

ACADÉMIE DES SCIENCES INSTITUT DE FRANCE

Derivatives of trigonal lanthanide complexes by reaction with long aliphatic chain amines

Yiwei Zhou^{#, a}, Christian Dirk Buch^{$(\Phi, #, a)$}, Steen Hansgaard Hansen^a and Stergios Piligkos^{*, a}

^a Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark *E-mail:* piligkos@chem.ku.dk (S. Piligkos)

Supplementary Figure S1. ¹H NMR of **YL**¹⁸ in CDCl₃, the peak at 1.5 ppm stems from water in the CDCl₃ and the signal at 7.26 stems from the deuterated solvent.

[#]Contributed equally.

^{*} Corresponding author.

Supplementary Figure S2. Positive ion mode MALDI-MS of **TbL**¹⁸. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

Supplementary Figure S3. Positive ion mode MALDI-MS of **DyL**¹⁸. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

Supplementary Figure S4. Positive ion mode MALDI-MS of **HoL¹⁸**. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

Supplementary Figure S5. Positive ion mode MALDI-MS of **ErL**¹⁸. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

Supplementary Figure S6. Positive ion mode MALDI-MS of **TmL**¹⁸. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

Supplementary Figure S7. Positive ion mode MALDI-MS of **YL**¹⁸. The simulated isotope distribution pattern and the detected signal from the molecular ion is shown in the insert.

1. Infrared spectroscopy

Supplementary Figure S8. IR spectrum of TbL¹⁸.

Supplementary Figure S9. IR spectrum of DyL¹⁸.

Supplementary Figure S10. IR spectrum of HoL¹⁸.

Supplementary Figure S11. IR spectrum of ErL¹⁸.

Supplementary Figure S12. IR spectrum of TmL¹⁸.

Supplementary Figure S13. IR spectrum of YL¹⁸.

Supplementary Figure S14. Top: IR spectra of a polycrystalline powder of $\mathbf{ErL^{18}}$ (cyan) and of a polycrystalline powder of \mathbf{ErL} (red). Bottom: Zoom in on the range 2000–1300 cm⁻¹ of the IR spectra of a polycrystalline powder of $\mathbf{ErL^{18}}$ (cyan) and (cyan

Supplementary Figure S15. IR spectrum of Gd@YL¹⁸ at 5% dilution.

Supplementary Figure S16. IR spectrum of Dy@YL¹⁸ at 5% dilution.

Supplementary Figure S17. IR spectrum of **Er@LuL¹⁸** at 5% dilution.

Supplementary Figure S18. IR spectrum of Gd@YL at 5% dilution.

Supplementary Figure S19. IR spectrum of Dy@YL at 5% dilution.

Supplementary Figure S20. IR spectrum of Er@LuL at 5% dilution.

2. Powder X-ray diffraction

Supplementary Figure S21. PXRD data of LnL^{18} (Ln = Tb–Tm, Y) (top), and PXRD data with the intensity multiplied by 3 (bottom). The simulated PXRD was calculated from a crystal structure measured at room temperature.

Supplementary Figure S22. PXRD of **Gd@YL¹⁸** at 5% dilution, **Dy@YL¹⁸** at 5% dilution, and **Er@LuL¹⁸** at 5% dilution complexes. The simulated PXRD pattern was calculated from a crystal structure measured at room temperature.

Supplementary Figure S23. PXRD data of diluted **Gd@YL** at 5% dilution, **Dy@YL** at 5% dilution, and **Er@LuL** at 5% dilution. The simulated PXRD pattern was calculated from a crystal structure measured at room temperature.

3. Crystallographic tables

Complex	TbL ¹⁸	DyL ¹⁸	HoL ¹⁸
Empirical formula	$C_{87}H_{144}N_7O_3Tb$	C87H144DyN7O3	C ₈₇ H ₁₄₄ HoN ₇ O ₃
Formula weight	1495.00	1498.58	1501.01
Temperature/K	100	100	100
Crystal system	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	PĪ	$P\overline{1}$
<i>a</i> (Å)	12.4525(18)	12.446(3)	12.4376(12)
<i>b</i> (Å)	12.4793(18)	12.503(3)	12.4905(12)
<i>c</i> (Å)	30.021(5)	29.997(8)	30.010(3)
α (°)	91.219(5)	91.364(9)	91.302(3)
β (°)	99.088(5)	98.924(8)	98.877(3)
γ (°)	115.649(5)	115.685(8)	115.817(3)
Volume (Å ³)	4131.6(11)	4134.0(18)	4125.2(7)
Z		2	
$\rho_{calc} g (cm^3)$	1.202	1.204	1.208
μ (mm ⁻¹)	0.906	0.954	1.010
F (000)	1608.0	1610.0	1612.0
Crystal size (mm ³)	$0.43 \times 0.183 \times 0.05$	$0.43 \times 0.183 \times 0.05$	$0.331 \times 0.137 \times 0.055$
λ (MoK α)		0.71073	
2Θ range for data collection (°)	4.004 to 54.206	4.004 to 50.7	4.004 to 54.968
Index ranges	$-15 \le h \le 15$,	$-14 \le h \le 14,$	$-16 \le h \le 16,$
	$-15 \le k \le 15,$	$-15 \le k \le 15,$	$-16 \le k \le 16,$
	$-38 \le l \le 38$	$-36 \le l \le 36$	$-38 \le l \le 38$
Reflections collected	158,077	136,453	147,625
Independent reflections	18168 [$R_{int} = 0.0728$, $R_{sigma} = 0.0392$]	15,066 [$R_{\text{int}} = 0.0794$, $R_{\text{sigma}} = 0.0394$]	18,886 [$R_{int} = 0.0720$, $R_{sigma} = 0.0427$]
Data/restraints/ parameters	18,168/0/889	15,066/0/889	18,886/0/889
Goodness-of-fit on F^2	1.053	1.043	1.066
Final <i>R</i> indexes	$R_1 = 0.0287,$	$R_1 = 0.0278,$	$R_1 = 0.0339$,
$[I \ge 2\sigma(I)]$	$\omega R_2 = 0.0600$	$\omega R_2 = 0.0536$	$wR_2 = 0.072$
Final R indexes [all	$R_1 = 0.0401$,	$R_1 = 0.0391$,	$R_1 = 0.0461,$
data]	$\omega R_2 = 0.0633$	$\omega R_2 = 0.0568$	$wR_2 = 0.0777$
Largest diff. peak/hole/e (Å ⁻³)	0.61/-0.78	0.55/-0.57	1.74/-1.29

Supplementary Table S1. Crystallographic data for TbL¹⁸, DyL¹⁸ and HoL¹⁸

4. Crystal structures

Supplementary Figure S24. Solid state structure (top) and unit cell (bottom) of **TbL**¹⁸. The two distances r_1 and r_2 indicate the longest intramolecular distance in **TbL**¹⁸ and the longest distance between two Tb(III) centres in the unit cell, respectively. Colour code: Tb, green; N, blue; O, red; C, grey; H, white. All hydrogen atoms except for the ones defining the longest intramolecular distance have been omitted for clarity. Thermal ellipsoids are set to 50% probability.

Supplementary Figure S25. Illustration of the three closest neighbouring complexes in TbL¹⁸.

	Distance (Å)						
	r_1	r_2	r_3	r_4			
			7.899	12.479			
TbL ¹⁸	32.767	29.958	7.168	12.453			
			6.999	12.352			
TbL	13.228	7.780	7.780	13.448			
			7.927	12.503			
DyL ¹⁸	32.799	29.996	7.170	12.503			
			6.996	12.446			
DyL	13.155	7.766	7.766	13.421			
			7.897	13.244			
HoL ¹⁸	32.829	30.017	7.159	12.491			
			7.002	12.438			
HoL	13.112	7.761	7.761	13.411			

Supplementary Table S2. Comparisons of selected distances in **TbL**¹⁸, **DyL**¹⁸, **HoL**¹⁸, **TbL**, **DyL** and **HoL**. The distances in **TbL**, **DyL** and **HoL** are obtained from literature [1]

Illustrations of the distances r_1 , r_2 , r_3 , and r_4 are shown in Figures S24–S26 and S28–S31.

Supplementary Table S3. Comparison of selected bond lengths in TbL¹⁸, DyL¹⁸ and HoL¹⁸

Bond length (Å)	Ln-O1A	Ln-O1B	Ln-O1C	Ln-N2A	Ln-N2B	Ln-N2C	Ln-N1
TbL ¹⁸	2.1949(14)	2.2034(14)	2.2003(14)	2.4787(17)	2.4681(17)	2.4763(18)	2.6346(18)
DyL ¹⁸	2.1865(16)	2.1905(14)	2.1994(15)	2.4613(18)	2.462(2)	2.4622(19)	2.6314(19)
HoL ¹⁸	2.1790(16)	2.1792(15)	2.1923(15)	2.4530(19)	2.4532(2)	2.454(2)	2.631(2)

Supplementary Table S4. Comparison of selected bond angles in TbL¹⁸, DyL¹⁸ and HoL¹⁸

Bond	∠N2A-	∠N2B-	∠N2A-	∠N1-	∠N1-	∠N1-	∠N1-	∠N1-	∠N1-	∠01A-	∠01B-	∠01A-
angle	N2B-	N2A-	N2C-	Ln-	Ln-	Ln-	Ln-	Ln-	Ln-	O1B-	O1A-	01C-
(°)	N2C	N2C	N2B	N2A	N2B	N2C	O1A	O1B	01C	01C	01C	O1B
TbL ¹⁸	61.30(4)	61.44(4)	57.26(4)	68.69(6)	69.05(6)	69.03(6)	126.65(6)	124.32(5)	127.09(5)	60.27(4)	60.51(4)	59.22(4)
DyL ¹⁸	61.21(5)	61.44(5)	57.35(5)	68.90(6)	69.03(6)	68.92(6)	127.61(6)	124.46(5)	127.09(6)	59.74(5)	61.07(5)	59.19(5)
HoL ¹⁸	61.11(5)	61.41(5)	57.49(5)	69.11(7)	69.09(7)	68.93(6)	127.67(7)	124.65(6)	127.13(6)	59.92(5)	61.01(5)	59.08(5)

Supplementary Figure S26. The distance of the three closest neighbouring complexes with chains pointing in the same direction in **TbL**¹⁸.

Supplementary Figure S28. Solid state structure of **TbL** showing the longest intra molecular distance, r_1 . Hydrogen atoms have been omitted for clarity except for the hydrogens which are part of r_1 . Colour code: Tb, cyan; N, blue; O, red; C, grey; H, white. Thermal ellipsoids are set to 50% probability.

Supplementary Figure S27. The distorted monocapped octahedral coordination environment around Tb(III) in **TbL**¹⁸. Colour code: Tb, cyan; N, blue; O, red. Thermal ellipsoids are set to 50% probability.

Supplementary Figure S29. Unit cell of **TbL** with r_2 , the distance between two Tb(III) centres. Hydrogen atoms have been omitted for clarity. Colour code: Tb, cyan; N, blue; O, red; C, grey; H, white. Thermal ellipsoids are set to 50% probability.

Supplementary Figure S30. Illustration of the three closest neighbouring complexes in TbL.

Supplementary Figure S31. The distance of the three closest neighbouring complexes with chains pointing in the same direction in **TbL**.

5. Variable-temperature-variable-field mag-

Supplementary Figure S32. Comparison of VTVB measurements (top) and reduced magnetisation (bottom) of TbL18 (circles) and TbL (crosses). The TbL values are obtained from literature [1].

1.0

 $\mu_B B / k_B T$

0

0.0

. 0.5

ο 9 K

0 10 K ц. 10 K

. 1.5

9 K

. 2.0

Supplementary Figure S33. Comparison of VTVB measurements (top) and reduced magnetisation (bottom) of **DyL**¹⁸ (circles) and **DyL** (crosses). The DyL values are obtained from literature [1].

Supplementary Figure S34. Comparison of VTVB measurements (top) and reduced magnetisation (bottom) of HoL¹⁸ (circles) and HoL (crosses). The HoL values are obtained from literature.

Supplementary Figure S35. Comparison of VTVB measurements (top) and reduced magnetisation (bottom) of **ErL**¹⁸ (circles) and **ErL** (crosses). The **ErL** values are obtained from literature [1].

Supplementary Figure S36. Comparison of VTVB measurements (top) and reduced magnetisation (bottom) of **TmL**¹⁸ (circles) and **TmL** (crosses). The **TmL** values are obtained from literature [1].

6. Ac susceptibility

Supplementary Figure S37. Field dependence of the in-phase signal of the ac magnetic susceptibility of **TbL**¹⁸. Solid lines are guidelines for the eye.

Supplementary Figure S38. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **TbL**¹⁸. Solid lines are guide-lines for the eye.

Supplementary Figure S39. Field dependence of the in-phase signal of the ac magnetic susceptibility of **DyL**¹⁸. Solid lines are guide-lines for the eye.

Supplementary Figure S41. Field dependence of the in-phase signal of the ac magnetic susceptibility of HoL¹⁸. Solid lines are guidelines for the eye.

Supplementary Figure S40. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **DyL**¹⁸. Solid lines are guidelines for the eye.

Supplementary Figure S42. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **HoL**¹⁸. Solid lines are guide-lines for the eye.

Supplementary Figure S43. Field dependence of the in-phase signal of the ac magnetic susceptibility of **ErL**¹⁸. Solid lines are guidelines for the eye.

Supplementary Figure S45. Field dependence of the in-phase signal of the ac magnetic susceptibility of **TmL¹⁸**. Solid lines are guide-lines for the eye.

Supplementary Figure S44. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **ErL¹⁸**. Solid lines are guidelines for the eye.

Supplementary Figure S46. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **TmL**¹⁸.

Supplementary Figure S47. Field dependence of the in-phase signal of the ac magnetic susceptibility of **Gd@YL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S49. Temperature dependence of the in-phase signal of the ac susceptibility of **Gd@YL¹⁸** at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S5.

Supplementary Figure S48. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **Gd@YL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S50. Temperature dependence of the out-of-phase signal of the ac susceptibility of **Gd@YL**¹⁸ at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S5.

Supplementary Figure S51. Temperature dependence of the in-phase signal of the ac susceptibility of **Gd@YL** at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S6.

Supplementary Figure S53. Field dependence of the in-phase signal of the ac magnetic susceptibility of **Dy@YL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S52. Temperature dependence of the out-of-phase signal of the ac susceptibility of **Gd@YL** at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S6.

Supplementary Figure S54. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **Dy@YL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S55. Temperature dependence of the in-phase signal of the ac susceptibility of **Dy@YL¹⁸** at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S7.

Supplementary Figure S57. Field dependence of the in-phase signal of the ac magnetic susceptibility of **Dy@YL** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S56. Temperature dependence of the out-of-phase signal of the ac susceptibility of **Dy@YL**¹⁸ at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S7.

Supplementary Figure S58. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **Dy@YL** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S59. Field dependence of the in-phase signal of the ac magnetic susceptibility of **Er@LuL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S61. Temperature dependence of the in-phase signal of the ac susceptibility of **Er@LuL¹⁸** at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S8.

Supplementary Figure S60. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **Er@LuL¹⁸** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S62. Temperature dependence of the out-of-phase signal of the ac susceptibility of **Er@LuL**¹⁸ at 5% dilution. Solid lines are best fits to the generalized Debye model as described in the main text. Parameters can be found in Table S8.

Supplementary Figure S63. Field dependence of the in-phase signal of the ac magnetic susceptibility of **Er@LuL** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Figure S64. Field dependence of the out-of-phase signal of the ac magnetic susceptibility of **Er@LuL** at 5% dilution. Solid lines are guidelines for the eye.

Supplementary Table S5. Best fit parameters (α and τ) for the generalized Debye model fitted to the temperature dependence of the ac magnetic susceptibility of **Gd@YL**¹⁸ at 5% dilution under an applied magnetic field of 3000 Oe

T (K)	τ (s)	τ_{error} (s)	α	α_{error}
1.8	0.005227	0.000128	0.134341	0.013077
2.1	0.004334	0.000085	0.114181	0.010804
2.4	0.003607	0.000118	0.121189	0.017908
2.7	0.003068	0.000079	0.122059	0.014035
3.0	0.002573	0.000067	0.113528	0.014387
3.3	0.002273	0.000046	0.101008	0.011406
3.6	0.001914	0.000033	0.117228	0.009571
3.9	0.001630	0.000038	0.121731	0.012700
4.2	0.001461	0.000042	0.129688	0.015290
4.5	0.001264	0.000035	0.130148	0.014858
4.8	0.001094	0.000029	0.134491	0.013977
5.1	0.001032	0.000023	0.100714	0.012300
5.4	0.000879	0.000021	0.122918	0.012291
5.7	0.000770	0.000020	0.108410	0.013860
6.0	0.000712	0.000029	0.129031	0.021155
6.3	0.000654	0.000021	0.105658	0.016685
6.6	0.000599	0.000024	0.093375	0.021584
6.9	0.000556	0.000015	0.106179	0.014156
7.2	0.000487	0.000018	0.110416	0.019136
7.5	0.000446	0.000017	0.106190	0.019080
7.8	0.000335	0.000018	0.167977	0.021590
8.1	0.000413	0.000018	0.090410	0.022214
8.4	0.000351	0.000013	0.101395	0.017639
8.7	0.000255	0.000014	0.136898	0.020942
9.0	0.000325	0.000018	0.085032	0.028427
9.3	0.000235	0.000012	0.079646	0.023157
9.6	0.000236	0.000018	0.127383	0.030472
9.9	0.000181	0.000023	0.178832	0.039608
10.2	0.000174	0.000017	0.145751	0.031604
10.5	0.000207	0.000021	0.110499	0.038875
10.8	0.000249	0.000017	0.027080	0.035134
11.1	0.000209	0.000015	0.014138	0.035803
11.4	0.000163	0.000023	0.108758	0.050399
11.7	0.000190	0.000023	0.027219	0.056890
12.0	0.000143	0.000022	0.003018	0.064841
12.3	0.000122	0.000019	0.068331	0.050857
12.6	0.000166	0.000012	0.000000	0.032538
12.9	0.000122	0.000021	0.023942	0.063841
13.2	0.000131	0.000017	0.048305	0.045644
13.5	0.000108	0.000021	0.044593	0.063216

Supplementary Table S6. Best fit parameters $(\alpha \text{ and } \tau)$ for the generalized Debye model fitted to the temperature dependence of the ac magnetic susceptibility of **Gd@YL** at 5% dilution under an applied magnetic field of 3000 Oe

T (K)	τ (s)	τ_{error} (s)	α	α_{error}
1.8	0.004815	0.000045	0.124620	0.005097
2.1	0.003831	0.000034	0.126408	0.004810
2.4	0.003186	0.000045	0.138025	0.007509
2.7	0.002597	0.000046	0.146277	0.009220
3.0	0.002278	0.000037	0.138048	0.008652
3.3	0.001959	0.000038	0.151994	0.009921
3.6	0.001766	0.000023	0.128422	0.006865
3.9	0.001562	0.000023	0.128968	0.007803
4.2	0.001357	0.000031	0.135440	0.011863
4.5	0.001238	0.000022	0.126857	0.009546
4.8	0.001146	0.000018	0.124448	0.008497
5.1	0.001039	0.000021	0.113908	0.010815
5.4	0.000960	0.000018	0.118915	0.010030
5.7	0.000887	0.000014	0.111129	0.008546
6.0	0.000822	0.000015	0.102367	0.010128
6.3	0.000754	0.000013	0.094104	0.009293
6.6	0.000713	0.000013	0.093503	0.009889
6.9	0.000669	0.000011	0.076942	0.009589
7.2	0.000614	0.000012	0.082306	0.010432
7.5	0.000586	0.000012	0.085044	0.011270
7.8	0.000552	0.000008	0.074697	0.007650
8.1	0.000523	0.000011	0.070609	0.012061
8.4	0.000496	0.000011	0.053990	0.012054
8.7	0.000471	0.000008	0.060475	0.009431
9.0	0.000455	0.000012	0.064715	0.014234
9.3	0.000419	0.000010	0.045510	0.013156
9.6	0.000403	0.000012	0.054084	0.016414
9.9	0.000388	0.000011	0.014342	0.017188
10.2	0.000361	0.000010	0.046284	0.015812
10.5	0.000339	0.000011	0.003756	0.019990
10.8	0.000317	0.000009	0.011694	0.016977
11.1	0.000324	0.000008	0.033912	0.013699
11.4	0.000305	0.000009	0.024366	0.015700
11.7	0.000294	0.000006	0.026301	0.011842
12.0	0.000270	0.000008	0.052633	0.015504
12.3	0.000274	0.000008	0.022125	0.015146
12.6	0.000265	0.000010	0.000000	0.021648
12.9	0.000245	0.000008	0.002636	0.017164
13.2	0.000235	0.000008	0.000000	0.019727
13.5	0.000233	0.000013	0.005316	0.026853
13.8	0.000224	0.000011	0.010169	0.025218
14.1	0.000215	0.000007	0.000000	0.015904
14.4	0.000198	0.000008	0.000000	0.018189
14.8	0.000205	0.000010	0.000000	0.025022
15.1	0.000194	0.000011	0.000000	0.029080
15.4	0.000200	0.000009	0.000000	0.023481
15.7	0.000192	0.000013	0.000000	0.032827

Supplementary Table S7. Best fit parameters (α and τ) for the generalized Debye model fitted to the temperature dependence of the ac magnetic susceptibility of **Dy@YL**¹⁸ at 5% dilution under an applied magnetic field of 1000 Oe

T (K)	τ (s)	τ_{error} (s)	α	α_{error}
1.8	0.001158	0.000006	0.092997	0.003073
2.0	0.000817	0.000003	0.064193	0.001885
2.2	0.000546	0.000004	0.059369	0.004262
2.4	0.000322	0.000003	0.046122	0.004844
2.6	0.000187	0.000003	0.045789	0.006734
2.8	0.000111	0.000002	0.043771	0.006260

Supplementary Table S8. Best fit parameters (α and τ) for the generalized Debye model fitted to the temperature dependence of the ac magnetic susceptibility of **Er@LuL^{18}** at 5% dilution under an applied magnetic field of 1000 Oe

T (K)	τ (s)	τ_{error} (s)	α	α_{error}
1.8	0.000706	0.000005	0.066960	0.004346
2.0	0.000522	0.000005	0.048358	0.005124
2.2	0.000360	0.000007	0.074909	0.009794
2.4	0.000264	0.000004	0.023578	0.008356
2.6	0.000172	0.000004	0.035732	0.008871
2.8	0.000115	0.000004	0.042868	0.012893

Supplementary Figure S65. Relaxation times of **Gd@YL** at 5% dilution as a function of temperature together with the best fit using a direct process as decribed in the main text.

7. Luminescence

Supplementary Table S9. Electronic transitions (cm⁻¹) of **TbL¹⁸**, **TbL**, **HoL¹⁸**, **HoL**, **ErL¹⁸** and **ErL** obtained from the luminescence spectra presented in the main text

TbL ¹⁸	TbL	HoL ¹⁸	HoL	ErL ¹⁸	ErL
20,492	20,500	15,423	15,442	6578	6587
20,354	20,358	15,385	15,399	6539	6542
20,109	20,105	15,333	15,356	6508	6514
18,471	18,484	15,211	15,230	6476	6483
18,420	18,430	15,029	15,042	6245	6246
18,298	18,308	14,975	15,002		
18,179	18,182	14,939	14,921		
18,041	18,057	14,899			
17,176	17,182				
-	17,117				
16,838	16,846				

8. UV/Vis spectrum

Supplementary Figure S66. UV/Vis absorption spectrum of YL^{18} in DCM measured at room temperature.

References

 C. D. Buch, S. H. Hansen, C. M. Tram, D. Mitcov, S. Piligkos, *Inorg. Chem.*, 2020, **59**, 16328-16340.