than 5% Ni₂P/HZSM-5 (Table S1) was noted, which also confirms that the methanation reaction of CO2 took place.

3. Chemicals in the liquid phase

Classification	Chemicals ^{<i>a</i>}	Formula	O (wt%)
Aldehydes	Acetaldehyde	C_2H_4O	36.4
Alcohols	1-Phenyl-1,2-butanediol	$C_{10}H_{14}O_2$	19.3
Carboxylic acids	Acetic acid ^b	CH ₃ COOH	53.3
Esters	2-Naphthalenol, 1,2-dihydro-, acetate	$C_{12}H_{12}O_2$	17.0
Ketones	Acetone	C_3H_6O	27.6
	Methyl isobutyl ketone Benzene	$C_6H_{12}O$	16.0
Aromatic hydrocarbons	Toluene Ethylbenzene P-xylene O-xylene PropylBenzene Isopropylbenzene 1-Ethyl-2-methylbenzene Mesitylene 1-Methylindan 2,3-Dihydro-4-methyl-1H- indene 2,3-dihydro-4,7-dimethyl- 1H-Indene 2,3-Dihydro-2,2- dimethylindene, 1-ethylidene-1H-Indene 1,3-Dimethyl-Naphthalene p-Cymene	$\begin{array}{c} C_{6}H_{6}\\ C_{7}H_{8}\\ C_{8}H_{10}\\ C_{8}H_{10}\\ C_{9}H_{12}\\ C_{9}H_{12}\\ C_{9}H_{12}\\ C_{9}H_{12}\\ C_{9}H_{12}\\ C_{10}H_{12}\\ C_{10}H_{12}\\ C_{10}H_{12}\\ C_{11}H_{14}\\ C_{11}H_{14}\\ C_{11}H_{14}\\ C_{12}H_{12}\\ C_{10}H_{14}\\ \end{array}$	

Supplementary Table S2. Main chemicals in the liquid phase of acetic acid HDO

^a Only chemicals with content >1 mol% were presented in this table.

^b Unreacted acetic acid.

Classification	Chemicals ^a	Formula	O (wt%)
	1-Methoxy-4-(1-		
D -1	methylpropyl)-benzene	$C_{11}H_{16}O$	9.8
Ethers	2-Methoxy-4-methyl-1-(1-	$C_{11}H_{16}O$	9.8
	methylethyl)-benzene		
Alcohols	α,β -Dimethyl-benzeneethnol	$C_{10}H_{14}O$	10.7
Ketones	Acetone	C_3H_6O	27.6
	Phenol	CaHaO	17.0
	Cresol (p- & o-)	$C_{6}H_{6}O$	25.9
	3-Ethylphenol		20.0
	4-Ethylphenol		14.0
	2-Ethylphenol	C_{8110}	14.0
	2,4-Dimethylphenol	$C_{81110}O$	14.0
	3,4-Dimethylphenol	$C_8 \Pi_{10} O$	14.8
Phenols	2-Ethyl-6-methylphenol	$C_8H_{10}O$	14.8
	2-Ethyl-4-methylphenol	$C_9H_{12}O$	11.8
	3-Methyl-4-	$C_9H_{12}O$	11.8
	isopropylphenol	$C_{10}H_{14}O$	10.7
	3-Ethyl-5-methylphenol	$C_9H_{12}O$	11.8
	3,4,5-Trimethylphenol	$C_9H_{12}O$	11.8
	3-5-Diethylphenol	$C_{10}H_{14}O$	10.7
	Thymol	$C_{10}H_{14}O$	10.7
	2-Methoxyphenol	$C_7H_8O_2$	25.8
Guaiacols	4-Ethylguaiacol ^b	C ₉ H ₁₂ O ₂	21.1
Alkenes	2,3-Dihydro-1,1,6-trimethyl-1H-	5 12 2	
	Indene	$C_{12}H_{16}$	
	9,10-Dihydro-9-(1-methylpropyl)-	$C_{18}H_{20}$	
	Anthracene		
Aromatic hydrocarbons	Benzene	C_6H_6	
	Toluene	C_7H_8	
	P-xylene	C_8H_{10}	
	M-xylene	C_8H_{10}	
	1-Methylethyl-benzene	C_9H_{12}	
	1,9-Dimethyl-9H-Fluorene	$C_{15}H_{14}$	
	2-Ethyl-Naphthalene	$C_{12}H_{12}$	

Supplementary Table S3. Main chemicals in the liquid phase of 4-ethylguaiacol HDO

^a Only chemicals with content >1 mol% were presented in this table.

^b Unreacted 4-ethylguaiacol.

Classification	Chemicals ^a	Formula	O (wt%)
Aldehydes	Butanal	C_4H_8O	22.2
	Furfural ^b	$C_5H_4O_2$	33.3
Ketones	Acetone	C_3H_6O	27.6
Furans	Furan	C_4H_4O	23.5
	2-Methyfuran	C_5H_6O	19.5
	3-Methylfuran	C_5H_6O	19.5
	2,5-Dimethylfuran	C_6H_8O	16.7
	2-Vinylfuran	C_6H_6O	17.0
	2,2'-Methylenebis-furan	$C_9H_8O_2$	21.6
	Benzene	C_6H_6	
	Toluene	C_7H_8	
	Ethylbenzene	$C_{8}H_{10}$	
Aromatic	P-xylene	$C_{8}H_{10}$	
hydrocarbons	1-Methylethyl-benzene	$C_{9}H_{12}$	
	1-Ethyl-3-methylbenzene	$C_{9}H_{12}$	
	Mesitylene	C_9H_{12}	
	1-Methylindan	$C_{10}H_{12}$	
	•	2.5 18	

Supplementary Table S4. Main chemicals in the liquid phase of furfural HDO

^a Only chemicals with content >1 mol% were presented in this table.

^b Unreacted furfural.

References

- [1] Y.-K. Lee, S. T. Oyama, J. Catal., 2006, 239, 376-389.
- [2] S. Gutiérrez-Rubio, A. Berenguer, J. Přech, M. Opanasenko, C. Ochoa-Hernández, P. Pizarro, J. Čejka, D. P. Serrano, J. M. Coronado, I. Moreno, *Catal. Today*, 2020, **345**, 48-58.
- [3] K. Tanabe, https://agris.fao.org/agris-search/search.do? recordID=US201300474397.
- [4] Z. Zhang, Y. Tian, L. Zhang, S. Hu, J. Xiang, Y. Wang, L. Xu, Q. Liu, S. Zhang, X. Hu, *Int. J. Hydrog. Energy*, 2019, 44, 9291-9306.