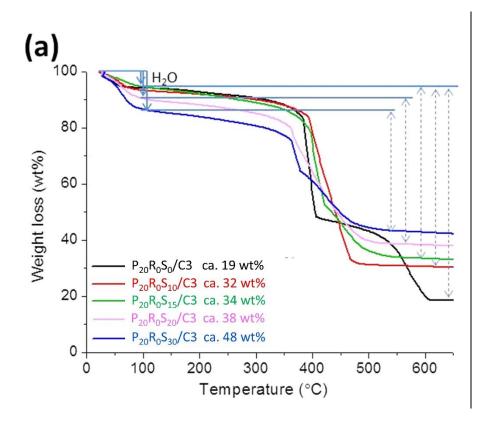
Supplementary Materials

for

Pt-RuO_u-SnO_v/CMK-3 composite electrocatalysts for the methanol oxidation reaction

Lakshmanan Saravanan¹, Chuan-Ming Tseng², Chia-Chia Chang^{1,§}, Yi-Chen Chung^{1,§}, Yi-Chen Chung^{3, 4}, Chiu-Yue Lin^{3,4}, An-Ya Lo^{1,*}

¹Department of Chemical and Materials Engineering, National Chin-Yi University of Technology, Taichung, Taiwan


²Department of Materials Engineering, Ming Chi University of Technology, New Taipei City, Taiwan

³Green Energy Development Center, Feng Chia University, Taichung, Taiwan

⁴Department of Environment Engineering and Science, Feng Chia University, Taichung, Taiwan

[*] Corresponding author: a.y.lo1125@gmail.com

§: Both authors contributed equally to this work.

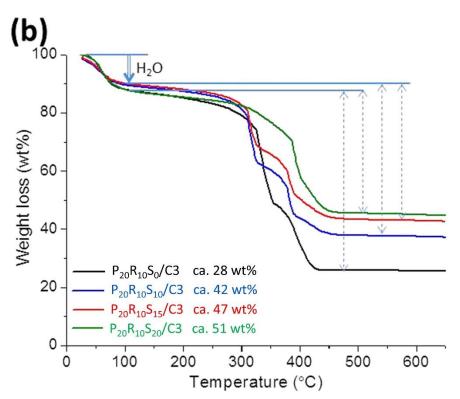


Figure S1 Thermogravimetric weight loss analysis of (a) the $P_{20}R_0S_y/C3$ and (b) $P_{20}R_xS_y/C3$ catalysts recorded by TGA experiments under an air.

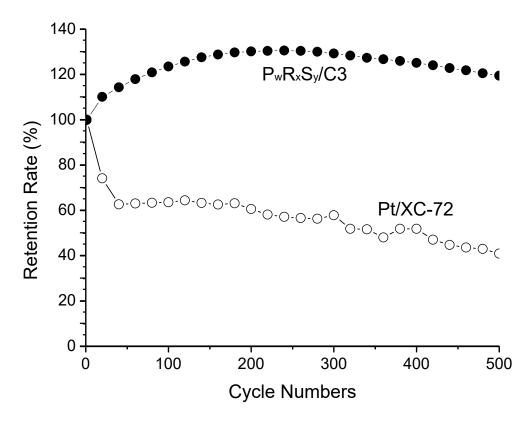


Figure S2 Retention rate of our proposed $P_wR_xS_y/C3$ (-•-) and 30wt% Pt/XC-72 (- \circ -) electrocatalysts, obtained under accelerated measurement environment (Cyclic voltammograms were recorded in 0.5 M H₂SO₄ between 0.2 and 1.0 V at a scan rate of 100 mV/s).