First application of chiral phosphotriesters in asymmetric metal catalysis: enantioselective Zn-catalyzed hydrosilylation of ketones in the presence of BINOL-derived phosphates

Alphonsine Ngo Ndimba, a Thierry Roisnel, a Gilles Argouarch a and Claudia Lalli a

^a Université de Rennes, CNRS, Institut des Sciences Chimiques de Rennes, UMR 6226,

F-35000 Rennes Cedex, France

E-mail: gilles.argouarch@univ-rennes1.fr

E-mail: claudia.lalli@univ-rennes1.fr

SUPPORTING INFORMATION

Table of contents

I -	General information	S3
II -	Synthesis of monophosphates G and H	S4
III -	Synthesis of bisphosphate I	S5
IV -	¹ H, ¹³ C and ³¹ P NMR data of compounds G, H and I	S6
V -	General procedure for the hydrosilylation of ketones	S12
VI -	¹ H, ¹³ C NMR and HPLC data of compounds 5a-f	S13
VII -	X-ray diffraction study for compounds G and H	S25

I - General information

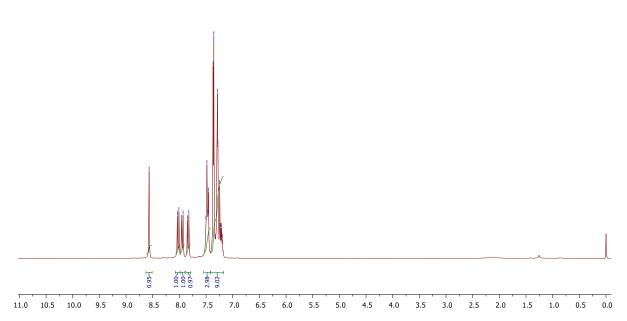
All the reactions were performed in dried glassware, under argon atmosphere, and sealed with a rubber septum. Reagents were obtained from commercial suppliers and used without further purification unless otherwise noted. TLC analyses were performed using precoated Merck TLC Silica Gel 60 F254 plates. Purifications by column chromatography on silica gel were performed using Merck Silica Gel 60 (0,040-0,063 nm). Petroleum ether (PE) used for purifications was the low boiling point fraction (40-60 °C). ¹H and ¹³C spectra were recorded on a Bruker Avance 300 instruments using TMS and CDCl₃ respectively as internal standard. ³¹P NMR spectra were recorded on a Bruker DMX 500. Chemical shifts (δ) are reported in parts per million (ppm) relatively to TMS and residual solvent as internal standards. The following abbreviations are used for multiplicities: s, singlet; d, doublet; t, triplet; dd, doublet of doublets; td, triplet of doublets; m, multiplet. Coupling constants (J) are reported in Hertz (Hz). HRMS analyses were obtained using a Waters Q-TOF 2 or a Micromass ZABSpec TOF or a Bruker Micro-TOF Q II or a LTQ Orbitrap XL instrument for ESI. X-ray crystallographic data were collected on a D8 Venture Bruker AXS diffractometers at 150 K. Optical rotations were recorded on a Perkin Elmer Model 341 polarimeter. Melting points were obtained on a hot bench. IR spectra were recorded on a Perkin Elmer FT-IR Spectrometer UATR Spectrum Two.

II - Synthesis of monophosphates G and H

Under an atmosphere of argon, to a solution of 3-I-(R)-BINOL (1) (190 mg, 0.46 mmol) and Et₃N (0.13 mL, 0.92 mmol, 2 equiv.) in dry CH₂Cl₂ (5 mL) was added at 0 °C phenyl phosphorodichloridate (2) (83 \square L, 0.55 mmol, 1.2 equiv.). The mixture was stirred at room temperature overnight, then hydrolyzed with an aqueous 2 N HCl solution (5 mL), and extracted with CH₂Cl₂ (2 x 10 mL). The organic phases were washed with H₂O (1 x 10 mL), then dried over anhydrous MgSO₄. After filtration, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using a mixture of petroleum ether/diethylether 1/1 as eluent, to give two white solids. Yield: 228 mg, 90%.

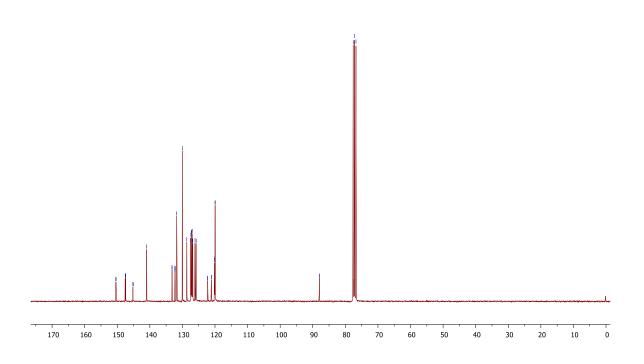
Diastereomer **G**: M.p. 240 °C; $[\alpha]^{20}_D$ - 264 (c = 1.0, CHCl₃); IR (neat, cm⁻¹) 3064, 1592, 1489, 1311, 1299, 1198, 968, 949, 895, 750; ESI-HRMS calculated for C₂₆H₁₆O₄INaP [M+Na]⁺ 572.9723, found 572.9718; ¹H NMR (300 MHz, CDCl₃) δ = 8.57 (s, 1H), 8.02 (d, J = 9.0 Hz, 1H), 7.94 (d, J = 9.0 Hz, 1H), 7.83 (d, J = 6.0 Hz, 1H), 7.50-7.45 (m, 3H), 7.37-7.20 (m, 9H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 150.4 (d, J_{CP} = 6.7 Hz), 147.5 (d, J_{CP} = 11.2 Hz), 145.2 (d, J_{CP} = 8.2 Hz), 140.9, 133.2 (d, J_{CP} = 1.5 Hz), 132.3 (d, J_{CP} = 0.8 Hz), 132.2 (d, J_{CP} = 1.5 Hz), 131.7, 130.0, 128.6, 127.5, 127.4, 127.2, 127.1, 127.0, 126.8, 126.1, 125.8, 122.2 (d, J_{CP} = 2.2 Hz), 121.1 (d, J_{CP} = 2.2 Hz), 120.1 (d, J_{CP} = 3.8 Hz), 119.9 (d, J_{CP} = 5.2 Hz), 87.9 (d, J_{CP} = 3.8 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ = -4.21 ppm. Crystals suitable for X-ray diffraction study were grown by slow diffusion of a CH₂Cl₂ solution layered with pentane.

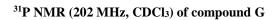
Diastereomer H: M.p. 236 °C; $[\alpha]^{20}_D$ - 255 (c = 1.0, CHCl₃); IR (neat, cm⁻¹) 3067, 1586, 1486, 1304, 1183, 960, 897; ESI-HRMS calculated for C₂₆H₁₆O₄INaP [M+Na]⁺ 572.9723, found 572.9725; ¹H NMR (300 MHz, CDCl₃) δ = 8.57 (s, 1H), 8.06 (d, J = 9.0 Hz, 1H), 7.96 (d, J = 9.0 Hz, 1H), 7.85 (d, J = 9.0 Hz, 1H), 7.63 (dd, J = 9.0 and 3.0 Hz, 1H), 7.51-7.47 (m, 2H), 7.37-7.28 (m, 8H), 7.22-7.17 (m, 1H) ppm; ¹³C NMR (75 MHz, CDCl₃) δ = 150.7 (d, J_{CP} = 6.7 Hz), 146.3 (d, J_{CP} = 8.2 Hz), 146.1, 140.9, 132.9 (d, J_{CP} = 0.8 Hz), 132.3 (d, J_{CP} = 1.5 Hz), 132.2 (d, J_{CP} = 1.5 Hz), 132.1, 132.0 (d, J_{CP} = 0.8 Hz), 129.9, 128.7, 127.5, 127.5, 127.4, 127.0, 126.9, 126.8, 126.2, 125.7, 122.0 (d, J_{CP} = 2.2 Hz), 121.5 (d, J_{CP} = 2.2 Hz), 120.6 (d, J_{CP} = 3.0 Hz), 120.2 (d, J_{CP} = 4.5 Hz), 87.6 (d, J_{CP} = 4.5 Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) δ = - 3.53 ppm. Crystals suitable for X-ray diffraction study were grown by slow diffusion of a CH₂Cl₂ solution layered with pentane.

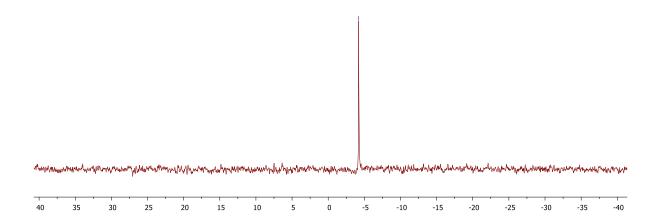

III - Synthesis of bisphosphate I

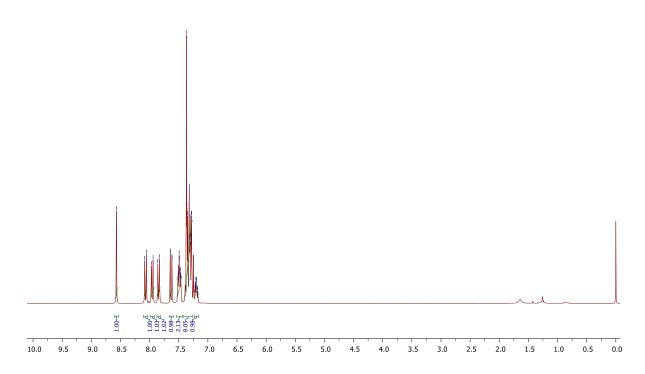
Under an atmosphere of argon, to a solution of PCl₃ (0.5 mL, 5.7 mmol, 1 equiv.) and 3 (1.64 g, 5.7 mmol, 1 equiv.) in toluene (100 mL) was added dropwise Et₃N (4.5 mL, excess) at 0 °C. The mixture was stirred at 0 °C for 30 min before addition of ethylene glycol (0.16 mL, 2.85 mmol, 0.5 equiv.). The reaction was stirred at room temperature for 1 h, then the mixture was filtered over a short pad of celite, rinced with toluene (20 mL), and the solvent was removed under vacuum. The crude product was taken up in EtOAc (40 mL), washed with H₂O (2 x 20 mL), aqueous 5% NaOCl solution (2 x 30 mL), brine (2 x 20 mL), and then dried over anhydrous MgSO₄. After filtration, the solvent was removed under vacuum and the residue was purified by column chromatography on silica gel using a mixture of petroleum ether/ethyl acetate 1/2 as eluent to give a white solid. Yield: 1.2 g, 58%. M.p. 180-182 °C; 1201, 1067, 1038, 961, 948, 891, 813, 746; ESI-HRMS calculated for C₄₂H₂₉O₈P₂ [M+H]⁺ 723.1332, found 723.1339; ¹H NMR (300 MHz, CDCl₃) $\delta = 8.00$ (d, J = 9.0 Hz, 2H), 7.92 (d, J = 8.1 Hz, 2H), 7.83 (d, J = 8.1 Hz, 2H), 7.73 (d, J = 9.0 Hz, 2H), 7.53 (dd, J = 8.7 and 0.6 Hz) Hz, 2H), 7.50-7.43 (m, 6H), 7.37-7.26 (m, 8H), 4.65-4.59 (m, 2H), 4.52-4.46 (m, 2H) ppm; ¹³C NMR (75 MHz, CDCl₃) $\delta = 147.5$ (d, $J_{CP} = 11.3$ Hz), 146.3 (d, $J_{CP} = 8.3$ Hz), 132.3 (d, $J_{CP} = 0.9 \text{ Hz}$), 132.2 (d, $J_{CP} = 0.9 \text{ Hz}$), 132.0 (d, $J_{CP} = 1.0 \text{ Hz}$), 131.8 (d, $J_{CP} = 1.0 \text{ Hz}$), 131.6, 131.4, 128.6, 127.3, 127.2, 126.9, 126.0, 125.9, 121.6 (d, $J_{CP} = 2.2 \text{ Hz}$), 121.1 (d, $J_{CP} = 2.2 \text{ Hz}$) Hz), 120.6 (d, $J_{CP} = 2.9$ Hz), 120.4 (d, $J_{CP} = 3.2$ Hz), 67.9 (t, $J_{CP} = 5.8$ Hz) ppm; ³¹P NMR (202 MHz, CDCl₃) $\delta = 2.70$ ppm.

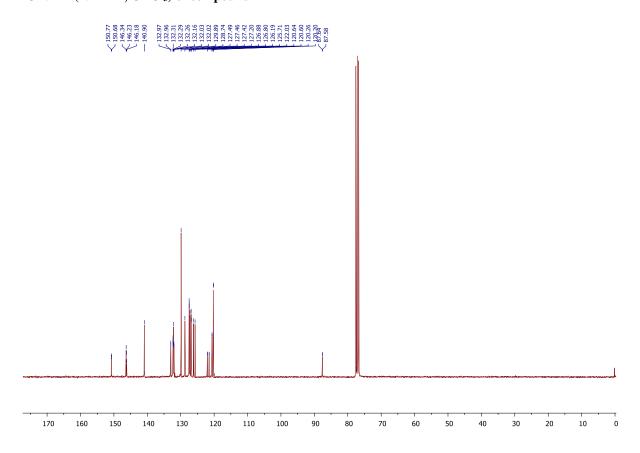
IV - ^{1}H , ^{13}C and ^{31}P NMR data of compounds G, H and I


$^1H\ NMR\ (300\ MHz,\ CDCl_3)$ of compound G

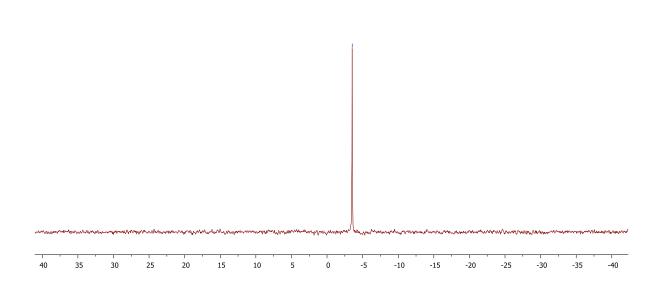

8.57 8.04 8.04 7.96 7.85


^{13}C NMR (75 MHz, CDCl₃) of compound G

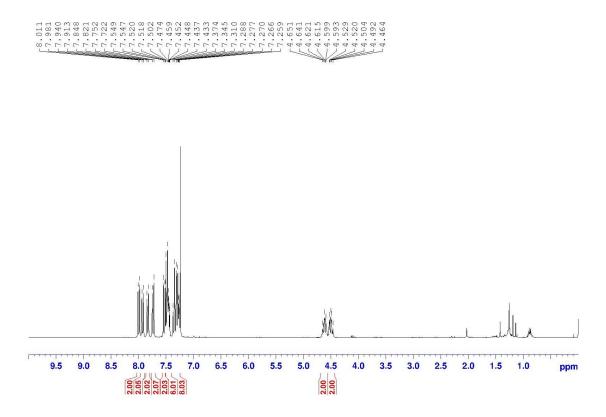


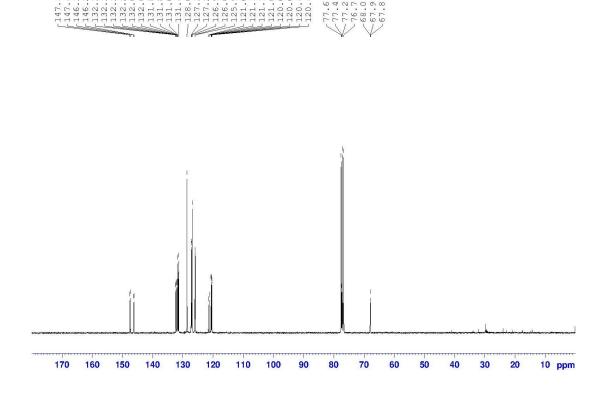


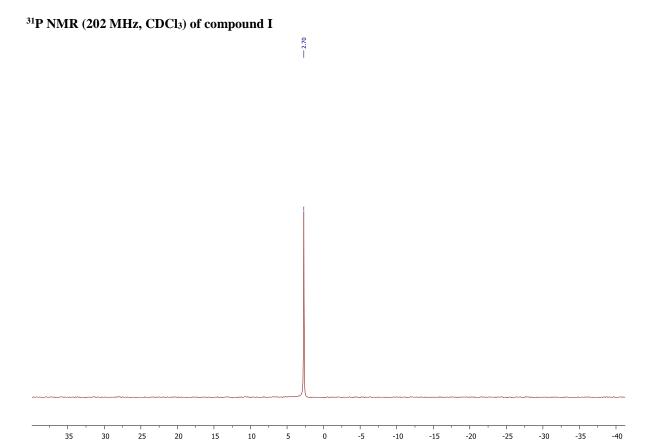
¹H NMR (300 MHz, CDCl₃) of compound H



 $^{13}\mbox{C NMR}$ (75 MHz, CDCl₃) of compound H

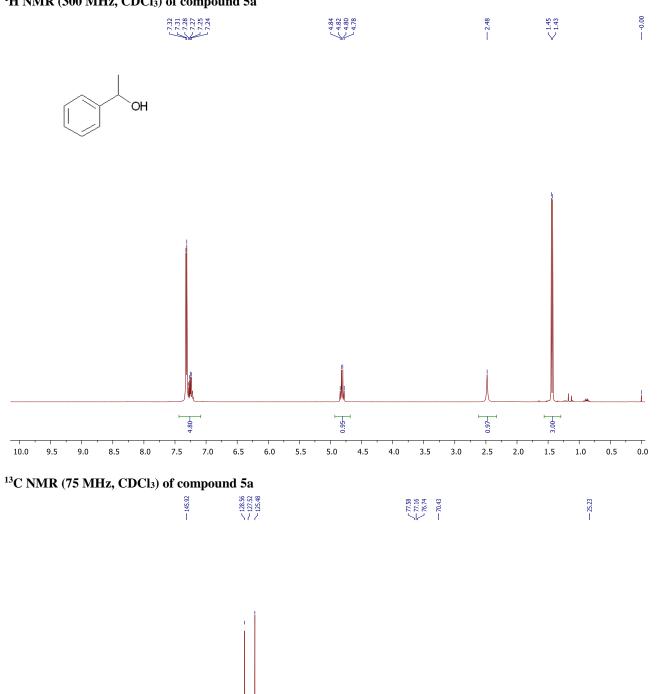






¹H NMR (300 MHz, CDCl₃) of compound I

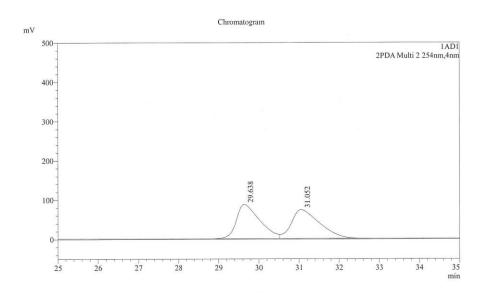
 $^{13}\text{C NMR}$ (75 MHz, CDCl₃) of compound I



V – General procedure for the hydrosilylation of ketones

In a flame-dried round-bottom flask, to a solution of the ligand (0.05 mmol) in dry THF (5 mL) under an atmosphere of argon was added ZnEt₂ (50 μ L, 1 M solution in *n*-hexane, 0.05 mmol). After 10 min, the ketone (1 mmol) and (EtO)₂MeSiH (0.24 mL, 1.5 mmol) were injected and the reaction mixture was stirred overnight at room temperature. After removal of the solvent under reduced pressure, MeOH (4 mL) and an aqueous 1 N NaOH solution (4 mL) were added and the resulting solution was stirred for 12 h. The reaction medium was quenched with brine (10 mL) and an aqueous 1 N HCl solution (10 mL), and extracted with Et₂O (3 x 10 mL). The combined organic layers were washed with an aqueous 1 N NaOH solution (10 mL) and brine (10 mL). After drying over anhydrous MgSO₄, filtration and evaporation to dryness, the residue was subjected to ¹H NMR analysis to determine the conversion. The crude product was then purified by silica gel column chromatography using petroleum ether/ Et₂O mixtures. ¹H and ¹³C NMR data for purified products are in agreement with reported values.

VI - ¹H, ¹³C NMR and HPLC data of compounds 5a-f

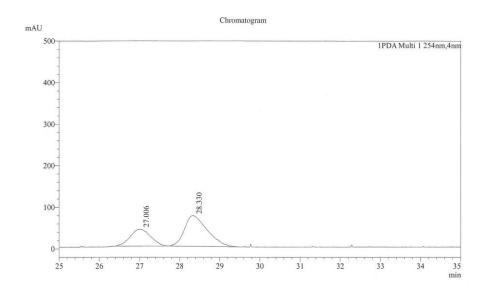

¹H NMR (300 MHz, CDCl₃) of compound 5a

$\textbf{Chiralpak IA, Heptane/Isopropanol} = \textbf{99/1, 0.8mL/min, 254nm} \ \big[\alpha\big]^{20} \\ \textbf{D} - 17.3 \ (c = 1.0, CHCl_3)$

Sample Information: phenylethanol IA 99-1 0.8mlmin: 29/02/2016 15:06:37: IA hept-IPA 99-1 flow0.8mlmin.lcm Sample Name

Date Acquired Method File

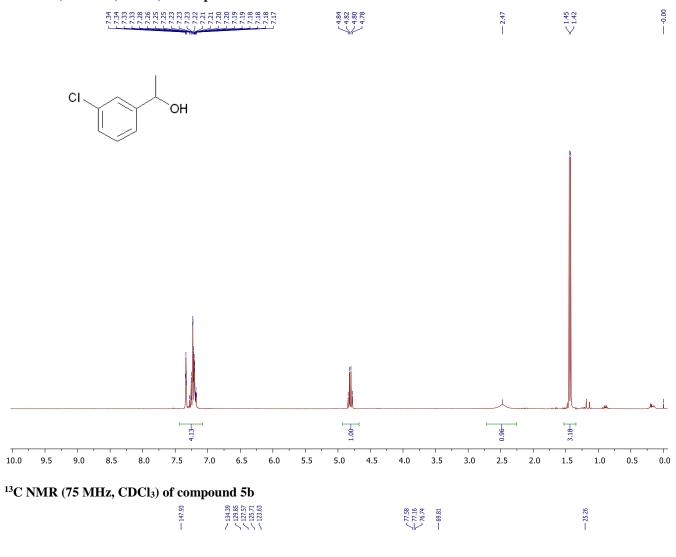
Peak Table

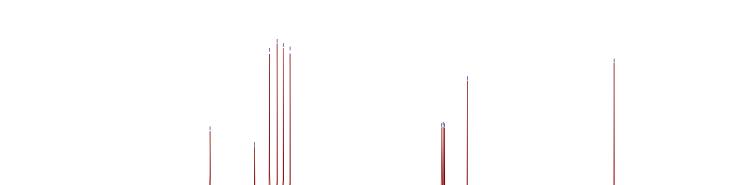

ACTO	CLO	254nm

Peak#	Ret. Time	Height	Area	Area%
1	29.638	86907	3498117	49.463
2	31.052	73281	3574129	50.537
Total		160188	7072246	100.000

Sample Information: ANN 49

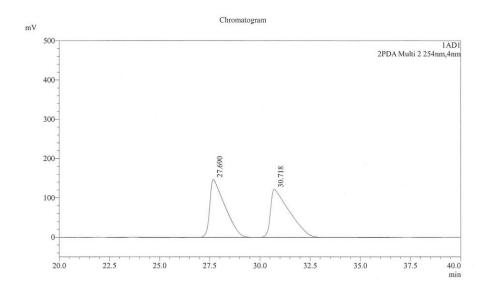
Sample Name Date Acquired Method File


: 21/03/2016 12:37:20 : IA hept-IPA 99-1 flow0.8mlmin.lcm



Peak Table

DA Ch1 2	254nm		1 cak Table	
Peak#	Ret. Time	Height	Area	Area%
1	27.006	40414	1417085	32.798
2	28.330	73427	2903620	67.202
Total		113841	4320704	100.000

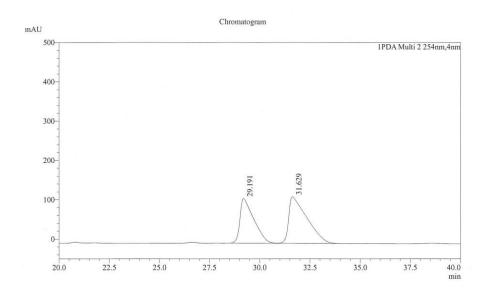


Chiralpak IA, Heptane/Isopropanol = 99/1, 0.8mL/min, 254nm $\left[\alpha\right]^{20}$ D -6.8 (c = 1.0, CHCl₃)

Sample Name

Date Acquired Method File

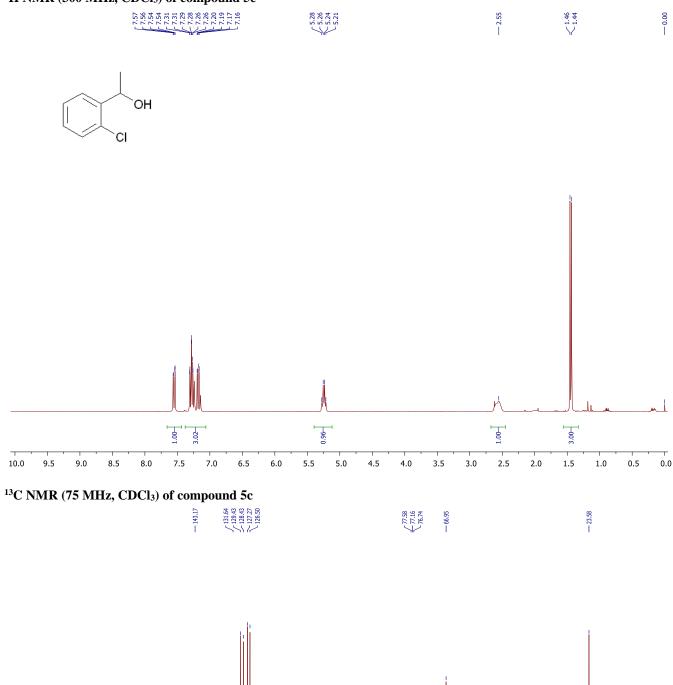
Sample Information : GA 232 : 12/04/2016 12:16:03 : IA hept-IPA 99-1 flow0.8mlmin.lcm


Peak Table

PDA Ch2 254nm

Peak#	Ret. Time	Height	Area	Area%
1	27.690	147191	7731962	49.186
2	30.718	122091	7987768	50.814
Total		269282	15719731	100.000

Sample Name Date Acquired Method File


Sample Information : ANN 97 : 26/05/2016 15:13:53 : IA hept-IPA 99-1 flow0.8mlmin.lcm

Peak Table

Peak#	Ret. Time	Height	Area	Area%
1	29.191	113476	5450843	42.167
2	31.629	118315	7475900	57.833
Total		231791	12926743	100.000

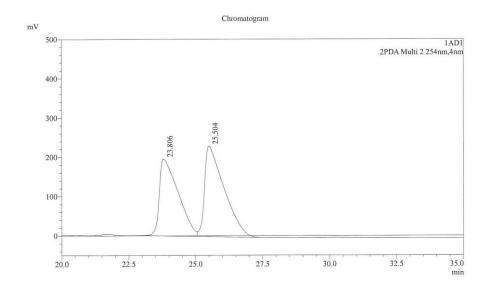
Chiralpak IA, Heptane/Isopropanol = 99/1, 0.8mL/min, 254nm $\left[\alpha\right]^{20}$ D -5.8 (c = 1.0, CHCl₃)

Sample Information

Sample Name

: TJ 27 : 12/04/2016 10:14:47 : IA hept-IPA 99-1 flow0.8mlmin.lcm

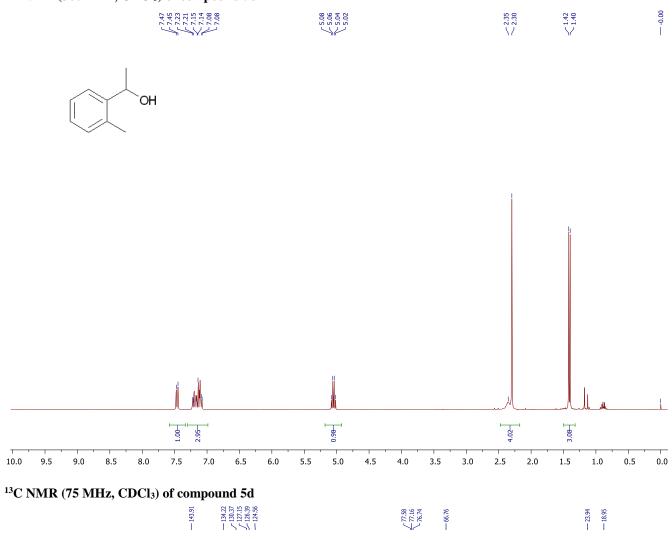
Date Acquired Method File

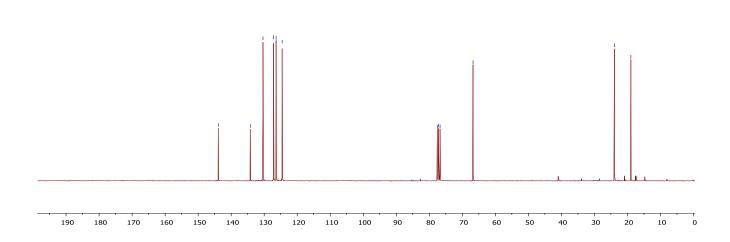

Chromatogram mV 500-1AD1 2PDA Multi 2 254nm,4nm 400-300-200-100-22.5 20.0 25.0 27.5 30.0 32.5 35.0 min

Peak Table

Peak#	Ret. Time	Height	Area	Area%
1	27.009	191312	7034217	48.159
2	28.582	142901	7571922	51.841
Total		334213	14606138	100.000

Sample Name Date Acquired Method File

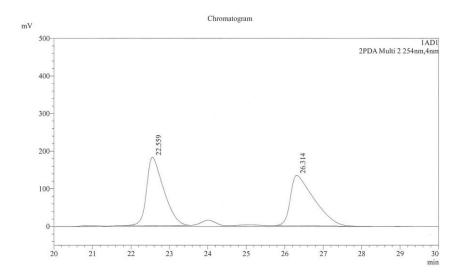

Sample Information : ANN 96 : 26/05/2016 14:33:28 : IA hept-IPA 99-1 flow0.8mlmin.lcm



Peak Table

Peak#	Ret. Time	Height	Area	Area%
1	23.806	195557	9576513	44.851
2	25.504	230734	11775523	55.149
Total		426291	21352036	100.000

¹H NMR (300 MHz, CDCl₃) of compound 5d

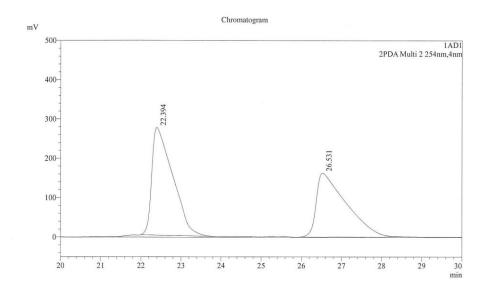


Chiralpak IA, Heptane/Isopropanol = 99/1, 0.8mL/min, 254nm $[\alpha]^{20}$ D +11.2 (c = 1.0, CHCl₃)

Sample Information: TJ 23

Sample Name Date Acquired Method File

: 12/04/2016 10:55:14 : IA hept-IPA 99-1 flow0.8mlmin.lcm



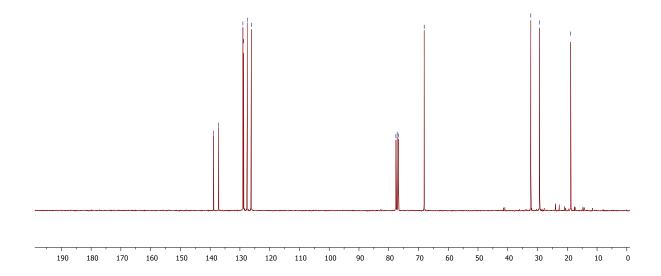
Peak Table

Peak#	Ret. Time	Height	Area	Area%
1	22.559	181593	5630475	49.534
2	26.314	134053	5736385	50.466
Total		315647	11366860	100.000

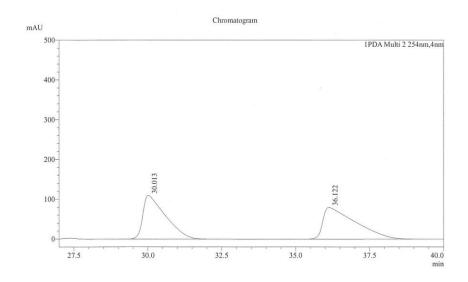
Sample Name Date Acquired Method File

Sample Information : ANN 99 : 26/05/2016 15:54:19 : IA hept-IPA 99-1 flow0.8mlmin.lcm

Peak Table


DDA Ch2 254nm

Peak#	Ret. Time	Height	Area	Area%
1	22.394	273492	9893972	54.183
2	26.531	161969	8366203	45.817
Total		435460	18260175	100.000

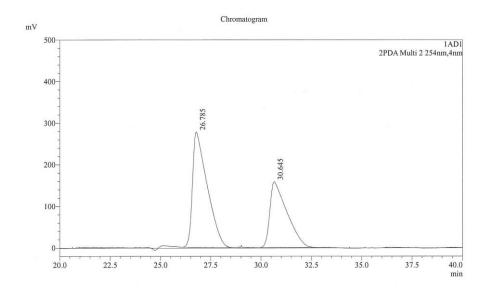


Chiralpak IA, Heptane/Isopropanol = 99/1, 0.8mL/min, 254nm $\left[\alpha\right]^{20}$ D +8.3 (c = 1.0, CHCl₃)

Sample Information

Sample Name Date Acquired Method File

: GA 281 : 12/04/2016 14:17:19 : IA hept-IPA 99-1 flow0.8mlmin.lcm

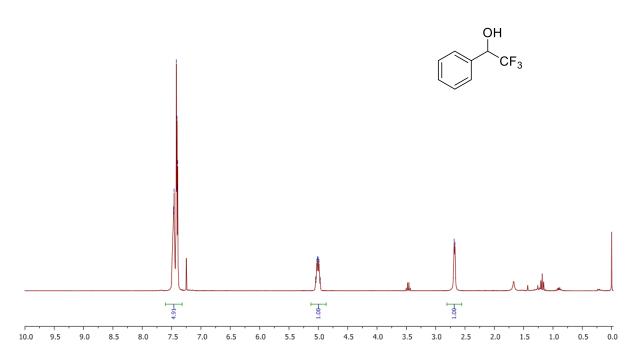


Peak Table

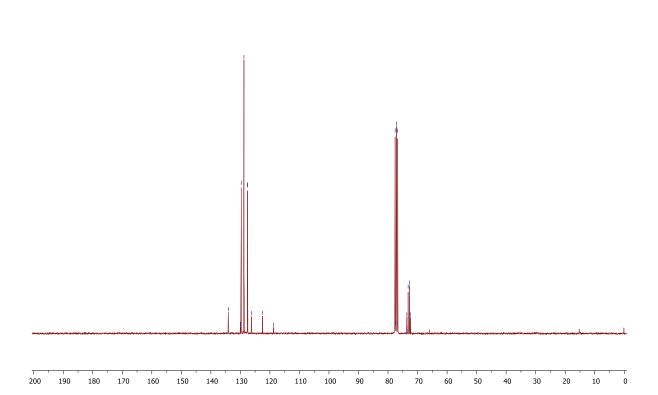
Peak#	Ret. Time	Height	Area	Area%
1	30.013	109745	5847179	48.990
2	36.122	79782	6088260	51.010
Total		189527	11935439	100,000

Sample Name Date Acquired Method File

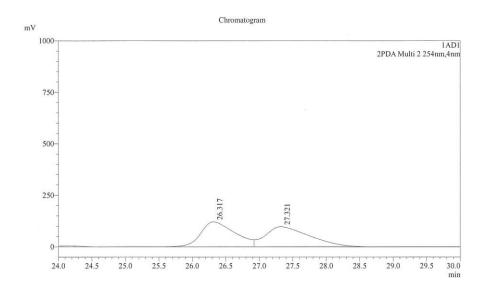
Sample Information : ANN101 : 02/06/2016 11:40:49 : IA hept-IPA 99-1 flow0.8mlmin.lcm



Peak Table


Peak#	Ret. Time	Height	Area	Area%
1	26.785	276822	14099301	60.249
2	30.645	157372	9302456	39.751
Total		434194	23401757	100.000

^{13}C NMR (75 MHz, CDCl₃) of compound 5f



$\textbf{Chiralpak IA, Heptane/Isopropanol} = \textbf{99/1, 0.8mL/min, 254nm} \left[\alpha\right]^{20} D + 0.9 \; (c=1.0, \, CHCl_3)$

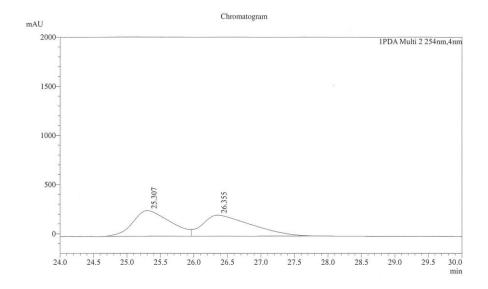
Sample Information: VS 49

Sample Name Date Acquired Method File

: 12/04/2016 12:56:28 : IA hept-IPA 99-1 flow0.8mlmin.lcm

Peak Table

PDA Ch2 254nm


Peak#	Ret. Time	Height	Area	Area%
1	26.317	121266	4343567	49.111
2	27.321	97599	4500845	50.889
Total		218865	8844412	100.000

Sample Information: ANN100

Sample Name Date Acquired Method File

: 02/06/2016 11:00:22

: IA hept-IPA 99-1 flow0.8mlmin.lcm

Peak Table

DA Ch2 254nm					
Peak#	Ret. Time	Height	Area	Area%	
1	25.307	259030	10091657	48.441	
2	26.355	213996	10741274	51.559	
Total		473026	20832931	100.000	

VII - X-ray diffraction study for compounds G and H

Data collections for compounds G and H were carried out on a D8 Venture Bruker AXS diffractometer at 150 K. The structures were solved by direct methods using the SHELXT program^[1] and then refined with full-matrix least-square methods based on F^2 (SHELXL-2014).^[2] All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. Details of the data collection, cell dimensions, and structure refinements are given in Table 1.

- [1] Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- [2] Sheldrick, G. M. Acta Cryst. 2015, C71, 3-8.

Compound	G	Н	
Formula	C ₂₆ H ₁₆ I O ₄ P	C ₂₆ H ₁₆ I O ₄ P	
Fw, g/mol	550.26	550.26	
Crystal size, mm	0.58 x 0.53 x 0.40	0.58 x 0.51 x 0.22	
Color	colourless	colourless	
space group	$P 2_1$	$P \ 2_1 \ 2_1 \ 2_1$	
a, Å	6.9836(9)	7.2039(8)	
b, Å	18.211(3)	9.9713(11)	
c, Å	8.7011(14)	30.095(4)	
α, deg	90	90	
β, deg	103.450(5)	90	
γ, deg	90	90	
V , $Å^3$	1076.2(3)	2161.8(4)	
Z	2	4	
d _{calcd} , g/cm ³	1.698	1.691	
θ range, deg	2.237 to 27.547	2.152 to 27.518	
μ , mm ⁻¹	1.594	1.587	
no. of obsd data, $I > 2\sigma(I)$	4429	4781	
data / restraints / parameters	4548 / 1 / 289	4939 / 0 / 289	
R1 (all data) ^a	0.0325	0.0251	
wR2 (all data) ^b	0.0764	0.0543	
$(\Delta \rho)_{min}$, e.Å ⁻³	-1.324	-0.603	
$(\Delta \rho)_{\text{max}}, e.\text{Å}^{-3}$	0.850	0.286	

Table 1. Selected crystallographic data and collection parameters for **G** and **H**.

$$^{a}~R1 = \sum \mid |F_{o}| - |F_{c}| \mid / \sum |F_{o}|.^{b}~wR2 = \{\sum \left[w(F_{o}{}^{2}~-F_{c}{}^{2})^{2}\right] / \sum \left[w(F_{o}{}^{2})^{2}\right]\}^{1/2}.$$