Supplementary material

Synthesis of long-wavelength-absorbing photosensitizer/
nanoparticle conjugates and their in vitro PDT evaluation on
colorectal cancer cell lines

Luce Janice Ndzimbou^a, Rayan Chkair^a, Gautier M.A. Ndong Ntoutoume^a, Mona Diab-Assaf^b, Guillaume Chemina, Bertrand Liagrea, Frédérique Brégiera and Vincent Sola,* ^a Univ. Limoges, LABCiS, UR 22722, F-87000 Limoges, France. ^b Doctoral School of Sciences and Technology, Lebanese University, Hadath El Jebbeh, Beyrouth 21219, Lebanon. 13 14 15 16 Figures 4 Fig. S1: Particle size distribution (DLS) and zeta potential of CNCs (a), CNCs/β-CD⁺ (b) Fig. S2: FTIR-ATR spectra of β-cyclodextrin (black) and cationic β-cyclodextrin (red).... 4 Fig. S3: 1 H NMR spectrum of cationic β-cyclodextrin in D₂O, degree of Substitution = 2.5 Fig. S8: Zoom of the ¹H-¹³C HMBC spectrum in which the main correlations are drawn to Fig. S9: HRMS (ESI) mass spectrum of PIA......9

Fig. S10: FTIR/ATR overlay spectra of CNCs, CNCs/β-CD+PIA complex and PIA. 9

1. Materials

- 34 All chemicals and reagents were obtained from Sigma-Aldrich, Alfa Aesar, VWR, TCI, Acros
- 35 Organics or Thermo Scientific and used without further purification. Spirulina maxima dry
- powder was purchased from Eurl Claudine Vallée-ZA du Bon René Chanzeaux (France).
- 37 HCT116 and HT-29 colorectal cancer cells line were purchased from the American Type
- 38 Culture Collection (ATCC-LGC Standards, Mosheim, France). Microcrystalline cellulose was
- 39 purchased from Sigma-Aldrich and used for the cellulose nanocrystals synthesis.
- 40 Thin-layer chromatography (TLC) was done on silica gel 60 F₂₅₄ aluminium sheets (Merck
- 41 KGaA, Darmstadt Germany) for reaction monitoring. Preparative TLC plates used for the
- 42 purification were prepared with Silica gel 60 (PF₂₅₄, Merck KGaA, Darmstadt, Germany).
- Column chromatography was performed over silica gel 60 (0.015-0.040 mm, Merck KGaA,
- 44 Darmstadt, Germany).
- 45 UV-Visible spectra were obtained with an Analytik Jena Specord 210 spectrophotometer
- equipped with quartz cuvettes (1 cm path-length, Hellma Analytics).
- ¹H NMR and ¹³C spectra were recorded on a Brucker DPX 500 spectrometer, operating at 500
- 48 and 125.75 MHz, for ¹H NMR and ¹³C, respectively. Chemical shifts (δ in ppm) were reported
- 49 relative to tetramethylsilane as the reference as δ values and the coupling constant J in Hz.
- 50 Mass Spectrometry (MS). Ultra-high resolution mass analyses using electrospray ionization
- technique were performed with an LTQ-Orbitrap-XL (Thermo Fischer) operated in positive ion
- 52 mode.
- The FTIR-Attenuated Total Reflection (ATR) spectroscopy was recorded from 600 to 4000 cm⁻¹
- ¹ using Perkin Elmer FT-IR/NIR spectrometer Frontier.
- Nanoparticle size and zeta potential (ζ) measurements: average hydrodynamic diameter and
- 56 polydispersity index (PDI) were measured by dynamic light scattering (DLS) using Zetasizer
- 57 Nano-ZS (Malvern Instruments, UK). Each solution was analyzed at 25 °C at a scattering angle

58	of 173 °. Zeta potential was performed through electrophoretic light scattering at 25 °C, 149 V.
59	Distilled water was used as a dispersant and samples were measured in triplicate.
60	PDT was carried out in vitro using a 650 nm (30 J/cm²) delivered from the light source PDT
61	TP-1 (Cosmedico Medizintechnik GmbH, Schwenningen, Germarny).
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	

2. Figures

7374

75

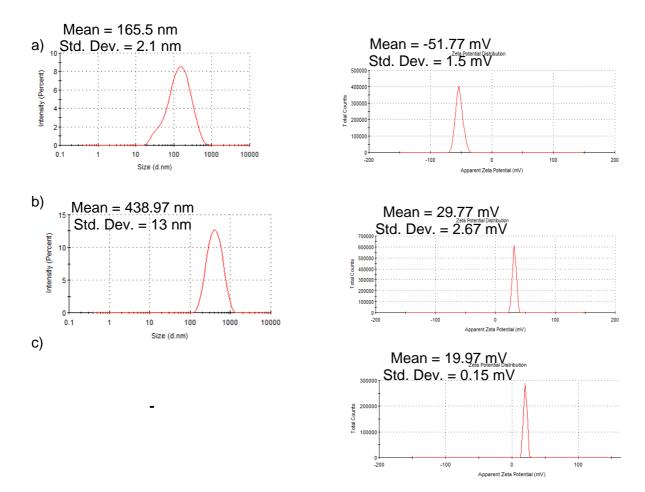


Fig. S1: Particle size distribution (DLS) and zeta potential of CNCs (a), CNCs/β-CD⁺ (b) and CNCs/β-CD⁺/PIA (c).

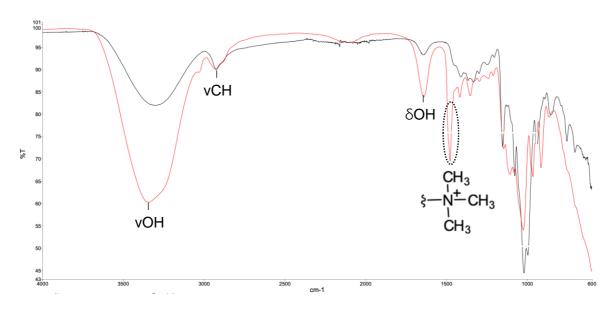
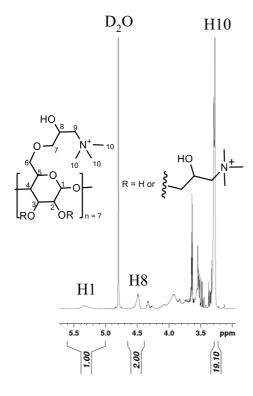



Fig. S2: FTIR-ATR spectra of β-cyclodextrin (black) and cationic β-cyclodextrin (red).

80 Fig. S3: $^{1}\text{H NMR}$ spectrum of cationic β -cyclodextrin in D $_{2}\text{O}$, degree of Substitution = 2.

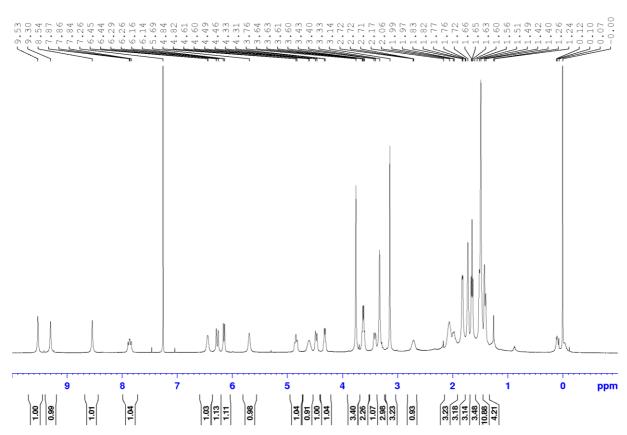


Fig. S4: ¹H NMR spectrum of PIA in CDCI₃.

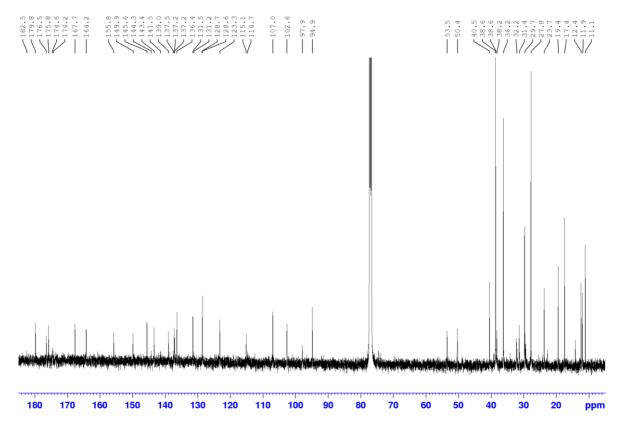


Fig. S5: ¹³C NMR spectrum of PIA in CDCI₃.

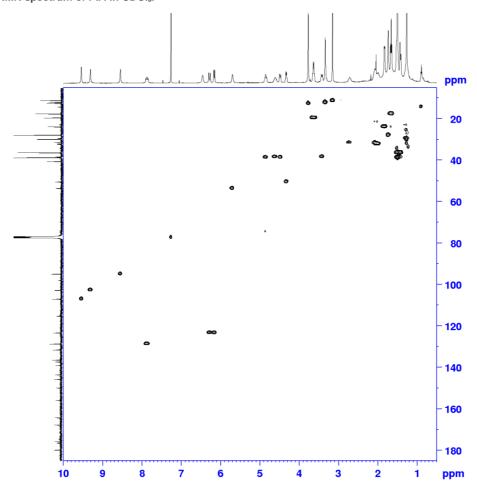


Fig. S6: ¹H-¹³C HSQC spectrum of PIA recorded in CDCI₃.

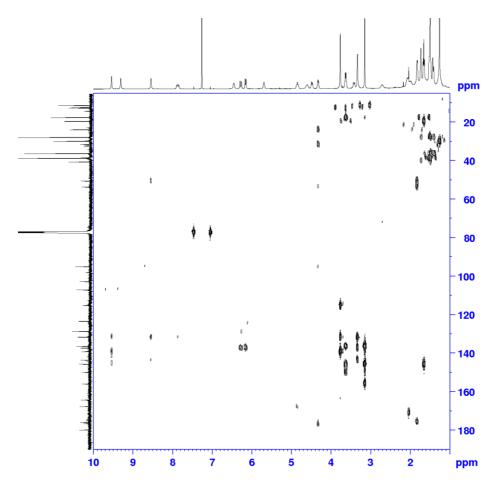


Fig. S7: ¹H-¹³C HMBC spectrum of PIA recorded in CDCl₃.

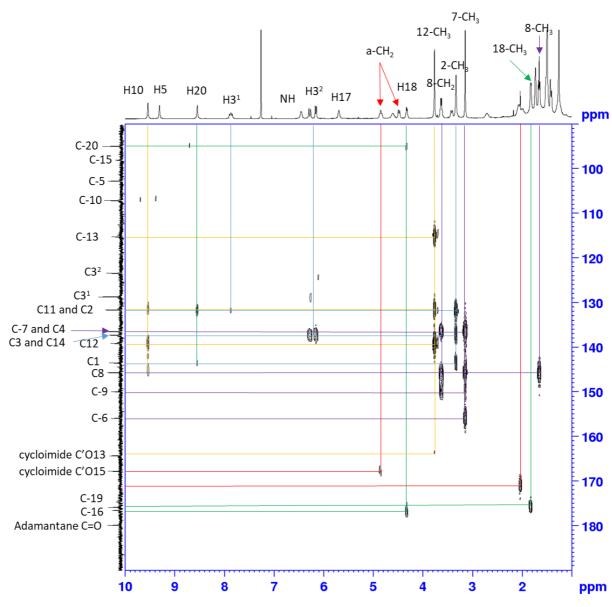
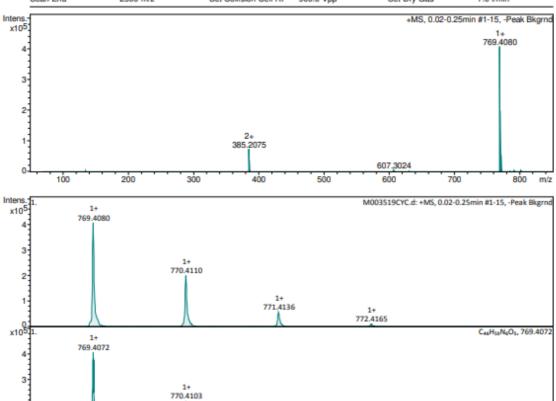



Fig. S8: Zoom of the ¹H-¹³C HMBC spectrum in which the main correlations are drawn to allow interpretation of ¹³C NMR.

Source Type ESI Ion Polarity Positive Set Nebulizer 0.6 Bar Scan Begin 75 m/z Set Capillary 4500 V Set Dry Heater 201 °C Scan End 2500 m/z Set Collision Cell RF 900.0 Vpp Set Dry Gas 7.0 l/min

1+ 771.4133

1+ 772.4162

Fig. S9: HRMS (ESI) mass spectrum of PIA.

769

770

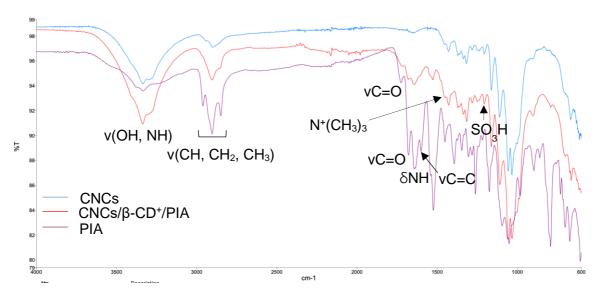


Fig. S10: FTIR/ATR overlay spectra of CNCs, CNCs/β-CD+/PIA complex and PIA.

94