Supplementary material: Molecular mechanisms induced by phase modifiers used in hydrometallurgy: consequences on transfer efficiency and process safety

Asmae El Maangar, Sylvain Prévost, Sandrine Dourdain, Thomas Zemb

1. Surface tension measurements

The surface tension measurements are then transformed to surface area per polar head. The surface concentration excess Γ, is then determined from the Gibbs equation:

$$\Gamma = -\frac{1}{RT} \cdot \frac{d(\gamma)}{d(\ln[\text{extractant}])} \quad (S1)$$

where, γ is the surface tension (N·m$^{-1}$), [extractant] is the concentration of the extractant in the organic phase (mol·L$^{-1}$), R is the perfect gas constant ($R = 8.314472$ J·mol$^{-1}$·K$^{-1}$), and T is the temperature (K).

This excess surface concentration Γ can be related to the surface area occupied by each extractant by the relation:

$$\sigma = \frac{1}{N_A \cdot \Gamma} \quad (S2)$$

with N_A is the Avogadro constant ($N_A = 6.02214 \times 10^{23}$ mol$^{-1}$).
Supplementary Figure S1. The cac values (solid black line) as well as the surface area per extractant molecule (dashed grey line) for two different extraction systems as a function of the amount of PnP added. The extractants studied are: (a) HDEHP and (b) DMDOHEMA.

Supplementary Figure S2. SANS spectra of organic phases containing 0.6 M HDEHP in deuterated dodecane.

Supplementary Figure S3. SANS spectra of organic phases containing 0.6 M DMDOHEMA in deuterated dodecane.

2. Neutron scattering experiments

We systematically compare sample with co-extracted water in the polar core of the micelle present as H₂O or as D₂O: this way of plotting allows detection of possible microemulsions if H₂O and D₂O w/o microemulsion have profoundly different signature patterns by scattering.
Supplementary Figure S4. SANS spectra of the n-octanol/dodecane binary not contacted or previously contacted with H\textsubscript{2}O or D\textsubscript{2}O for n-octanol volume fractions of: (a) 3\%, (b) 9\% and (c) 27\%.