

Supplementary material: Synthesis and crystal structures of palladium complexes based on α -amino-oximes derived from (*R*)-limonene and their application in allylic alkylation of 1,3-dioxo compounds

Yasmina Homrani^{*a*, *b*}, Mohamed Amin El Amrani^{*, *a*}, Pauline Loxq^{*b*}, Frédéric Capet[©], Isabelle Suisse[©] ^{*b*} and Mathieu Sauthier[©] ^{*, *b*}

^a Laboratoire de Chimie Organique Appliquée, Faculté des Sciences, BP 2121, Université Abdelmalek Essaadi, Tétouan, Morocco
^b Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181, UCCS, Unité de Catalyse et Chimie du Solide, F-59000, Lille, France *E-mails*: homrani.y@gmail.com (Y. Homrani), maelamrani@uae.ac.ma
(M. A. El Amrani), pauline.loxq@gmail.com (P. Loxq), frederic.capet@univ-lille.fr
(F. Capet), isabelle.suisse@univ-lille.fr (I. Suisse), mathieu.sauthier@univ-lille.fr
(M. Sauthier)

1. General informations

The reactions were performed under nitrogen atmosphere using standard Schlenk line techniques. All reagents were commercial grade materials and were used without any further purification. Previously the solvents were dried and distilled under N_2 and deoxygenated through N_2 bubbling for 20 min.

Conversions were determined by gas chromatography (GC) on Shimadzu 2010 equipped with a HT-5 column (30 m, i.d. = 0.32 mm). The ee's (enantiomeric excess) were determined by HPLC using a column AD-H (hexane/*i*PrOH: 95/5, 1.0 mL/min, 25 °C).

The ¹H and ¹³C NMR spectra were recorded on a Bruker AC 300 spectrometer and referenced to TMS with eventually the presence of 1,3,5-trimethoxybenzene (TMB) as internal reference standard for quantitative NMR.

2. NMR spectra of products of the new compounds (Table 3)

The physical state of the following products is liquid after purification by silica gel column chromatography using petroleum ether/ethyl acetate (90/10) as eluent.

^{*} Corresponding authors.

2.1. 2-acetyl-2-allylcyclohexanone¹ (**3b**)

Yield: 72%

¹H NMR (300 MHz, CDCl₃): δ 5.68–5.57 (m, 1H, –**CH**=), 5.28–4.99 (m, 2H, **CH**₂=CH), 2.57–2.48 (m, *J* = 5.4 Hz, 1H, –**CH**₂–CO), 2.45–2.36 (m, 2H, –**CH**₂CH=), 2.35–2.28 (m, 1H, **CH**₂–CO), 2.10 (s, 3H, **CH**₃), 1.76–1.33 (m, 6H, C**CH**₂CH₂CH₂CH₂CH₂CO).

Supplementary Figure S1. ¹H NMR spectrum of 3b.

¹³C NMR (75 MHz, CDCl₃) δ 209.47 (**C**=O), 206.01 (**C**=O), 132.79 (**CH**=CH₂), 118.41 (**CH**₂=CHCH₂), 67.53 (**Cq**-CO), 41.70 (CH₂-**CH**₂CO), 38.67 (CH₂=CH**CH**₂), 33.99 (**CH**₂-CH₂CO), 27.07 (**C**H₃-CO), 26.31 (**CH**₂-CqCO), 22.06 (**CH**₂-CH₂Cq).

Supplementary Figure S2. ¹³C NMR spectrum of 3b.

2.2. Ethyl 2-acetylpent-4-enoate¹ (3c)

Yield: 42%

¹H NMR (300 MHz, CDCl₃) δ 5.74 (m, 1H, –**CH**=), 5.17–4.98 (m, 2H, **CH**₂=CH), 4.19 (q, *J* = 7.1 Hz, 2H, CH₃**CH**₂O), 3.52 (t, *J* = 7.4 Hz, 1H, **CH**–CO), 2.59 (m, *J* = 7.7, 6.7, 1.6, 0.8, 2H, –**CH**₂CH=), 2.23 (s, 3H, **CH**₃CO), 1.32–1.20 (t, 3H, **CH**₃CH₂O).

Supplementary Figure S3. ¹H NMR spectrum of **3c**.

¹³C NMR (75 MHz, CDCl₃) δ 202.37 (**C**=O), 169.20 (**C**=O), 134.24 (CH₂=**CH**–CH₂), 117.36 (CH₂=**CH**–CH₂), 61.37 (CH₃–**CH**₂O), 59.20 (**CH**–COOCH₂CH₃), 32.13 (CH₂=**CH**–**CH**₂–CH), 29.02 (**C**H₃–CO), 14.06 (**CH**₃–CH₂O).

Supplementary Figure S4. ¹³C NMR spectrum of 3c.

2.3. Ethyl 2-acetyl-2-methylpent-4-enoate¹ (3d)

Yield: 61%

¹H NMR (300 MHz, CDCl₃) δ 5.72–5.52 (m, 1H, –**CH**=), 5.14–4.99 (m, 2H, **CH**₂=CH), 4.17 (q, *J* = 7.1 Hz, 2H, CH₃**CH**₂O), 2.69–2.40 (m, 2H, –**CH**₂CH=), 2.12 (s, 3H, **CH**₃CO), 1.30 (s, 3H, **CH**₃–CCO), 1.24 (t, *J* = 7.1 Hz, 3H, **CH**₃CH₂O).

Supplementary Figure S5. ¹H NMR spectrum of 3d.

¹³C NMR (75 MHz, CDCl₃) δ 205.05 (**C**=O), 172.48 (**C**=O), 132.64 (CH₂–**CH**=CH₂), 118.96 (**CH₂**=CH), 61.33 (CH₃–**CH₂O**), 59.42 (**Cq**–CO), 39.31 (=CH–**CH₂Cq**), 26.21 (**CH₃–**CO), 18.86 (**CH₃–**Cq), 14.05 (**CH₃–**CH₂O).

Supplementary Figure S6. ¹³C NMR spectrum of 3d.

2.4. Ethyl 2-acetyl-3-isopropylpent-4-enoate (3e)

Yield: 24%

¹H NMR (300 MHz, CDCl₃) δ 5.66 (m, 2H, J = 17.3, 10.1, 7.3 Hz, -CH=), 5.04–4.99 (m, 2H, CH₂=), 4.24 (q, J = 7.1 Hz, 2H, CH₃CH₂O), 2.69–2.55 (m, 2H, -CH₂CH=), 2.37 (m, 1H, CH^{isopro}), 2.13 (s, 3H, CH₃–CO), 1.28 (t, J = 7.1 Hz, 3H, CH₃CH₂O), 0.94 (d, J = 6.8 Hz, 6H, CH^{isopro}).

Supplementary Figure S7. ¹H NMR spectrum of **3e**.

¹³C NMR (75 MHz, CDCl₃) δ 205.00 (C=O), 171.46 (C=O), 133.27 (CH₂-CH=CH₂), 118.22 (CH₂=CH), 67.13 (Cq-CH-(CH₃)₂), 60.81 (CH₃-CH₂O), 36.80 (CH₂=CH-CH₂Cq), 30.97 (CH₃-CO), 28.94 (CH^{isopro}), 18.80 (CH₃-CHC), 18.08 (CH₃-CHC), 14.13 (CH₃-CH₂O).

Supplementary Figure S8. ¹³C NMR spectrum of 3e.

2.5. Ethyl 2-acetyl-2-allylheptanoate¹ (**3**f)

Yield: 20%

¹H NMR (300 MHz, CDCl₃) δ 5.66–5.48 (m, 1H, –CH=), 5.12–5.02 (m, 2H, CH₂=), 4.23–4.16 (q, *J* = 7.1 Hz 2H, CH₃CH₂O), 2.60 (m, *J* = 7.3, 6.0 Hz, 2H, –CH₂CH=), 2.15 (s, 3H, CH₃–CO), 1.92–1.76 (m, 2H, (CH₂)^{hept}CCO), 1.29–1.24 (m, 9H, –(CH₂)₃–CH₃ and CH₃CH₂O), 0.90–0.82 (m, 3H, CH^{hept}₃).

Supplementary Figure S9. ¹H NMR spectrum of 3f.

Supplementary Figure S10. ¹³C NMR spectrum of 3f.

2.6. *Ethyl 1-allyl-2-oxocyclopentanecarboxylate*¹ (**3g**)

Yield: 64%

¹H NMR (300 MHz, CDCl₃): δ 5.75–5.64 (m, 1H, –C**H**=), 5.28–5.07 (m, 2H, **CH**₂=CH), 4.15 (q, *J* = 7.1 Hz, 2H, O**CH**₂), 2.73–1.80 (m, 8H, **CH**₂**CH**₂**CH**₂ and –**CH**₂CH=), 1.24 (t, *J* = 7.1 Hz, **CH**₃CH₂O).

Supplementary Figure S11. ¹H NMR spectrum of 3g.

¹³C NMR (75 MHz, CDCl₃) δ 214.28 (C=O), 170.75 (C=O), 133.04 (CH₂=CH–CH₂), 118.85 (CH₂=CH–CH₂), 61.26 (CH₃–CH₂O), 59.78 (Cq–CO), 37.91 (=CH–CH₂), 37.72 (CH₂–CO), 32.05 (CH₂–CqCO), 19.42 (CH₂–CH₂CO), 13.97 (CH₃–CH₂O).

Supplementary Figure S12. ¹³C NMR spectrum of 3g.

2.7. *Ethyl* 1-allyl-2-oxocylohexanecarboxylate¹ (**3h**)

Yield: 75%

¹H NMR (300 MHz, CDCl₃) δ 5.82–5.62 (m, 1H, –**CH**=), 5.08–4.94 (m, 2H, **CH**₂=CH), 4.16 (q, *J* = 7.1 Hz, 2H, O**CH**₂), 2.58 (m, *J* = 13.9, 7.0, 1.3 Hz, 1H, –**CH**₂CH=), 2.31 (m, *J* = 13.9, 7.8, 1.1 Hz, 1H, –**CH**₂CH=), 2.49–1.35 (m, 8H, **CH**₂**CH**₂**CH**₂**CO**), 1.22 (t, *J* = 7.1 Hz, 3H, **CH**₃).

Supplementary Figure S13. ¹H NMR spectrum of 3h.

¹³C NMR (75 MHz, CDCl₃) δ 207.43 (C=O), 171.43 (C=O), 133.34 (CH₂=CH), 118.19 (CH₂=CH), 61.01 (CH₃-CH₂O), 60.84 (Cq), 41.08 (CH₂-COCq), 39.29 (CH₂-CqCO), 35.74 (CH₂-CH=), 27.50 (CH₂-CH₂CO), 22.45 (CqCH₂-CH₂), 14.15 (CH₃-CH₂O).

Supplementary Figure S14. ¹³C NMR spectrum of 3h.

Yield: 38%

¹H NMR (300 MHz, CDCl₃) δ 7.00–6.89 (m, 1H, **CH**=CHCO), 6.10 (d, 1H, CH=**CH**CO), 5.65–5.48 (m, 1H, -C**H**=), 5.18 (*J* = 2.7 Hz, m, 1H, **CH**₂=CH), 5.09 (*J* = 2.4 Hz, m, 1H, **CH**₂=), 4.13 (q, *J* = 7.1 Hz, 2H, CH₃**CH**₂O), 3.10 (dd, *J* = 14.2, 5.2 Hz, 1H, CH₃**CH**C), 2.54 (*J* = 14.2, 9.4 Hz, m, 1H, -**CH**₂-CH=), 2.34 (m, *J* = 7.5, 4.0 Hz, 3H, -**CH**₂CH=CH₂ and **CH**-CH₃), 1.26–1.16 (t, *J* = 7.1 Hz, 3H, **CH**₃CH₂O), 1.08 (d, *J* = 6.5 Hz, 3H, **CH**₃CHCCO).

Supplementary Figure S15. ¹H NMR spectrum of **3i**.

¹³C NMR (75 MHz, CDCl₃) δ 195.97 (C=O), 170.15 (C=O), 149.89 (CH=CHCO), 133.35 (CH₂=CHCH₂), 129.49 (CH=CHCO), 118.78 (CH₂=CHCH₂), 61.02 (CH₃-CH₂O), 60.54 (CH₃-CH₂-O), 35.03 (CH₂-CH=CH), 33.61 (CH₂-CH=CH), 32.11 (CH₃-CHCCO), 15.76 (CH₃-CHCCO), 14.10 (CH₃-CH₂O).

Supplementary Figure S16. ¹³C NMR spectrum of 3i.

2.9. Ethyl 2-benzoylpent-4-enoate¹ (3j)

Yield: 31%

¹H NMR (300 MHz, CDCl₃) δ 7.88–7.20 (m, 5H, **C**₆**H**₅), 5.63 (m, *J* = 17.0, 10.1, 6.8 Hz, 1H, m, –C**H**=), 5.02– 4.75 (m, 2H, **CH**₂=), 4.23 (t, *J* = 7.2 Hz, 1H, –**CH**CO), 3.93 (q, *J* = 7.1, 2H, CH₃**CH**₂O), 2.56 (m, *J* = 9.5, 6.9, 1.4 Hz, 2H, –**CH**₂–CH=CH), 1.07–0.90 (t, *J* = 7.1, 3H, **CH**₃CH₂O).

Supplementary Figure S17. ¹H NMR spectrum of 3j.

¹³C NMR (75 MHz, CDCl₃) δ 194.55 (C=O), 169.42 (C=O), 136.21 (Cq–CO), 134.51 (CH₂=CHCH₂), 133.54 (CH^{para}), 128.74 (CH^{aromatic}), 117.41 (CH₂=CH), 61.46 (CH₃–CH₂O), 53.93 (CH–CO), 33.00 (CH₂–CH=), 14.00 (CH₃–CH₂O).

Supplementary Figure S18. ¹³C NMR spectrum of 3j.

2.10. Ethyl 2-benzoyl-2-methylpent-4-enoate (3k)

Yield: 62%

¹H NMR (300 MHz, CDCl₃) δ 7.90–7.38 (m, 5H, C₆H₅), 5.83–5.59 (m, 1H, –CH=), 5.13–4.98 (m, 2H, CH₂=), 4.11 (q, *J* = 7.1 Hz, 2H, CH₃CH₂O), 2.76 (m, *J* = 7.1 Hz, 2H, CqCH₂CH=), 1.52 (s, 3H, CH₃CCO), 1.05 (t, *J* = 7.1 Hz, 3H, CH₃CH₂O).

Supplementary Figure S19. ¹H NMR spectrum of 3k.

¹³C NMR (75 MHz, CDCl₃) δ 197.10 (C=O), 173.67 (C=O), 135.60 (Cq^{aromatic}), 132.66 (CH^{aromatic}), 132.51 (CH^{aromatic}), 128.50 (CH^{aromatic}), 128.45 (CH^{aromatic}), 119.07 (CH₂=), 61.31 (CH₃-CH₂O), 56.84 (Cq-COOEt), 41.03 (CH₂-CH=CH₂), 20.91 (CH₃-CCO), 13.79 (CH₃-CH₂O).

Supplementary Figure S20. ¹³C NMR spectrum of (**3k**).

3. NMR spectra of PdL_nCl_2 complexes

3.1. ${}^{1}HNMR of Pd(L1)Cl_{2}$ (C1)

¹H NMR (300 MHz, CDCl₃) δ 10.01 (s, 1H), 8.08 (s, 1H), 7.96 (d, J = 8.0 Hz, 1H), 7.38 (t, J = 7.6 Hz, 2H), 7.23 (d, J = 7.2 Hz, 1H), 7.17–7.02 (m, 3H), 4.76 (d, J = 11.2 Hz, 3H), 3.38 (d, J = 16.2 Hz, 1H), 2.57 (dt, J = 25.8, 11.4 Hz, 3H), 2.18–1.80 (m, 5H), 1.73 (s, 4H), 1.37 (s, 3H).

Supplementary Figure S21. ¹H NMR of Pd(L1)Cl₂ in CDCl₃.

3.2. ¹³*C*NMR of Pd(L1)Cl₂ (**C1**)

¹³C NMR (75 MHz, CDCl₃) δ 171.15 (**Cq**=NOH), 146.28 (**Cq**=CH₂), 138.56 (**Cq**-C₆H₅), 131.08, 127.99, 127.62, 125.45 (**C**_{aromatic}), 110.45 (**CH**₂=), 73.17 (**Cq**-NH), 41.23 (CH₂-**C***-NH), 35.71 (**CH**₂-CH-Cq), 30.68 (CH₂-C=NOH), 27.40 (**CH**₂-CH-Cq), 24.14 (**CH**₃-(C=CH₂) 20.87 (**CH**₃-(C-NH).

Supplementary Figure S22. ¹³C NMR of Pd(L1)Cl₂ in CDCl₃.

3.3. DEPT 135 NMR of Pd(L1)Cl₂ (C1)

Supplementary Figure S23. DEPT 135 NMR of Pd(L1)Cl₂ in CDCl₃.

3.4. ¹HNMR of $Pd(L2)Cl_2$ (**C2** and **C'2**)

¹H NMR (300 MHz, CDCl₃) δ 9.90 (s, 1H), 9.73 (s, 1H), 7.66–7.31 (m, 10H), 5.57 (d, J = 9.7 Hz, 1H), 5.04 (dd, J = 14.9, 2.4 Hz, 2H), 4.93–4.52 (m, 4H), 4.05 (dd, J = 14.4, 8.3 Hz, 1H), 3.85 (dd, J = 15.0, 10.0 Hz, 1H), 3.24 (d, J = 15.5 Hz, 2H), 2.31 (s, 1H), 2.28–2.13 (m, 1H), 1.96 (s, 1H), 1.80 (s, 6H), 1.65 (s, 1H), 1.44 (s, 1H), 1.53 (s, 3H), 1.42 (m, 1H).

Supplementary Figure S24. ¹H NMR of Pd(L2)Cl₂ in CDCl₃.

3.5. ${}^{13}CNMR of Pd(L2)Cl_2$ (C2)

¹³C NMR (75 MHz, CDCl₃) δ 170.45 (**Cq**=N-OH), 143.61 (**Cq**=CH₂), 137.22 (**Cq**-C₆H₅), 129.51 (**C**_{aromatic}), 129.20, 129.02, 128.85, 113.16 (**CH**₂=), 71.41 (**Cq**-NH), 52.68 (**CH**₂-(C₆H₅)), 37.84 (**CH**^{*}), 34.48 (**CH**₂-(C^{*}-NH)), 29.20 (**CH**₂-C-NOH), 24.96 (**CH**₂-CH-Cq), 23.03 (**CH**₃-(C=CH₂)), 21.56 (**CH**₃-(C-NH)).

Supplementary Figure S25. ¹³C NMR of Pd(L2)Cl₂ in CDCl₃.

3.6. DEPT 135 NMR of Pd(L2)Cl₂ (C2)

Supplementary Figure S26. DEPT 135 NMR of Pd(L2)Cl₂ in CDCl₃.

3.7. ¹*H*NMR Pd(L3)Cl₂

¹H NMR (300 MHz, DMSO- d_6) δ 8.65 (dd, J = 8.9, 4.9 Hz, 1H), 8.47–8.40 (m, 1H), 8.05 (td, J = 7.8, 1.5 Hz, 1H), 7.61–7.46 (m, 2H), 4.90 (s, 1H), 4.80 (dd, J = 16.2, 9.1 Hz, 2H), 4.51 (s, 1H), 3.34–3.19 (m, 1H), 3.10–2.95 (m, 1H), 2.51 (dt, J = 3.4, 1.7 Hz, 3H), 1.85 (s, 3H), 1.82–1.70 (m, 2H), 1.64 (s, 3H).

Supplementary Figure S27. ¹H NMR of Pd(**L3**)Cl₂ in DMSO- d_6 .

3.8. ¹³*C NMR* of *Pd*(*L*3)*Cl*₂

¹³C NMR (75 MHz, DMSO) δ 181.06 (**Cq**=N–OH), 166.22 (**Cq**–(py)), 149.85 (**CH**), 146.03 (**Cq**–CH₃), 141.55 **CH**(py), 125.06 **CH** (py), 123.16 **CH** (py), 111.86 (**CH**₂=), 68.42 (**Cq**–NH), 51.41 (**CH**₂–NH), 46.43 (**CH**₂), 31.78 (**CH**₂–C=NOH), 29.25 (**CH**₂), 23.58 (**CH**₃–CNH), 21.97 (**CH**₃–C=CH₂).

Supplementary Figure S28. ¹³C NMR of $Pd(L3)Cl_2$ in DMSO- d_6 .

3.9. DEPT 135 of Pd(L3)Cl₂

Supplementary Figure S29. DEPT 135 NMR of PdL_3 in DMSO- d_6 .

4. Diffraction studies

4.1.	Crystal da	ita and stru	cture refinen	nent for con	nplexes C i	1 and C2
			· · · · · · · · · · · · · · · · · · ·	· · · · · J · · · · · ·		

Parameter	C1	C2
Crystal data		
Formula	$4(C_{16}H_{22}Cl_2N_2OPd)\cdot C_4H_{10}O$	PdCl ₂ C ₁₇ H ₂₄ N ₂ O
Molecular weight	1816.74	449.68
Crystal colour	Orange	Orange
Crystal size (mm)	$0.44 \times 0.39 \times 0.26$	$0.23 \times 0.19 \times 0.11$
Temperature (K)	100	100
Crystal system	Trigonal	Orthorhombic
Space group	P 31	$P 2_1 2_1 2_1$
a (Å)	13.1530(4)	8.6502 (3)
b (Å)	13.1530(4)	11.3195 (4)
c (Å)	38.2924(12)	18.1538 (6)
α (°)	90	90
eta (°)	90	90
γ (°)	120	90
V (Å ³)	5737.1(4)	1777.55(11)
$D_{\text{calc}} \text{ (mg/m}^3); Z$	1.578; 3	1.680; 4
F(0 0 0)	2766	912
μ (mm ⁻¹)	1.26	1.35

(continued on next page)

Parameter	C1	C2
Data collection		
Instrument	Bruker APEX-II CCD	Bruker APEX-II CCD
Θ range for data collection (deg)	1.86 to 36.29	2.12 to 33.12
Index ranges	$-21 \le h \le 21$	$-13 \le h \le 11$
	$-21 \le k \le 21$	$-17 \le k \le 17$
	$-63 \le l \le 63$	$-22 \le l \le 27$
Number of measured reflections	198742	45344
Number of independent reflections	36836	6736
Number of reflections with $I > 2\sigma(I)$	35926	6627
R _{int}	0.043	0.038
Refinement		
Refinement method	Full matrix least square on F ²	Full matrix least square on F ²
$R[F^2 > 2\sigma(F^2)]$	0.030	0.018
$wR(F^2)$	0.065	0.043
S	1.09	1.04
Data/restraints/parameters	36836/7/861	6736/0/218
$\Delta ho_{ m max} / \Delta ho_{ m min} [e { m \AA}^{-3}]$	1.25/-0.60	0.79/-0.60
Absolute structure Flack parameter	-0.007(4)	-0.011(8)

4.2. Selected bond lengths d and bond angles ω in complex C1

Bond	d (Å)
Pd(1)–Cl(1)	2.288(1)
Pd(1)–Cl(2)	2.307(8)
Pd(1)–N(1)	2.071(3)
Pd(1)-N(2)	1.981(4)
N(1)–C(1)	1.458(5)
N(1)–C(7)	1.543(6)
N(2)–O(1)	1.382(6)
N(2)-C(12)	1.289(4)

Angle	ω (deg)
Cl(1)–Pd(1)–Cl(2)	91.80(4)
N(2)-Pd(1)-Cl(2)	91.43(1)
N(1)-Pd(1)-Cl(1)	96.50(8)
N(1)-Pd(1)-N(2)	80.1(1)
O(1)-N(2)-Pd(1)	123.4(3)
O(1)-N(2)-C(12)	116.2(3)
Pd(1)-N(1)-C(7)	109.3(2)
Pd(1)-N(1)-C(1)	121.4(2)
N(2)-C(12)-C(7)	115.5(3)
N(2)–C(12)–C(11)	123.7(3)
C(1)–N(1)–C(7)	112.2(3)
N(1)–C(1)–C(6)	120.1(3)

4.3. Selected bond lengths d and angles ω in Complex C2

Angle	ω (deg)
Cl(2)–Pd(1)–Cl(1)	94.56(2)
N(1)-Pd(1)-Cl(1)	92.20(4)
N(1)-Pd(1)-Cl(2)	172.79(4)
N(1)-Pd(1)-N(2)	80.60(6)
N(2)-Pd(1)-Cl(1)	172.79(4)
N(2)-Pd(1)-Cl(2)	92.64(4)
O(1)–N(1)–Pd(1)	124.1(1)
C(1)-N(1)-Pd(1)	119.3(1)
C(1)-N(1)-O(1)	116.6(1)

Bond	<i>d</i> (Å)
Pd(1)–Cl(1)	2.3187(5)
Pd(1)–Cl(2)	2.2886(5)
Pd(1)–N(1)	1.990(1)
Pd(1)-N(2)	2.046(1)
N(1)–O(1)	1.383(2)
N(1)–C(1)	1.285(2)
N(2)–C(6)	1.530(2)
N(2)–C(11)	1.512(2)