

1 *Electronic Supplementary Information for*

2 Electro-induced carbamoylation of arenes optimized by a machine learning model.

3 Virgile Rouffeteau[†], Clara Perrier[†], Geoffrey Gontard,[§] Maximilian Fleck,[§] Maxime R. Vitale^{**},

4 Laurence Grimaud^{**}

5 virgile.rouffeteau@ens.psl.eu clara.perrier@ens.psl.eu ; geoffrey.gontard@sorbonne-universite.fr ;

6 maximilian.fleck@chimieparistech.psl.eu ; ; maxime.vitale@ens.psl.eu ; laurence.grimaud@ens.psl.eu

7 [†]Chimie Physique et Chimie du Vivant (CPCV), Département de Chimie, École Normale Supérieure,

8 PSL University, Sorbonne Université, CNRS, 75005 Paris, France.

9 [§]Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Sorbonne Université,

10 75252 Paris Cedex 5, France

11 [§]Chimie ParisTech, Université PSL, CNRS, Institute of Chemistry for Life and Health Sciences, 75005

12 Paris, France

13

14

15 **Tables of Contents**

16	1. General Information	2
17	2. General Methods	3
18	3. Optimization	4
19	4. Synthetic Procedures and Spectra	6
20	5. References	17

21

22

23

24

25 **General Information**

26 All solvents were dried and used as received from commercial suppliers (Sigma-Aldrich, Carlo Erba).
27 Aromatic reagents were distilled before use via ball-tube distillation. Cyclohexyl and *tert*-butyl isocyanide
28 were made following the carbylamine protocol [1] and distilled afterwards via a vacuum distillation
29 apparatus. The other isocyanides were used as received or freshly made from commercially available
30 amines, following the method developed by Domling *et coll* [2]. Milli-Q® water was used. Electrodes,
31 ElectraSyn®, vial caps, and glass vials were bought from IKA, and used as received, except for the
32 electrodes that were cleaned by polishing on a 1000 grit sandpaper sheet before every experiment. *n*-
33 Bu₄NBF₄ was prepared and recrystallized before use, other supporting electrolytes were used as
34 received from commercial suppliers (Sigma-Aldrich, TCI, BLDpharm). Silica gel chromatography was
35 performed using silica (40–63 µm) from Fisher Scientific. Thin-layer chromatography (TLC) was
36 conducted on silica plates purchased from Fisher Scientific, with visualization under UV light and/or with
37 developing agents including ceric ammonium molybdate, basic potassium permanganate, or acidic
38 *para*-anisaldehyde solutions, followed by heating. All ¹H and ¹³C NMR spectra were recorded on a Bruker
39 Avance 300 MHz spectrometer and are calibrated using residual non-deuterated solvent (for ¹H NMR:
40 CHCl₃ at 7.26 ppm) and characteristic solvent peak (for ¹³C NMR: CDCl₃ 77.23 ppm). The following
41 abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m =
42 multiplet, br = broad, and combinations thereof.

43 X-Ray data were collected with a Bruker Kappa APEX II system using fine-focus sealed tube Mo-K α
44 radiation (Intensity Data). Unit-cell parameters determination, data collection strategy, integration and
45 absorption correction were carried out with the Bruker APEX suite of programs. The structure was solved
46 with SHELXT and refined anisotropically by full-matrix least-squares methods with SHELXL using
47 WinGX.

48

49

50

51

52

53 **General Method A:**

54 To an oven-dried 5 mL glass vial charged with a stirring magnet, supporting electrolyte (0.5
55 equivalent) was added. Distilled solvent (0.2 M) and water (50 equivalents) were added, followed by the
56 aromatic reagent (3 equivalents) and isocyanide (1 equivalent, 0.8 mmol). The electrodes were mounted
57 on an IKA cap, and screwed on top of the glass vial for connection to the ElectraSyn. The desired current
58 density (25 mA.cm⁻²) and charge (2 F/mol) were programmed on the ElectraSyn, and the electrolysis
59 started. After completion, solvent and water were removed *in vacuo*, and a flash column chromatography
60 afforded the desired product.

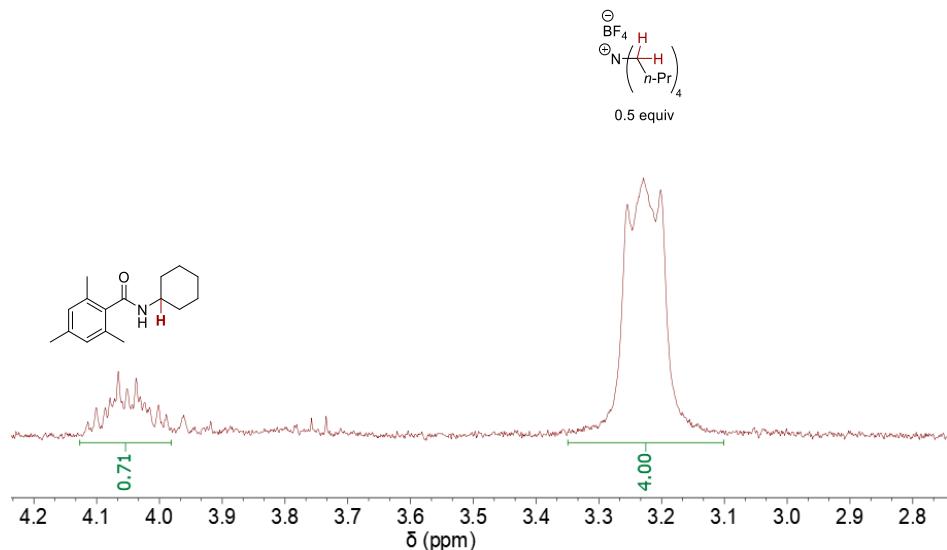
61

62 **General Method B (for optimization experiments):**

63 To an oven-dried 5 mL glass vial charged with a stirring magnet, supporting electrolyte (X_1
64 equivalents) was added. Distilled solvent (X_2 M) and water (X_3 equivalents) were added, followed by the
65 mesitylene (X_4 equivalents) and cyclohexyl isocyanide (X_5 equivalent). The electrodes were mounted
66 on an IKA cap and screwed on top of the glass vial for connection to the ElectraSyn. The desired current
67 density and charge were programmed on the ElectraSyn, and the electrolysis started. After completion,
68 solvent and water were removed *in vacuo*. The dried crude was dissolved in CDCl₃, and a representative
69 sample was taken to measure the yield through ¹H NMR. The yield of the desired product was measured
70 via the ratio between a characteristic peak of the product against one of *n*-Bu₄NBF₄ (see figure below).

71 Stability of the supporting electrolyte as an internal standard was tested with external standard
72 first (1,1,2,2-tetrachloroethane and 1,3,5-trimethoxybenzene), and found to be stable in the electrolysis'
73 conditions.

74

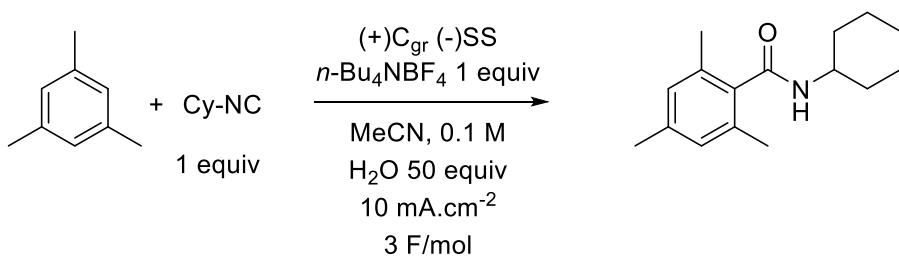

75

76

77

78

79



80

Figure S1: Yield measurement via ^1H NMR

81 Pre-optimization on mesitylene

82

Entry	Changes	Yield (NMR, %)
1	20 °C	38%
2	60 °C	41%
3	0 °C	n.d.
4	Stirring at 400 / 800 Rotation per minute	37% / 38 %

83

84

Table S1: Pre-optimization

85 **List of experiments proposed by EDBO+:**

Iteration	Changes	Yield (NMR, %)
0	No change	38%
1	2 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 1 equiv H ₂ O, 25 mA/cm ² , 6 F/mol	26%
2	0.33 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 5 mA/cm ² , 2 F/mol	32%
3	3 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 5mA/cm ² , 2 F/mol	41%
4	3 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 5 mA/cm ² , 2 F/mol	42%
5	3 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 25 mA/cm ² , 2 F/mol	56%
6	3 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 25 mA/cm ² , 2 F/mol	45%
7	3 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 25 mA/cm ² , 6 F/mol	33%
8	0.33 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 25 mA/cm ² , 2 F/mol	63%
9	0.33 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 25 mA/cm ² , 2 F/mol	70%
10	0.33 equiv Cy-NC, 1 equiv H ₂ O, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.05 M, 25 mA/cm ² , 2 F/mol	54%
11	0.5 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 25 mA/cm ² , 2 F/mol	62%
12	3 equiv Cy-NC, 2 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 25 mA/cm ² , 6 F/mol	49%
13	0.5 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.1 M, 25 mA/cm ² , 2 F/mol	65%
14	0.33 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 25 mA/cm ² , 6 F/mol	71%
15	0.33 equiv Cy-NC, 0.5 equiv <i>n</i> -Bu ₄ NBF ₄ , 0.2 M, 25 mA/cm ² , 2 F/mol	74%

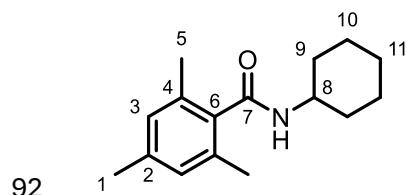
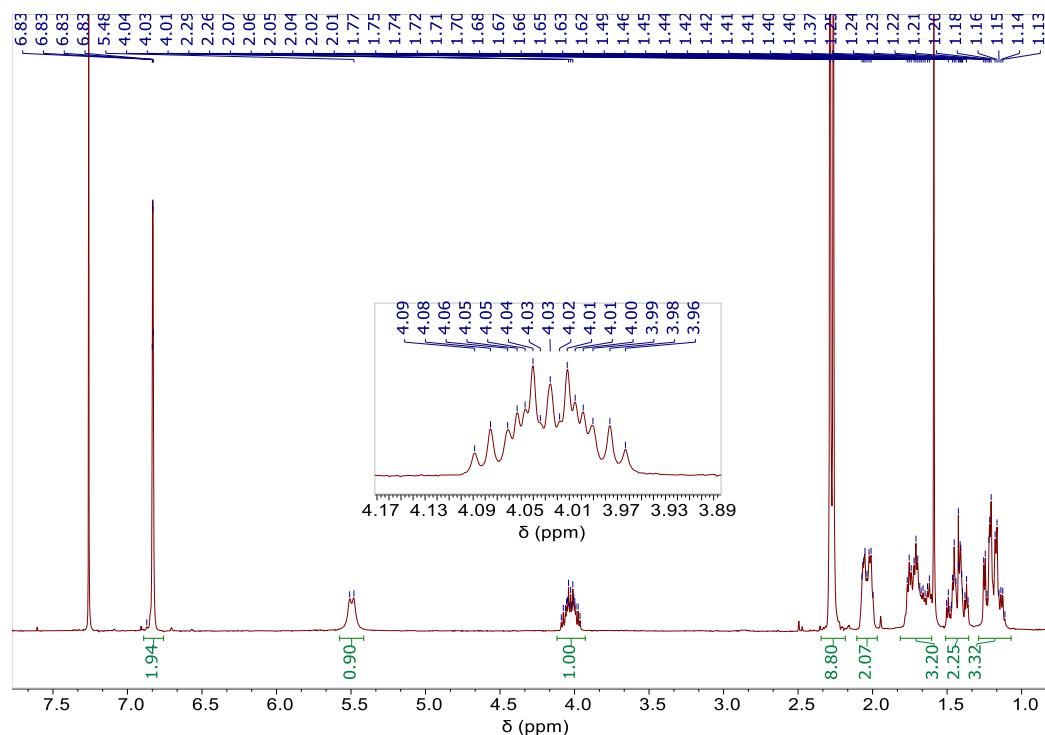

86

Table S2: EDBO⁺- led optimization

87

88

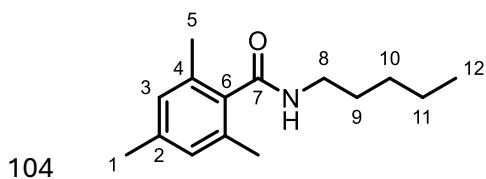

89

90 **Synthetic procedures**91 ***N*-cyclohexyl-2,4,6-trimethylbenzamide, 3a**

93 Compound **3a** was obtained following General Method A from mesitylene **1a** and cyclohexyl isocyanide
 94 **2a** in up to 74 % yield (145 mg, white solid, purified by Flash Column Chromatography (FCC), gradient
 95 100 % cyclohexane to 9/1 cyclohexane/ethyl acetate).

96 ^1H NMR (300 MHz, CDCl_3) δ 6.88 – 6.80 (s, 2H, H3), 5.49 (br d, J = 8.5 Hz, 1H, N-H), 4.12 – 3.95 (m,
 97 1H, H8), 2.29 (s, 6H, H5), 2.26 (s, 3H, H1), 2.01 – 1.97 (m, 2H, H9), 1.79 – 1.61 (m, 2H, H9), 1.52 –
 98 1.33 (m, 2H, H10), 1.28 – 1.08 (m, 4H, H10, H11).

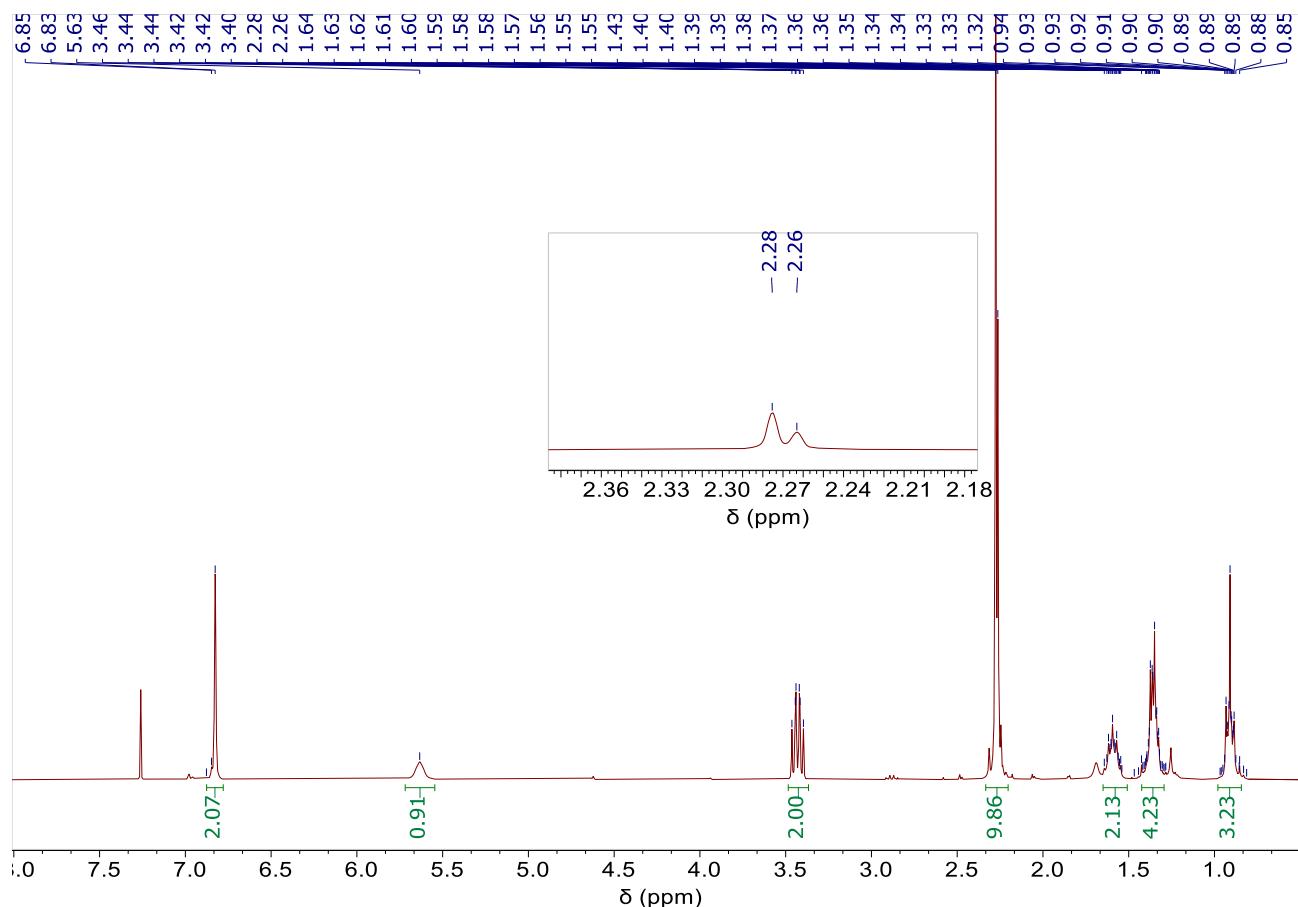
99 Data were consistent with the literature [3].

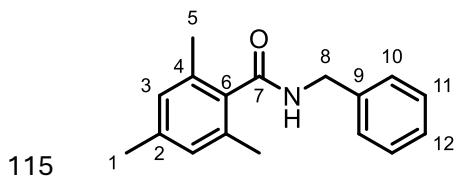


100

101

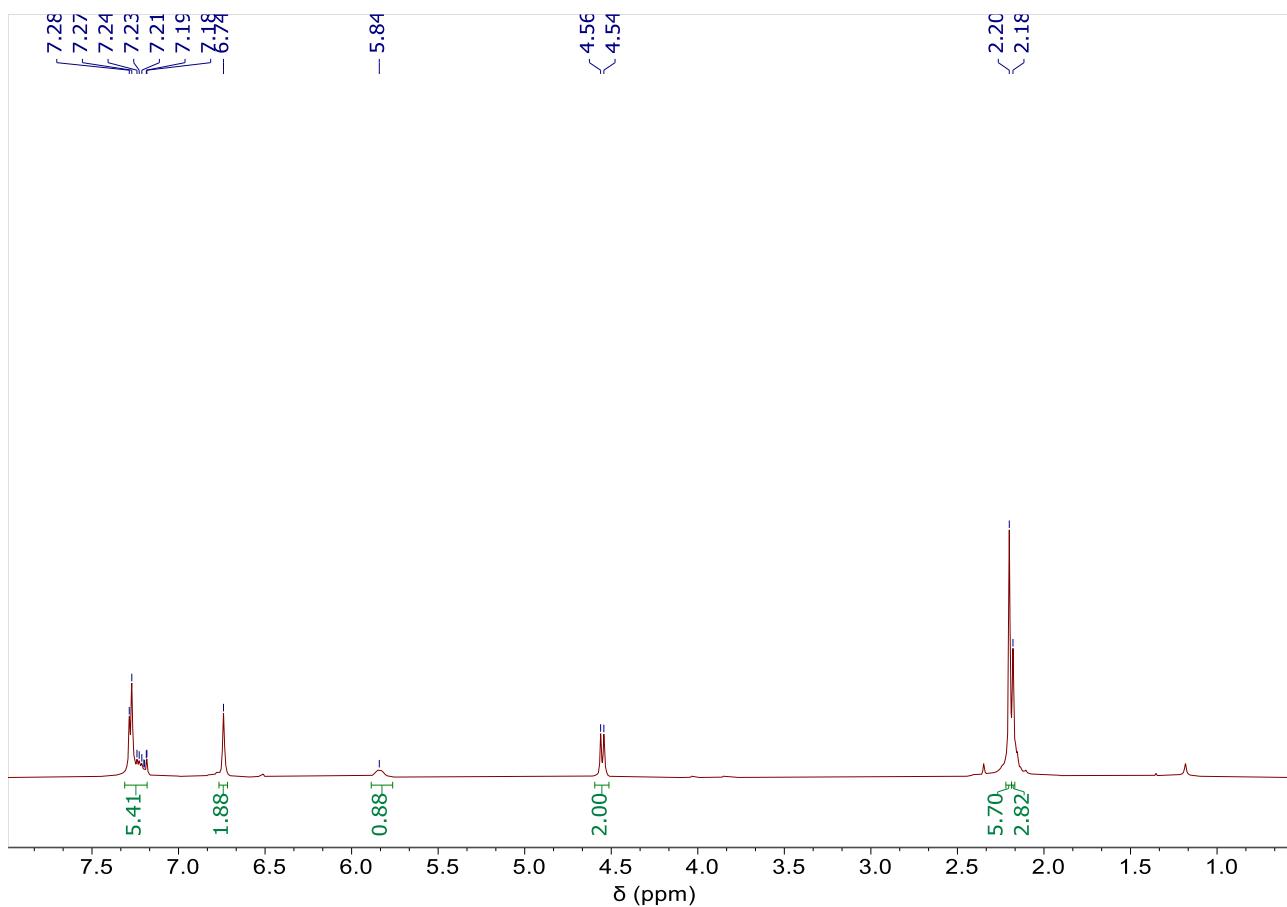
102


103 2,4,6-trimethyl-*N*-pentylbenzamide, **3b**


105 Compound **3e** was obtained following General Method A, from 1-isocyanopentane and mesitylene **1a**
106 (97 mg, 52 %, white solid, purified by FCC, gradient 100 % cyclohexane to 9/1 cyclohexane/ethyl
107 acetate).

108 ^1H NMR (300 MHz, CDCl_3) δ 6.83 (s, 2H, H3), 5.63 (br s, 1H, N-H), 3.43 (td, J = 7.0, 6.0 Hz, 2H, H8),
109 2.28 (s, 6H, H5), 2.26 (s, 3H, H1), 1.66 – 1.52 (m, 2H, H9), 1.47 – 1.27 (m, 4H, H10, H11), 0.97 – 0.80
110 (m, 3H, H12).

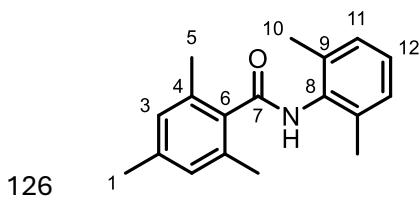
111 Data were consistent with the literature [3].


114 *N*-benzyl-2,4,6-trimethylbenzamide, **3c**

116 Compound **3f** was obtained following General Method A, from mesitylene **1a** and
 117 (isocyanomethyl)benzene (63 mg, 31 %, white solid, purified by FCC, gradient 100 % cyclohexane to
 118 9/1 cyclohexane/ethyl acetate).

119 ^1H NMR (300 MHz, CDCl_3) δ 7.33 – 7.17 (m, 5H, H10, H11, H12), 6.74 (s, 2H, H3), 5.84 (br s, 1H, N-H)
 120 4.55 (d, J = 5.5 Hz, 1H, H8), 2.20 (s, 6H, H5), 2.18 (s, 3H, H1).

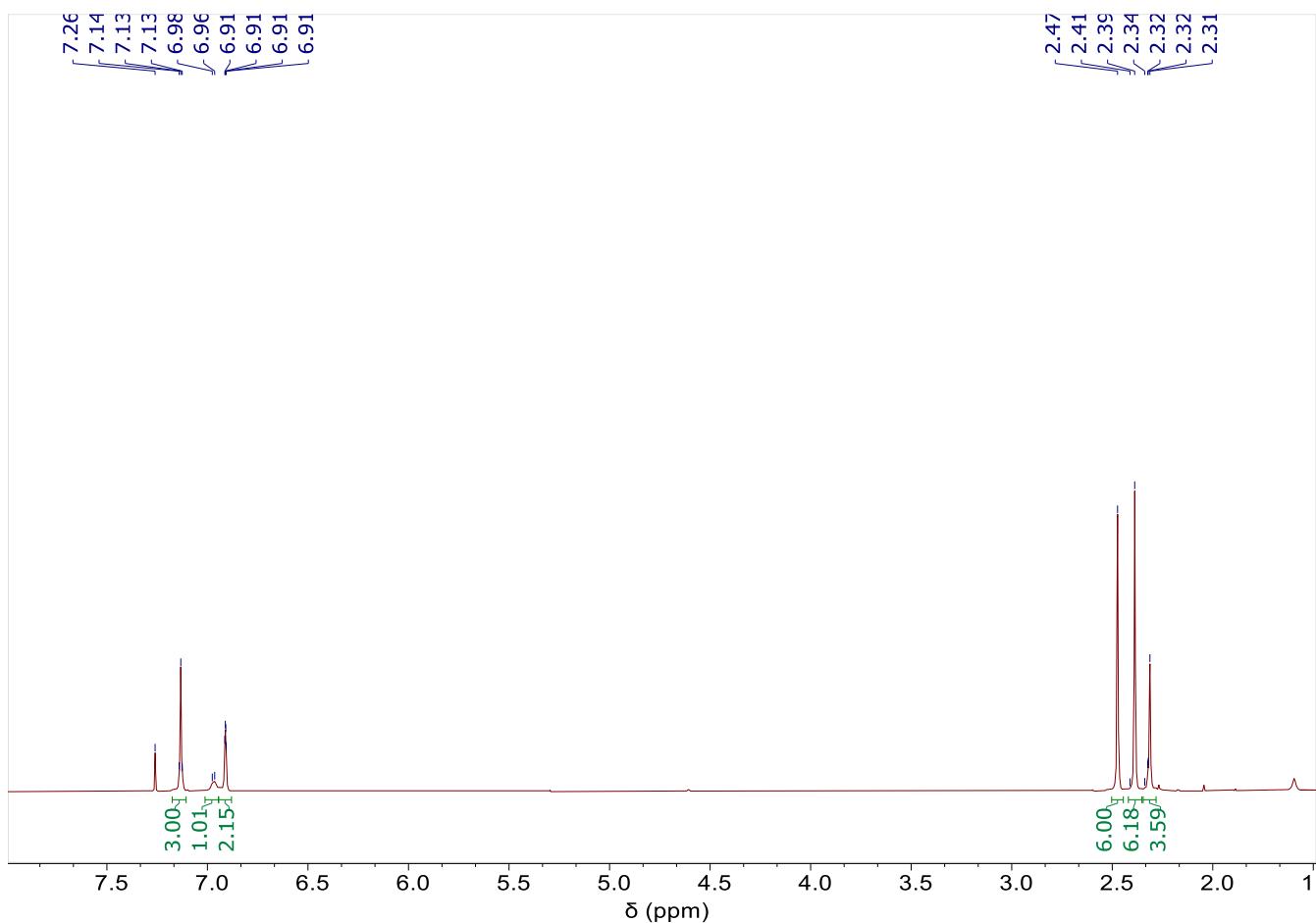
121 Data were consistent with the literature [3].



122

123

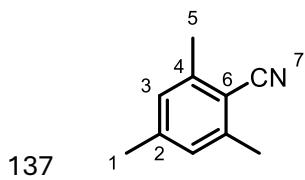
124


125 *N*-(2,6-dimethylphenyl)-2,4,6-trimethylbenzamide, **3d**

127 Compound **3g** was obtained following General Method A, from 2-isocyno-1,3-dimethylbenzene and
 128 mesitylene **1a** (5 mg, 5 %, off-white solid, purified by FCC, gradient 100 % cyclohexane to 9/1
 129 cyclohexane/ethyl acetate).

130 ^1H NMR (300 MHz, CDCl_3) δ 7.14 – 7.12 (m, 3H, H11, H12), 6.97 (br s, 1H, N-H), 6.90 (s, 2H, H3), 2.47
 131 (s, 6H, H10 or H5), 2.39 (s, 6H, H5 or H10), 2.31 (s, 3H, H1).

132 Data were consistent with the literature [3].



133

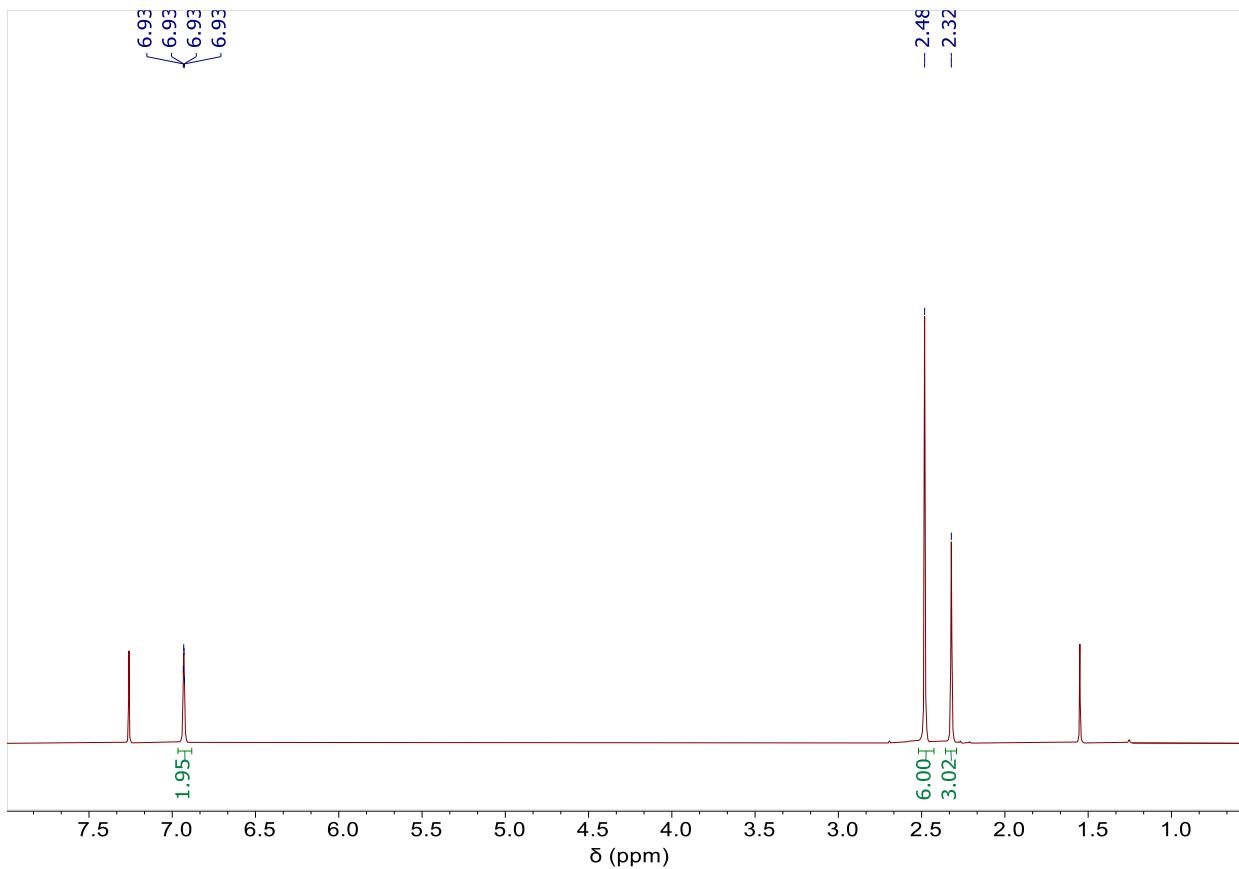
134

135

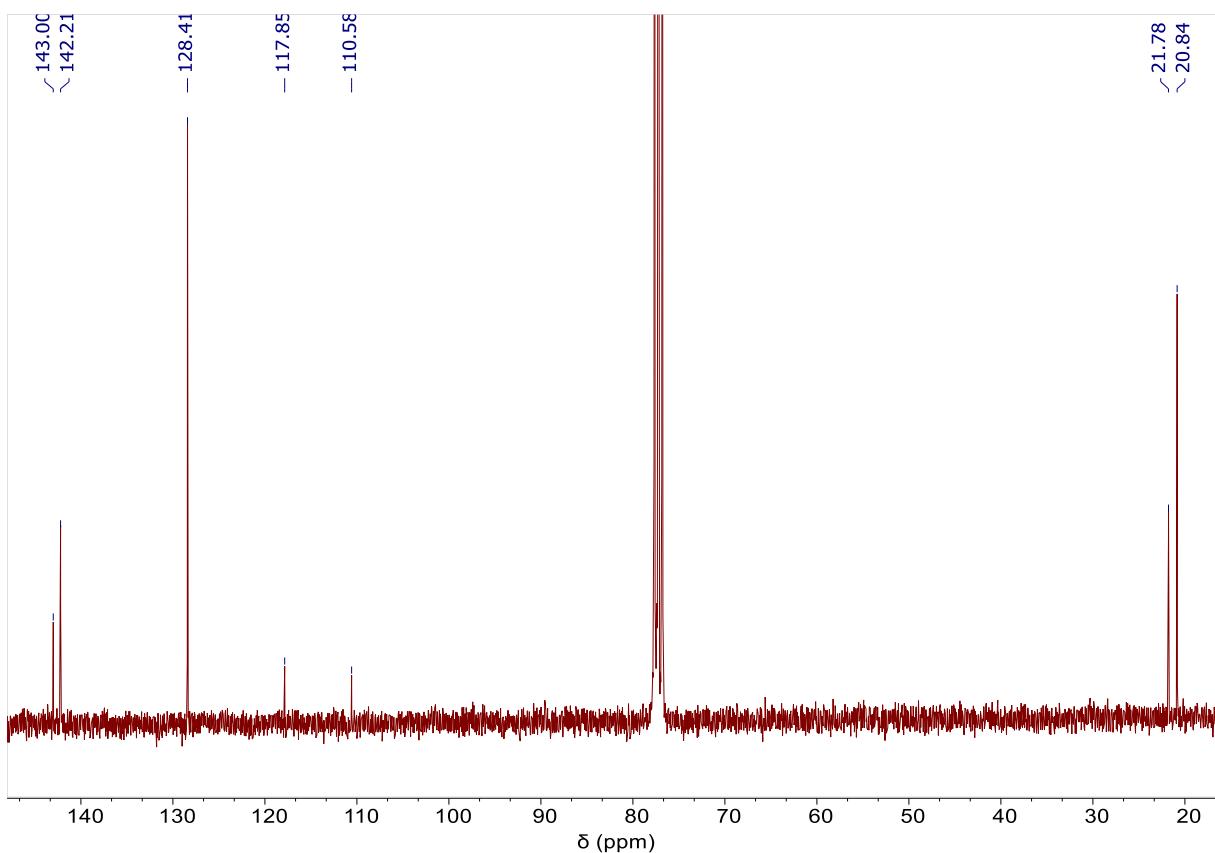
136 2,4,6-trimethylbenzonitrile, **3e**

138 Compound **3h** (white crystals) was obtained following General Method A, from various tertiary
 139 isocyanides and mesitylene. Isolated yields are lower than the NMR yields due to sublimation of **3h**
 140 under vacuum. Purified by FCC (Gradient 100 % cyclohexane /diethyl ether).

Entry	Starting isocyanide	NMR yield	Isolated yield
1	<i>tert</i> -butyl isocyanide	85 %	51 %
2	<i>tert</i> -octyl isocyanide	91 %	52 %
3	(2-isocyanopropan-2-yl)benzene	75 %	50 %


141 Table S3: Tertiary isocyanides results

142 ^1H NMR (300 MHz, CDCl_3) δ 6.96 – 6.90 (m, 2H, H3), 2.48 (s, 6H, H5), 2.32 (s, 3H, H1).


143 ^{13}C NMR (75 MHz, CDCl_3) δ 143.0 (C6), 142.2 (C4), 128.4 (C3), 117.9 (C2)), 110.6 (C7), 21.8 (C1), 20.8
 144 (C5).

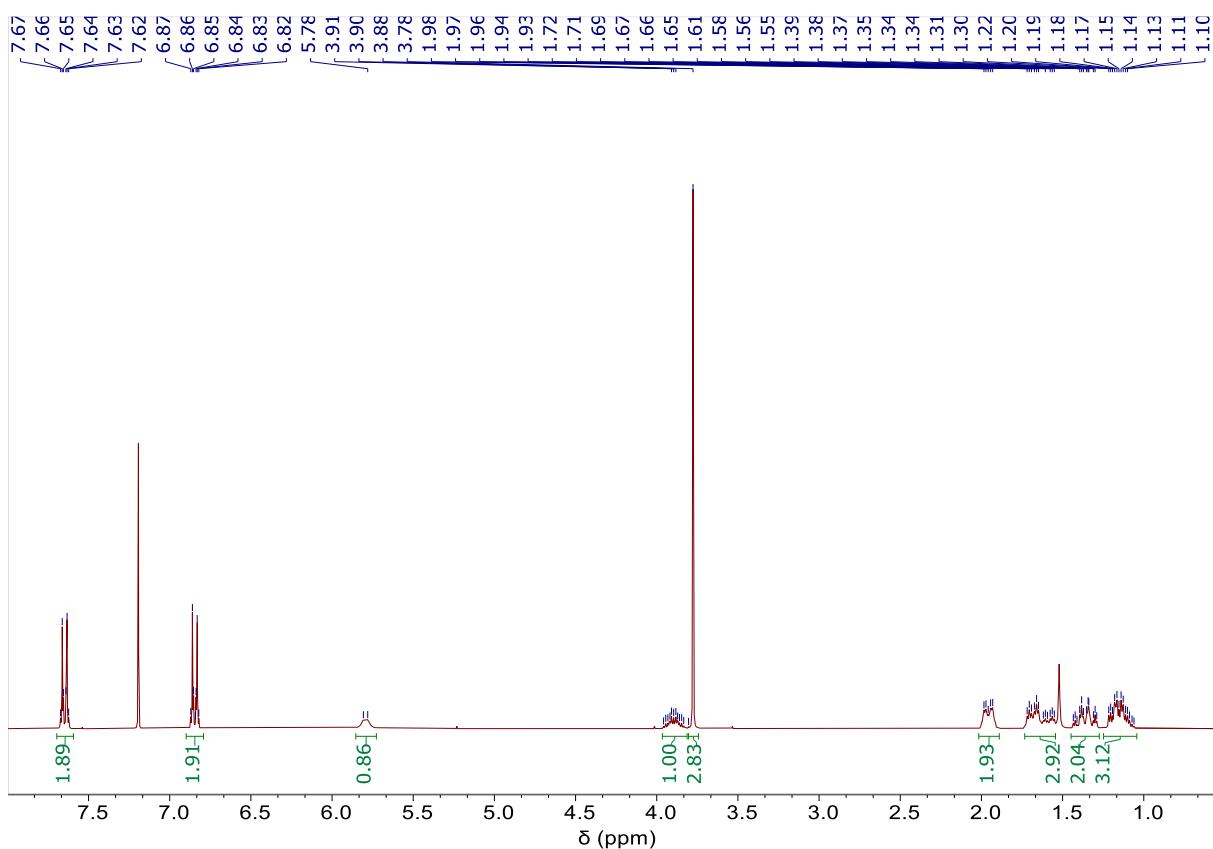
145 Data were consistent with the literature [4].

146


147

148

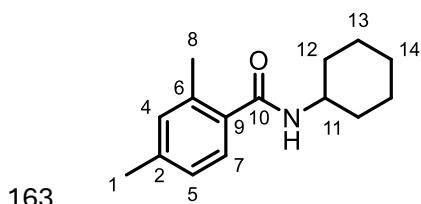
149


150 *N*-cyclohexyl-4-methoxybenzamide, **3f**

152 Compound **3b** was obtained following General Method A from anisole and cyclohexyl isocyanide **2a** in
153 17 % yield (17 mg, white solid, purified by FCC, gradient 100 % cyclohexane to 9/1 cyclohexane/ethyl
154 acetate).

155 ^1H NMR (300 MHz, CDCl_3) δ 7.70 – 7.59 (m, 2H, H4), 6.90 – 6.79 (m, 2H, H3), 5.79 (br d, J = 8.0 Hz,
 156 1H, N-H), 3.96 – 3.83 (m, 1H, H7), 3.78 (s, 3H, H1), 2.01 – 1.90 (m, 2H, H8), 1.75 – 1.54 (m, 3H, H8,
 157 H10), 1.46 – 1.26 (m, 2H, H9), 1.15 (m, 3H, H9,H10).

158 Data were consistent with the literature [3].



159

160

161

162 *N*-cyclohexyl-2,4-dimethylbenzamide, compound 3g

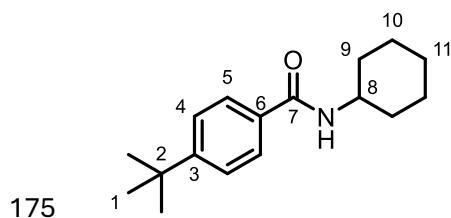


163

164 Compound **3c** was obtained following General Method A, from *m*-xylene and cyclohexyl isocyanide **2a**
 165 (67 mg, 36 %, white solid, purified by FCC, gradient 100 % cyclohexane to 9/1 cyclohexane/ethyl
 166 acetate).

167 ^1H NMR (300 MHz, CDCl_3) δ 7.21 – 7.12 (m, 1H, H7), 6.99 – 6.87 (m, 2H, H4, H5), 5.53 (br d, J = 8.0
 168 Hz, 1H, N-H), 3.95 – 3.80 (m, 1H, H11), 2.34 (s, 3H, H1), 2.25 (s, 3H, H3), 2.03 – 1.89 (m, 2H, H12),
 169 1.77 – 1.52 (m, 2H, H12), 1.38 – 1.32 (m, 3H, H13, H14), 1.24 – 1.02 (m, 3H, H13, H14).

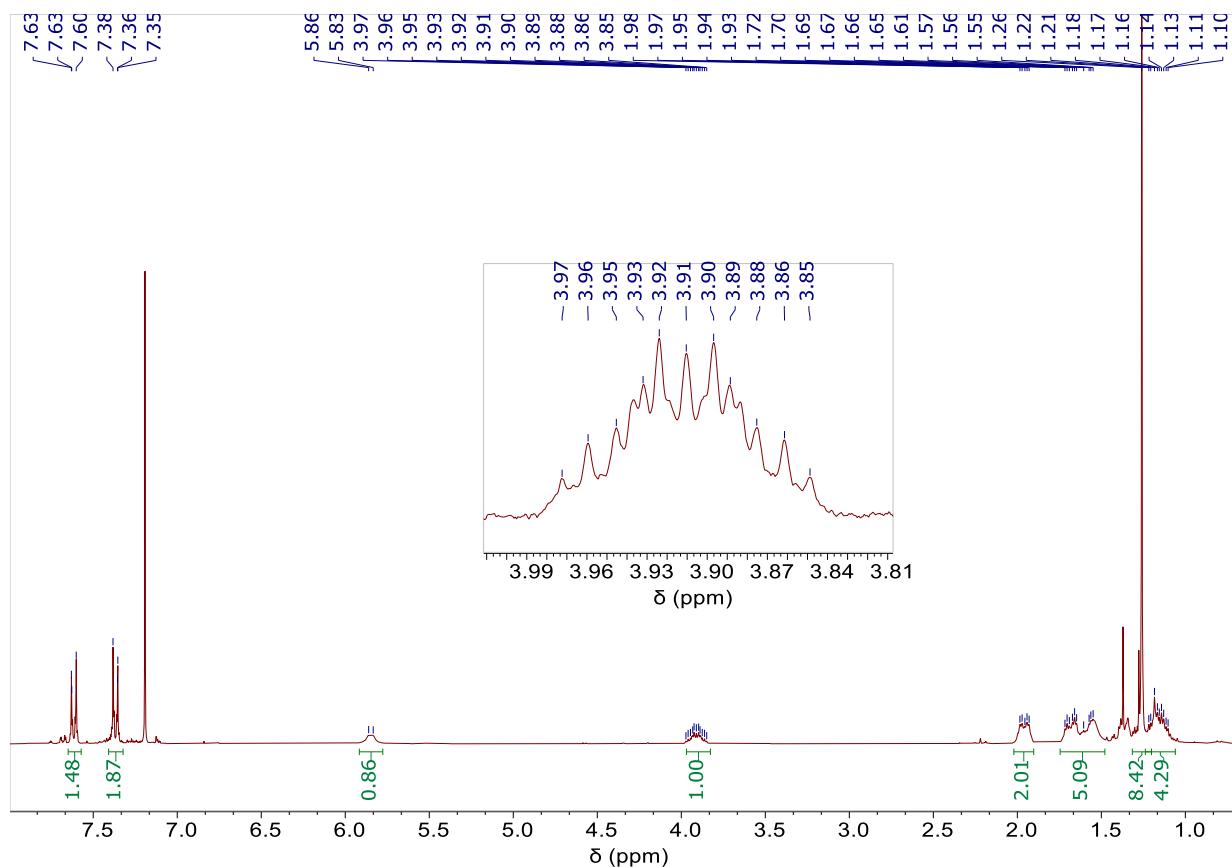
170 Data were consistent with the literature [5].



171

172

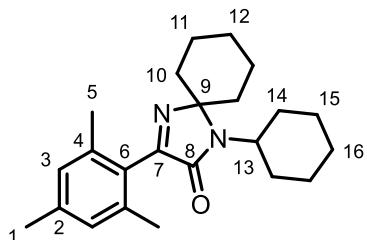
173


174 4-(*tert*-butyl)-N-cyclohexylbenzamide compound **3h**

176 Compound **3d** was obtained following General Method A, from tert-butylbenzene and cyclohexyl
 177 isocyanide **2a** (14 mg, 7 %, white solid, purified by FCC gradient 100 % cyclohexane to 9/1
 178 cyclohexane/ethyl acetate).

179 ^1H NMR (300 MHz, CDCl_3) δ 7.70 – 7.51 (m, 2H, H5), 7.44 – 7.30 (m, 2H, H4), 5.85 (br d, J = 8.0 Hz, 1H, N-H), 3.98 – 3.85 (m, 1H, H8), 2.01 – 1.90 (m, 2H, H9), 1.75 – 1.52 (m, 4H, H9,H10), 1.26 (s, 9H, H1), 1.23 – 1.07 (m, 4H, H10,H11).

182 Data were consistent with the literature [6].

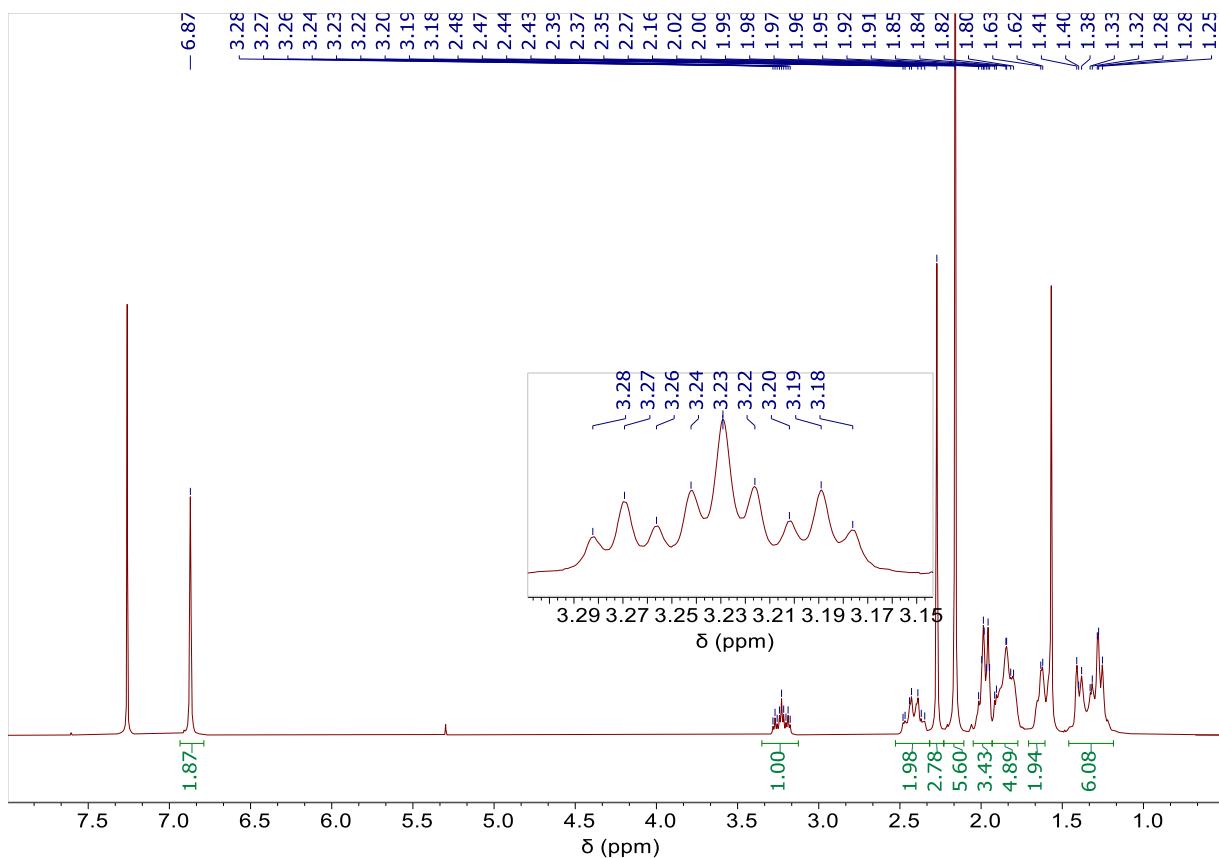


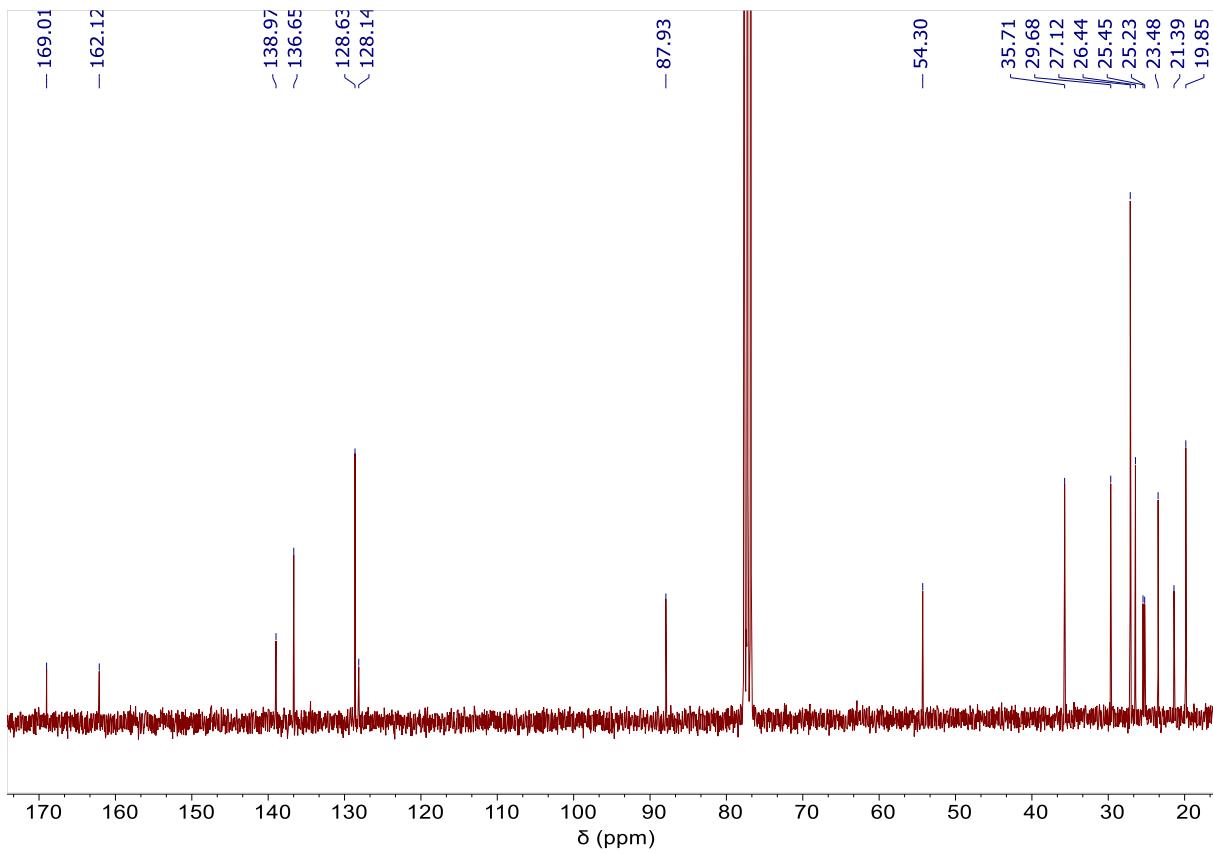
183

184

185 1-cyclohexyl-3-mesityl-1,4-diazaspiro[4.5]dec-3-en-2-one, **4a**

186




187 Compound **4a** was obtained along with **3a** in 13 % yield (21 mg, off-white crystals, purification by FCC,
 188 gradient 100 % cyclohexane to 9/1 cyclohexane/ethyl acetate). **4a** was recrystallized from *n*-heptane for
 189 X-Ray analyses.

190 ^1H NMR (300 MHz, CDCl_3) δ 6.87 (s, 2H, H3), 3.23 (tt, J = 12.0, 4.0 Hz, 1H, H13), 2.43 (m, 2H, H10),
 191 2.27 (s, 3H, H1), 2.16 (s, 6H, H5), 2.04 – 1.88 (m, 4H, H10, H14), 1.88 – 1.78 (m, 6H, H14, H11), 1.63
 192 (d, J = 3.6 Hz, 2H, H15), 1.48 – 1.18 (m, 6H, H12, H15, H16).

193 ^{13}C NMR (75 MHz, CDCl_3) δ 169.0 (C8), 162.1 (C7), 139.0 (C6), 136.7 (C3), 128.6 (C4), 128.1 (C2),
 194 87.9 (C9), 54.3 (C13), 35.7 (C10), 29.7 (C14), 26.4 (C11), 25.5 (C15), 25.2 (C12), 23.5 (C16), 21.4 (C1),
 195 19.9 (C5).

196

197

198 **X-Ray crystal structure determination.** A single crystal was selected, mounted and transferred into a
 199 cold nitrogen gas stream. Intensity data was collected with a Bruker Kappa APEX II system using fine-
 200 focus sealed tube Mo-K α radiation. Unit-cell parameters determination, data collection strategy,
 201 integration and absorption correction were carried out with the Bruker APEX suite of programs. The
 202 structure was solved with SHELXT and refined anisotropically by full-matrix least-squares methods with
 203 SHELXL using WinGX. The structure was deposited at the Cambridge Crystallographic Data Centre
 204 with number CCDC 2492104 and can be obtained free of charge via www.ccdc.cam.ac.uk.

205 **Crystal data for P9.** C₂₃H₃₂N₂O, monoclinic P 2₁/c, a = 17.2371(18) Å, b = 13.5548(13) Å, c = 8.8187(9)
 206 Å, $\alpha = \gamma = 90^\circ$, $\beta = 102.058(3)^\circ$, V = 2015.0(4) Å³, Z = 4, colorless prism 0.55 × 0.4 × 0.05 mm³, μ =
 207 0.071 mm⁻¹, min / max transmission = 0.97 / 1.00, T = 200(1) K, λ = 0.71073 Å, θ range = 25.24° to
 208 30.56°, 8275 reflections measured, R_{int} = 0.0348, completeness = 0.975, 239 parameters, 0 restraints,
 209 final R indices R1 [$>2\sigma(I)$] = 0.0461 and wR2 (all data) = 0.1189, GOF on F² = 1.033, largest difference
 210 peak / hole = 0.25 / -0.25 e·Å⁻³.

211

212 **References**

213 [1] Gokel, G. W.; Widera, R. P.; Weber, W. P. *Organic Syntheses*. **1976**, 55, 96.

214 [2] Patil, P.; Ahmadian-Moghaddama, M.; Dömling, A. *Green Chem.* **2020**, 22, 6902-6911

215 [3] Zhu, YP; Sergeyev, S.; Franck, P.; Orru, R. V. A.; Maes, B. U. W. *Org. Lett.* **2016**, 18, 4602–4605.

216 [4] Ushijima, S.; Moriyama, K.; Togo, H. *Tetrahedron*. **2011**, 67, 958-964.

217 [5] Herbert, J. M.; Hewson, A. T.; Peace, J. E. *Synthetic Communications*, **1998**, 28, 823-832.

218 [6] Jo, Y.; Ju, J.; Choe, J.; Ho Song, K.; Lee, S. *J. Org. Chem.* **2009**, 74, 6358–6361.